用户名: 密码: 验证码:
渗流固结问题的数值分析及粘性土—砂井地基固结模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用竖向排水体加快软土地基固结的排水预压法,是广泛应用于港口工程、房屋建筑以及道路建设中的地基加固技术。在这些竖向排水体中,砂井最为普遍,最具有代表性。砂井如何影响粘性土地基在预压排水过程中的变化,属于典型的渗流固结问题,对地基加固工程的设计和分析具有重要意义。粘性土-砂井地基的研究,涉及到渗流固结问题的一些基本课题,如粘性土渗流固结模型的建立和分析求解。数值法是解决这些课题的重要手段,采用数值模拟的办法分析粘性土-砂井地基固结行为,也越来越受到国内外学术界和工程界的重视。最近十几年,我国基础工程建设,特别是高速公路建设突飞猛进,粘性土-砂井地基的堆载预压、真空预压以及联合预压技术随之得到深入的实践和发展。然而,由于分析方法研究与推广的相对滞后,工程人员仍然没有摆脱主要依靠经验和传统解析法对砂井地基预压工程进行设计和分析的局面,遇到不少难以解决的问题,发展科学实用的工程计算方法,特别是数值模拟技术,就成为一种迫切的需求。然而,粘性土-砂井地基固结的模拟,存在诸多的困难,包括如何确定粘性土应力应变行为、渗透性的复杂特征、如何概化砂井地基模型、如何刻画砂井分布“细而密”的空间特征、如何处理预压条件等等。
    在上述背景下,本文的研究目的就是对渗流固结基本课题进行深入、系统的数值分析,提炼出最新的认识,帮助解决粘性土-砂井地基固结的基础问题,同时,对现有的粘性土-砂井地基固结模型和数值计算方法进行整理和改进,使之更合理、更具有实用价值。
    本文提出了单井固结新的理论模型,即一维双重介质模型,并得到在完整砂井条件下的解析解,该解析解为完整砂井等应变固结的普遍解。一维双重介质模型克服了现有单井固结理论将砂井周围土体简单划分为涂抹区和非涂抹区的缺点,适用于砂井周围土体渗透系数任意分布的情况,减少了单井固结分析的不确定性参数。更重要的是,该模型最大限度的降低了砂井地基模型的空间维数,却不失合理性。
    利用一维双重介质模型,本文首次实现了砂井地基固结的一维有限差分模拟(自编模拟程序为SDDM),得到非完整砂井地基单井固结的固结度曲线。通过分析对比,证明现有的非完整砂井单井固结的各种近似计算公式都存在系统的误差。其中,国内方法和谢康和改进法计算结果偏大,Hart法计算结果在固结前期比较准确,在固结后期显著偏小,谢康和改进法的误差随着砂井贯入地基深度的减小而增大。
    以一维双重介质模型为基础,本文对砂井“等效”处理为砂沟的数值模拟方法做出了改进。改进方法严格以渗流固结偏微分方程的等价性为等效原则,不人为加大竖向排水体的间距,适用于非完整砂井条件,只需要转换含砂井区土体水平渗透系数和砂沟的渗透系数两个参数。这些特点使改进方法比现有“等效”转换方法更严密,更能够反映实际砂井
Vertical drains is available to expedite the consolidation of cohesive soil and extensivelyapplied over the world in construction engineering of ports, buildings and roadways to reinforcesoft foundations. Sand Drain, is the most representative one in the group of vertical drains. It issuggested to call the foundation with cohesive soil layers improved by sand drains CohesiveSoil-Sand Drained Foundation (CSDF).
     It is important to research the behavior of sand drains in preloading processing for design andanalysis of ground improving programs. As a typical problem of consolidation process, theinvestigation of seepage and transformation of CSDF is involved with a set of basic questions toconsolidation, such as the models and solutions of consolidation for cohesive soil. Numericalmethod is one of the significant techniques for these problems and has been applied to modelingthe CSDF. In resent years, the reinforcement technique of CSDF, preloading under embankment,vacuum or coupled vacuum-embankment, has been deeply developed in China for constructionof highways. However, the engineers still do their work mainly with experience and classicalanalytical methods since the absence of new efficacious solutions and, the programs are alwaysled to some difficult situations. They help the conditions could be changed.
    So, it's valuable to develop scientific technique for simulation of CSDF and helpful to dealwith complex conditions for engineers.
     Here the purposes are presented for the paper: to analysis the normal consolidation behavior ofcohesive soil with numerical methods and abstract new points of view;to develop the modelsand numerical solutions of CSDF. Research results have been established in the dissertation forthese purposes.
