用户名: 密码: 验证码:
西秦岭晚古生代弧前盆地沉积与成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陕西太白—凤县和甘肃西和—礼县一带的西秦岭造山带可分为三个构造单元:北侧的岛弧带、南侧的增生楔和夹于其间的弧前盆地。后者是西秦岭的主体,控制了晚古生代地层的发育和多个大型铅锌矿、金矿床的生成。
     岛弧带由李子园群(包括丹凤群、罗汉寺群)的变质火山系组成。火山岩系属于基性→中性→酸性岩石演化序列。岩石地球化学进一步分析研究表明,火山岩系形成于岛弧为主的大地构环境。玄武岩为低钾—中钾玄武岩,以亚碱系列为主,轻稀土富集,具有Eu负异常,Nd明显正异常,Cr元素含量高出标准岛弧拉斑玄武岩的2~3倍。增生楔由分布于徽县、成县、留坝、石泉一带的原划志留系浅变质陆源碎屑岩系夹碳酸盐岩、硅质岩及基性岩、火山岩块构成,发育时限为晚古生代—三叠纪。弧前盆地主要由分布于漳县、成县、礼县、凤县、太白一带的泥盆系、石炭系和二叠系组成。
     西秦岭的晚古生界分布于上述岛弧带和增生楔之间,属于弧前盆地内的充填物,主要为泥盆系的大草滩群、舒家坝群、西汉水群和铁山群,沿着李子园群南缘呈带状展布。大草滩群分布于盆地北侧,是一套晚泥盆世巨厚的红色、灰绿色陆源粗碎屑岩;舒家坝群是一套中—晚泥盆世的浅变质碎屑岩及少量碳酸盐岩,位于盆地中部;西汉水群出露于盆地的南部,以板岩、千枚岩及砂岩为主,夹灰岩块和生物礁;铁山群为晚泥盆世浅海相碳酸盐岩及碎屑岩组合,主要见于盆地西南缘。
     盆地内的断裂构造主要为北西向断裂。断裂两侧地层的岩石组合及其沉积相变、砾岩组成和特征、滑塌褶曲、生物组合及断裂带内地层的综