     Uniform model in nonlinear is suggested to be combined with nonlinear constitutive modeland nonlinear seepage model. The basic nonlinear model of consolidation is shown in thediagram as following:
    In which H-V is the elasto-plastic element, H|N is the visco-elastic element and V|H is thevisco-plastic element for the soil framework, and W is the pore water with Darcy flow ornon-Darcy flow. A common formula is proposed to describe the volume strain speed in onedimensional condition:bPbucccdtautaPttvpvve??ε v =??εz=1 ??+2??+1+2+1εv+2εv+1ε+In which P is the loading on soil column and u is the excess pore pressure, a1、a2、b1、b2、c1、c2、c3、d are parameters involved to the state of effective stress and strain.It is also suggested to write the differential equations of Biot consolidation in matrix form asfollowing:[ K ]δ ? [C]u=F? [C ]T δ& +[G]u=nβu&+QDefinitions are:[K]=[B]T[D][B] —— stiffness matrix[G]=[C]T[H][C]/γw —— seepage matrix[C] —— coupled matrixF —— forces for equilibriumQ —— flux for equilibriumAnd δ is the displacement of soil framework, β is the coefficient for compressibility of water.The advantage of this kind of expression is that it make the analytical equations are very closeto the FEM equations of Biot consolidation.A new theoretical model of consolidation for single sand drain is developed and called as oneDimensional Dual-medium Model (DDM). Rigorous solution is given for fully penetrating sanddrain with the new model as a normal solution for the case of equal vertical strain. DDM hassome advantages related to the theory developed before: the area of soil around sand drain is notsimply marked as smear zone and non-smear zone and the model is available for any distributionof soil permeability;the number of uncertain parameters is decreased from two to only one. Themore important characteristic of DDM, is reducing mostly of the modeling dimensions forCSDF.The consolidation of CSDF is simulated firstly with one dimensional finite differencemodeling based on the DDM and curves of consolidated degree U for non-fully penetrating sanddrain is obtained. According to the comparing of results, systemic error is found in approximatedformulations proposed before for non-fully penetrating sand drain. The U calculated by China'sand Xie's(1987) methods are too great and the Hart's method is suitable at the beginning ofconsolidation and much too small at last. The errors of Xie's(1987) method increases withdecreases of length of sand drains.The commonly used technique for numerical modeling of sand drains, replacing sand drainsby equivalent sand grooves or named as sand walls, is modified based on DDM. Equivalence of
    differential equations is strictly satisfied in the modified method and the distance betweenvertical drains is not magnified yet done in the others. Also the modified method is available fornon-fully penetrating sand drains.Difference format of non-linear consolidation equations is developed in the case of onedimension and microcomputer code NLCL is established for modeling process.This program is applied to analysis non-linear effects in K0 consolidation, including Davis'smodel, non-Darcy model and rheological model.For Davis's model, the non-linear dimensionless consolidation equation is simulated:vcTUZUUUZk??? [ ? ??]=1?with conditions:①Tv=0, U=1;②Z=0, U=1+P/σ′z0 = n +1;③Z=1,U=n+1In which ck is the attenuation index of conductivity with increase of effective stress and n=P/σ′z0is the degree of loading related to initial effective stress。The equation had been investigated byDavis(1965) in analytical solution while ck=1 but modeling results are obtained with any cases ofck and n in the paper.The effects of two possible types of non-Darcy flow are discussed according to modelingresults. An important new conclusion for the existence of non-Darcy flow in soil columnexperiments is presented from reviewing of the analysis given by previous researcher. Twomistakes are found in previous analysis of soil column experiments: (1) transformation of soilframework was neglected during unsteady flow of pore water;(2) the effects of observationinstruments to the results of experiment were neglected. The mistakes are associated with aviewpoint that the phenomenon in soil column experiments shows non-Darcy flow in clay.However, it's proved in this paper, with analytical solution and water pressure-tube modifiednumerical modeling, that linear theory of consolidation with Darcy flow has enough satisfiabilityto the soil column experiment presented by Feng(1995) and by contraries non-Darcy flow'ssolutions are not agree to the data observed.Finite element method (FEM) for Biot consolidation and finite difference method (FDM) forTerzaghi consolidation of soft foundations with sand grooves are studied in the paper. Modelingcode CFEM2 and CFDM2 are developed to accomplish the simulation work.It's found from repeatedly modeling test that, to ensure the convergence of iterative solutionprocedure for coupled numerical equations of consolidation, time steps should be restricted as:max2()[()]Cv?t >sω ?LWhere ?t is the length of time step, ?L is the scale of elements in network and Cv is thecoefficient of consolidation. The function s(ω) gives a value greater than zero and increasingwith increase of the acceleration factor ω.The applicability of FEM and FDM is discussed for soft foundations. Compared to the results
    of FEM, excess pore pressure is greater and settlement is smaller which given by FDM. Thedifferences of settlement on the surface arises from drains is too great with FDM. The viewpointis proposed that FEM is more reasonable than FDM since it deal with the transformation andexcess pore pressure at the same time considering coupled consolidation but settlement valuesare indirectly obtained from excess pore pressure with FDM. However, FDM is simple forapplication and available to the cases of precision demand less than 10%.Some common characteristics have been shown in modeling of soft foundations with sandgrooves such as the stiffness of shallow pre-consolidated soils do influence to the settlement offoundation remarkably.The PDSS ( Plane Deformation & Spatial Seepage) modeling method which proposed by Xiein 1987 is suggested to be the most valuable procedure for simulation of CSDF.The paper has developed Xie's PDSS model at some aspects as following:1.Distribution of sand drains is not directly treated while the grid patterns are triangular inXie's model. To solve the problem, three symmetric sections are selected to excavate themodeling space:and the space is divided into spatial elements with 6 nodes or 8 nodes.2. A sand drain is located on a series of element in column with the shape of square in Xie'smodel. It is pointed out that the procedure is not correct for radial flow around sand drains andwould bring errors of excess pore pressure at the degree of 7.3% or more. In the paper, atechnique developed in hydrogeology for well flow in numerical analysis of groundwater isintroduced to the modeling of sand drains. The modified numerical flow model in threedimensions is successful to consider the smear action and well resistance effect.3. The place of nodes in the FEM network are fixed in Xie's model. It is not proper for thestrain of soil is always larger than 10% and great settlement would reshape the foundation. So,the location of grid nodes are moveable in modified model.4. Also the effects of large and uneven settlement to actual load distribution on the surface offoundations are neglected in Xie's model and considered in the paper.xySection 1Section 2Section 3 Drains
    5. The model is improved to be able to accomplish inverse programs. The values of parametersinput to the model are auto-optimal adjusted by compare the modeling results with observeddata.A C++ code program FDSPACE is designed according to above modifies for FEM modelingof CSDF.The program has been successfully used to a case study of preloading project for softfoundation beneath highway embankment in Guangdong province, China. The foundation wasdrained by sand drains 21.5 m long and preloaded by combined vacuum and embankment. Largesettlement more than 3.0m had been observed in about 2.5 years.Liner elastic model, Duncan-Chang's model and Cambridge Clay model and models forsecondary compression are introduced to clay layers in the ground. The optimal values of 54parameters are obtained from inverse procedure. It is indicated that Cambridge Clay model is themost satisfactory one among the models. Liner elastic model is not able to simulate the plasticpatterns of cohesive soils.It has been predicted that the post-construction subsidence of the foundation would be over to0.5m in 10 years.The development of seepage fields and stress fields in the foundation are investigatedaccording to the modeling results and flux of pore water in the sand drains are analyzed.The actions of some factors to consolidation of CSDF under vacuum and embankmentcombined preloading, such as length and interval of sand drains, depth and thickness of sandylayers, are studied in the paper. It's indicated that the sand drains have functions at large depthmore than 20m in the ground. Compared to preloading by embankment only, preloading bycombined vacuum and embankment is beneficial to shorten construction period of embankmentfilling and decrease the post-construction subsidence without failing on steady of the foundation.The research results presented above have advantages for studies of numerical methods in soilmechanics and for practices of soft ground improvement techniques.
引文
1. Almedia M S S, Ramalho O J A. Performance and Finite Element Analysis of a Trial Embnakment on Soft Clay. Int. Symposium on Numerical Models in Geomechanics, Zurich, 1982.
    2. Atkinson M S, Eldred P J. Consolidation of Soil Using Vertical Drains. Geotechnique, 1981, 31(1): 23-43.
    3. Barron. Consolidation of Fine Grained Soils by Drain Wells. Trans. ASCE, 1948, 113: 718-743
    4. Bear, J. Dynamics of Fluids in Porous Media. New York: Elsevier Pub. Co., 1972: 54-55.
    5. Biot M A. General Solutions of The Equation of Elasticity And Consolidation For a Porous Material. J. Appl. Phys., 1956 , 78(1): 91-96
    6. Biot M A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys., 1941, 12: 155-164.
    7. Booker J R, Small J C. An Inverstigation of the Stablity of Numerical Solutions of Biot's Equations of Consolidation. Int. J Solids & Structures, 1975, 11. 907.
    8. Brand E W, Brenner R P[著],叶书麟,宰金璋等[译]. 软粘土工程学. 北京: 中国铁道出版社,1991。
    9. Burland J B, Broms B B, De Mello V F B. Behaviour of Foundations and Structures. In: Proceeding of the 9th Int. conf. On Soil Mechanics and Foundation Engineering, ICSMFE, Okyo, Japan, 1977, 2: 495-546.
    10. Cividini A, Gloda G. Compatible and Equilibrium F.E. for Soil Consolidation: a Preliminary Comparison. Proceedings of 4th Int. Conf. On Numerical Methods in Geomechanics, Edmoton, Canada, 1982, 1: 297-306.
    11. Dafalias Y F. An Elastoplastic-viscoplastic Consolidative Modeling of Cohesive Soils. Int. Symposium on Numerical Models in Geomechanics, Zurich, 1982.
    12. Davis E H, Raymond G P. A Non-linear Theory of Consolidation, Geotechnique, 1965, 15(2): 161-173.
    13. Duncan J M. Limitations of Conventional Analysis of Consolidation Settlement. J. Geotech. Engrg. ASCE, 1993, 119(9): 1333-1359. (第 27 届 Terzaghi 土力学讲座)
    14. Fredlund D G, Hasan J U. One-dimensional Consolidation Theory: Unsaturated Soils. Canadian Geotechnical Journal, 1979, 16(3): 521-531
    15. Fredlund D G, Rahadjo H [著], 陈仲颐和、张在明、陈愈炯等[译]. 非饱和土土力学. 北京:中国建筑工业出版社,1997.
    16. Gudehus G[著], 朱百里[译]. 土力学. 上海:同济大学出版社, 1986。
    17. Hansbo S, Torstensson B A. Geodrain and Other Vertical Drain Behaviour. In: Proceeding of the 9th Int. conf. On Soil Mechanics and Foundation Engineering, ICSMFE, Okyo, Japan, 1977,1: 533-540.
    18. Hansbo S. Consolidation of Fine-Grained Soils by Prefabricated Drains. In: Proceedings of the 10th Int. Conf. On Soil Mechanics and Foundation Engineering, ISSMFE, Stockholm, 1981, 3: 677-682
    19. Hansbo S. Aspects of Vertical Drain Design: Darcian or non-Darcian Flow. Geotechnique, 1997, 47(5): 983-992
    20. Hartlen J. Swedish Geotechnical Development. Proceedings of the 10th Int. Conf. On Soil Mechanics and Foundation Engineering, ISSMFE, Stockholm, 1981, 4: 203-207
    21. Hird C C, Pyrah I C, Russell D. Finite Element Modeling of Vertical Drains Beneath Embankments on Soft Ground, Geotechnique, 1992, 42(3): 499-511.
    22. Hird C C, Pyrah I C, Russell D etc. Modeling the Effect of Vertical Drains in Two-Dimmensional Finite Element Analysis of Embankmants on Soft Ground, Canadian Geotechnical Journal, Ottawa, Canada, 1995, 32(5): 795-807.
    23. Hird C C, Moseley V J. Modeling Study of Seepage in Smear Zones Around Vertical Drains in Layered Soil. Geotechnique, 2000, 50(1): 89-97.
    24. Holtz R D, Brows B B. Long-term Loading Tests at Ska-Edeby, Sweden. Proceedings of the ASCE Specialty Conference on Performance of Earth amd Earth-supported Structures, Purdue University, 1972, I, Part 1: 455-464.
    25. Indratna B, Redana I W. Plane-strain Modeling of Smear Effects Associated with Vertical Drains. Journal of Geotech. and Geoenviron. Eng., 1997, 123(5): 474-478.
    26. John T.Christian [著], 王贻荪[译]. 二维和三维固结.见:卢世深、潘善德、王锺琦等译,岩土工程数值方法.北京:中国建筑工业出版社,1981。287-306.
    27. Ladd C C, Foott R, Ishihara K. Stress-Deformation and Strength Characteristics. In: Proceeding of the 9th Int. conf. On Soil Mechanics and Foundation Engineering, ICSMFE, Okyo, Japan, 1977, 2: 421-494.
    28. Loganathan N, Balasubrammaniam A S, Bergado D T. Deformation Analysis of Embankments. 1993, J. of Geotech. Eng., ASCE, 119(8): 1185-1206
    29. Murad M A, Cushman J H. A Three-scale model for consolidation of swelling clay soils. in: Pietruszczak S, Pande G N, Numerical Models in Geomechanics, Rotterdoam, Nertherland: A A Balkema Pub., 1997:117-122.
    30. Reed M B. Techniques For the Analysis of Seepage in Porous Elastic Media using Parabolic Isoparametric Elements. In: Proceeding of the International Conference on Finite Element Methods, Beijing, 1982: 534-538.
    31. Martins I S M, Lacerda W A. A Theory of Consolidation With Secondary Compression. In Proceeding of the 11th Int. Conf. On Soil Mechanics and Foundation Engineering, San Francisco, 1985: 567-570.
    32. Matsui T, ABE N. Application of Elasto-Plastic and Elasto-viscoplastic Models to Muti-Dimensional Consolidation Analysis. In: Int Symposium on Numerical Models in Geomechanics, Zurich, 1982.
    33. Nishizaki S, Saito I, Ohira A. Some Finite Elements for Consolidation Analysis. In: Proceedings of 4th Int. Conf. On Numerical Methods in Geomechanics, Edmoton, Canada, 1982, 1: 69-78.
    34. Olsen H W. Darcy's Law in saturated Kaolinite. Water Resources Research, 1966, 2(2):
    35. Sandhu R S, E L Wilson. Finite Element Analysis of Flow of Saturated Porous Elastic Media. J Eng. Mech. Div. ASCE, 1969, Vol.98, No.SM7: 641-652.
    36. Sandhu R S. Finite Element Analysis of Coupled Deformation and Fluid Flow in Porous Media. In: Martins(ed.), Numerical Methods in Geomechanics, Boston: D. Reidel Pub. Com., 1982: 203-227.
    37. Smith I M, Hobbs R. Biot Analysis of Consolidation Beneath Embankments. Geotechnique, 1976, 26(1): 149-171.
    38. Schiffman R L, Santosh K A[著], 黄世铭[译]. 单向固结.见:卢世深、潘善德、王锺琦等译,岩土工程数值方法。北京:中国建筑工业出版社,1981:263-286.
    39. Swartzendruber D. Non-Darcy Flow Behavior in Liquid-saturated Porous Media. J. of Geophisical Research, 1962, 67(13): 5205-5213
    40. Wroth C P. The Predocted Performance of Soft Clay under a Trial Embankment Loading based on the Cam-Clay Model. In:Gudehus [ed.],Finite Elements in Geomechanics. Londen:John Wiley & Sons, Ltd. 1975:191-208.
    41. Xie Y L, Pan Q Y, Zeng G X. The theory For Three-Dimensional Finite Strain Consolidation of Saturated Soil. Proceedings of the International Conference on Soft Soil Engineering, Beijing: Science Press., 1993: 295-299.
    42. Yin J-H, Graham J. General Elastic Viscous Plastic Constitutive Relationships for 1-D Straining in Clays. In: Pietruszczak S, Pande G N [ed.], Numerical Models in Geomechanics, Yew York: Elsevier Applied Sience Press., 1989, No.III: 108-117.
    43. Yin Jian Hua, Zhu Jun Gao. Elastivcvisco Plastic Consolidation Modeling of Soft Clay. 岩土工程学报,1999,Vol.21(3): 360-365.
    44. Zeng G X, Shi Z Y. Deformation Anisotropy Behaviour of Soft Clay, In:《曾国熙教授科技论文选集》编委会,曾国熙教授科技论文选集,北京:中国建筑工业出版社, 1997:173-178.
    45. Zhu G, Yin J-H. Consolidation of Soil With Vertical and Horizontal Drainage Under Ramp Load. Geotechnique, 2001, 51(4): 361-367.
    46. Zienkiewicz O C, Humpheson C. 粘塑性—描述土的性状的广义模型,见:卢世深、潘善德、王锺琦等译,岩土工程数值方法. 北京:中国建筑工业出版社. 1981: 85-108
    47. Zienkiewicz O C, Lewis R W. A Unified Approch to Soil Mechanics Problems (Including Plasticity and Viscoplasticity),In:Gudehus [ed.], Finite Elements in Geomechanics, Londen:John Wiley & Sons, Ltd. 1975:191-208.
    48. 蔡体楞主编,杭甬高速公路软土地基处理,杭州:杭州出版社,1998。
    49. 陈崇希,岩溶管道-裂隙-孔隙三重空隙介质地下水流模型及模拟方法研究,地球科学——中国地质大学学报,1995,20(4): 361-366。
    50. 陈崇希、裴顺平,地下水开采-地面沉降数值模拟及防治对策研究,武汉:中国地质大学出版社,2001。
    51. 陈崇希、唐仲华,地下水流动问题数值方法,武汉:中国地质大学出版社,1990。
    52. 陈崇希,地下水不稳定井流计算方法,北京:地质出版社,1983。
    53. 陈崇希、林敏,地下水动力学,武汉:中国地质大学出版社,1999
    54. 陈环,真空预压的机理分析,见:候钊主编,天津软土地基,天津:天津科学技术出版社,1987:73-84.
    55. 陈景扬、徐泽中、吴铭,沪宁高速公路路基固结沉降规律分析研究,水利水电科技进展,1998, 18(2): 13-16
    56. 陈开旭、陈光敬,解析法求解成层渗透各向异性地基 Biot 固结轴对称问题,应用力学学报,2000,17(2): 7-12。
    57. 陈仲颐、周瑾星、王洪瑾,土力学,清华大学出版社,1994.
    58. 陈宗基,固结及次时间效应的单维问题,土木工程学报,1958,5(1):1-10。
    59. 邓仁鳞,深层降低地下水位的试验研究,见:中国土木工程学会第三届土力学及基础工程学会论文选集,北京:中国建筑工业出版社,1981:299-308
    60. 董志良,真空预压法加固软土地基技术的理论与实践,交通部四航局科研所[内部资料],1996。
    61. 杜延龄、李春华、徐家海,研究饱和粘土渗透特性的试验装置,水利学报,1980(4):71-75
    62. 方淑镇,山西大同文英湖傍湖地下水优化排水设计及地下水动态预测,中国地质大学硕士学位论文,1992。
    63. 房萤光,砂井地基固结的空间渗流和群井效应的解析分析,岩土工程学报,1996,18(2):30-35.
    64. 冯晓腊,深圳地区淤泥类软土预压排水法中的理论与实践,中国地质大学博士学位论文,1995。
    65. 高志义,真空预压法的机理分析,岩土工程学报,1989,11(4): 45-55
    66. 《工程地质手册》(第三版),北京:中国建筑工业出版社,1992。
    67. 龚晓南, 地基处理新技术, 西安: 陕西科学技术出版社,1997。
    68. 华东水利学院,土工原理与计算,北京:水利电力出版社,1982。
    69. 何开胜、戴济群,超深排水板堆土预压法,水利学报,2000,(6):74-80。
    70. 侯杰、宿青山、潘树森等,对饱和粘性土渗透规律的新认识,见:卢耀如、唐宏才主编,第 30 届国际地质大会论文集(中文版),北京:地质出版社,1998,22:4-8。
    71. 胡亚元、王立忠、陈云敏等,多层地基二维 Biot 固结的理论解答,岩土工程学报,1998,20(5): 18-21。
    72. 胡中雄、魏道垛,软粘土准前期固结压力试验及计算公式,见:中国土木工程学会第三届土力学及基础工程学会论文选集,北京:中国建筑工业出版社,1981:162-166。
    73. 黄传志、肖原,二维固结问题的解析解,岩土工程学报,1996,18(3):47-54。
    74. 黄文熙,硬化规律对土的弹塑性应力-应变模型影响研究,岩土工程学报,1980,2(2):1-11
    75. 黄文熙主编,土的工程性质,北京,水利电力出版社,1983。
    76. 蒋明镜、沈珠江,饱和软土的弹塑性大变形有限元平面固结分析,河海大学学报,1998,26(1):73-77。
    77. 蒋彭年, 土的本构关系, 北京: 科学出版社,1982。
    78. 金问鲁,两维粘土固结与次固结效应问题的解,岩土工程学报,1980,2(2):26-33。
    79. 金问鲁,实用土力学及地基处理实例,北京:中国铁道出版社,1993。
    80. 孔祥言,高等渗流力学,合肥:中国科学技术大学出版社,1999。
    81. 李冰河、谢康和、应宏伟等,变荷载下软土非线性一维固结半解析解,岩土工程学报,1999.21(3):288-293。
    82. 李世军、孙钧,上海淤泥质粘土的一维固结-蠕变问题,同济大学学报,1999,27(4): 389-392
    83. 李尧臣、周顺华,真空排水固结法处理软土地基的数值模拟,上海铁道大学学报,2000,21(10): 96-99.
    84. 李映晖、杨天行,求解 Biot 固结方程组的广义差分法,计算物理,1998, 15(6): 717-725
    85. 李祖贻、陈平,有限元法计算井的渗流对奇异点的处理,水利学报,1984,(5):41-50
    86. 刘慈群,有起始比降固结问题的近似解,岩土工程学报,1982,4(3):107-109
    87. 刘景政、杨素春、钟冬波编,地基处理实例分析,1998,北京:中国建筑工业出版社。
    88. 刘世明,软粘土的次固结变形特性研究,浙江大学博士学位论文,1988。
    89. 刘兴旺、谢康和等,竖向排水井地基粘弹性固结解析理论,土木工程学报, 1998, 31(1).
    90. 罗嗣海, 层状地基的固结计算与固结特性, 1997, 地球科学—中国地质大学学报,22(2): 205-209。
    91. 潘秋元、杨国强,排水固结法,见:地基处理手册,北京:中国建筑工业出版社,1988:45-119。
    92. 濮家骝、李广信、孙岳嵩,砂土复杂应力状态试验及三维弹塑性模型研究,见:中国土木工程学会第四届土力学及基础工程学会会议论文选集,北京:中国建筑工业出版社,1986:156-163。
    93. 钱家欢,论粘性土地基的沉降计算方法,见:软土地基学术讨论会论文选集,北京:水利出版社,1980:44-52。
    94. 钱家欢,粘弹性理论在土力学方面的应用,高等学校自然科学学报(土木、建筑、水利版),1966,2(1):73-82。
    95. 钱家欢、王盛源、郭志平,流变理论在土力学方面的应用,见:中国土木工程学会第四届土力学及基础工程学会会议论文选集,北京:中国建筑工业出版社,1986:132-140。
    96. 钱家欢、赵维炳,真空预压砂井地基固结分析的半解析方法,中国科学,1988(A),(4): 439~448。
    97. 屈智炯,土的塑性力学,成都:成都科技大学出版社,1987。
    98. 冉启全、顾小芸,考虑流变特性的流固耦合地面沉降计算模型,中国地质灾害与防治学报,1998,9(2):99-103。
    99. 佘志顽、赵维炳、顾吉等,粘弹-粘塑性软基排水预压的三维有限元分析,河海大学学报,1995,23(5):1-7。
    100. 沈珠江, 用有限单元法计算软土地基的固结变形,水利水运科技情报,1977 (1): 7-12。
    101. 沈珠江, 土的弹塑性应力应变关系的合理形式, 岩土工程学报, 1980, 2(2):11-19。
    102. 沈珠江,软土地基固结变形计算模式的评价,土木工程学报,1984,17(2):27-38。
    103. 沈珠江.软土地基固结变形的弹塑性分析.中国科学(A),1985,(11):1049-1060。
    104. 沈珠江, 软土工程特性和软土地基设计, 岩土工程学报, 1998,20(1):100-111。
    105. 沈珠江,理论土力学,北京: 中国水利水电出版社,2000:133-184。
    106. 沈珠江、魏汝龙、盛崇文,软土力学性质的现场测试技术及其分析,见: 软土地基学术讨论会论文选集,北京:水利出版社,1980:53-69。
    107. 沈珠江、陆舜英,软土地基真空排水预压的固结变形分析,岩土工程学报,1986,8(3):7-15
    108. 沈珠江、易进栋,海滩软土路基的固结变形分析,岩土工程学报,1987,9(6):39-45
    109. 沈珠江、张鲁年,一个计算软土地基固结变形的弹塑性模式,见:中国土木工程学会第三届土力学及基础工程学会论文选集,北京:中国建筑工业出版社,1981:136-144。
    110. 松尾新一郎[编],孙明漳、梁清彦[译],软土地基手册,北京:中国铁道出版社,1983。
    111. 速宝玉、詹美礼、赵坚,光滑裂隙水流模型实验及其机理初探,水利学报,1994(5):19-24。
    112. 王常明、肖树芳,海积软土固结蠕变的时效本质研究,工程地质学报,2000,8(增刊):334-336。
    113. 王盛源,饱和多孔介质粘弹性理论,中国科学(A),1989,(7):739-748。
    114. 王盛源,饱和粘性土的主固结与次固结变形分析,岩土工程学报,1992,14(5):70-75
    115. 王盛源、关锦荷,珠江三角洲高含水量软基上建造高速公路的技术问题,见:广东省航务工程总公司岩土工程论文集(内部资料),1999。
    116. 王盛源、周春儿、关锦荷等,珠江三角洲高含水量粘土地基工程特性及快速加固机理的研究,交通部重点科技“九五”攻关课题报告,广东省航务工程总公司,2001。
    117. 王旭升,黎明、陈崇希等,堆载预压下砂沟地基渗流固结模拟与不均匀沉降分析,地质科技情报,2001,20(1):100-103。
    118. 王贻荪,考虑砂井阻力的折减井径法,岩土工程学报,1982,4(3):43-52。
    119. 王泳嘉,冯夏庭,关于计算岩石力学发展的几点思考,岩土工程学报,1996,18(4):103-104。
    120. 维亚洛夫 C C [著], 杜余培[译], 土力学的流变原理, 北京: 科学出版社,1987:16-17。
    121. 魏汝龙,正常压密粘土的弹塑性应力应变关系,见:软土地基学术讨论会论文选集,北京: 水利出版社,1980:109-121。
    122. 魏汝龙,正常压密粘土的塑性势,水利学报,1964,(6):9-19。
    123. 魏汝龙,软粘土强度和变形,北京:人民交通出版社,1987。
    124. 魏汝龙, 从实测沉降过程推算固结系数, 岩土工程学报, 1991, 15(2):12-19。
    125. 吴凤彩,粘性土的吸附结合水测量和渗流的某些特点,岩土工程学报, 1984,5(6):84-93。
    126. 夏建中、谢永利,横观各向同性土体固结中孔压消散规律研究, 中国公路学报, 1998, 11(4):38-41。
    127. 夏建中等,二维各向异性固结微分方程的解法,西安公路交通大学学报,1997,(3): 26-30
    128. 谢康和, 砂井地基、固结理论、数值分析与优化设计,浙江大学博士学位论文,1987
    129. 谢康和,双层地基一维固结理论及应用,岩土工程学报,1994,16(5):26-38。
    130. 谢新宇、朱向荣、谢康和等,饱和土体一维大变形固结理论新进展,岩土工程学报,1997,19(4): 30-37。
    131. 徐芝纶,弹性力学简明教程(第二版),北京:高等教育出版社,1983。
    132. 《岩土工程手册》编委会,岩土工程手册,北京:中国建筑工业出版社,1994
    133. 叶柏荣、唐羿生、陆舜英,袋装砂井-真空预压法在天津新港的应用,见:中国土木工程学会,第四届土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社,1986: 542-547
    134. 殷建华、Jack I.Clark,土体与时间相关的一维应力-应变性状、弹粘塑性模型和固结分析,岩土力学,1994,15(3): 64-80 及(4): 64-75。
    135. 殷宗泽,沪宁高速公路地基沉降有限元计算分析,水利水电科技进展,1998,18(2):22-26。
    136. 于立,成层多孔粘弹性地基在轴对称荷载作用下的解,岩土力学,2001,22(3):276-280。
    137. 曾国熙、杨锡令,砂井地基沉陷分析,浙江大学学报,1959,(3)。
    138. 曾国熙,利用砂井处理土坝软粘土地基,浙江大学学报,1975, (1): 119-135
    139. 曾国熙、龚晓南,软土地基固结的有限单元法分析。浙江大学学报,1983,17(1):1-14。
    140. 曾国熙、卢肇钧、顾尧章,地基处理(综合报告),见:中国土木工程学会,第四届土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社,1986:69-86。
    141. 曾国熙、谢康和、朱向荣等,竖井排水固结理论研究的若干进展,见:《曾国熙教授科技论文选集》编委会,曾国熙教授科技论文选集,北京:中国建筑工业出版社, 1997:126-138。
    142. 张诚厚、袁文明、戴济群,高速公路软基处理,北京:中国建筑工业出版社,1997。
    143. 张道宽、王显义,软基变形问题的弹塑性有限元分析,见:中国土木工程学会第四届土力学及基础工程学会会议论文选集,1986,北京:中国建筑工业出版社,P254-260。
    144. 张华、林琼、王建华,多层地基内部作用集中力时 Boit 固结方程的求解, 南昌大学学报 (工科版), 2000, 22(1):26-32.
    145. 张吉园、张志勇、邢仲星,多模型 Biot 固结有限元分析,四川建筑科学研究,2000,26(1):47-50。
    146. 张迎春、李银祥,从广珠高速公路软土试验工程谈软土地基处理经验与问题,广东航务(内部季刊),1998,(3): 1-10。
    147. 赵维炳,陈永辉,龚友平,平面应变有限元分析中砂井的处理方法. 水利学报,1998,(6):53-57。
    148. 赵维炳,广义 Voigt 模型模拟饱和土体轴对称固结理论解,河海大学学报,1988,16(5):47-56。
    149. 赵维炳, 主次固结简化计算方法,水利学报,1994(1):30-37
    150. 赵维炳、施建勇、艾英钵等,砂井地基预压加固的粘弹塑性分析,河海大学学报,1995,23(6): 34-38。
    151. 郑颖人、龚晓南,岩土塑性力学基础,北京:中国建筑工业出版社,1989。
    152. 周爱国、胡立堂、严加兵等,高速公路软基处理中袋装砂井参数优化探讨,工程地质学报,2000,8(增刊):517-518。
    153. 周光泉、刘孝敏,粘弹性理论,合肥:中国科学技术大学出版社,1996。
    154. 周镜,软土沉降分析中的某些问题,中国铁道科学, 1999,20(2):17-29。
    155. 周顺华、王炳龙、李尧臣等,真空排水固结法处理地基的沉降计算,铁道学报,2001,23(2):58-60。
    156. 朱百里、沈珠江等,计算土力学,北京:上海科学技术出版社,1990。
    157. 朱伯芳,有限单元法原理与应用(第 2 版),北京: 中国水利电力出版社, 1998。
    158. 朱梅生. 软土地基. 北京:中国铁道出版社,1989。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700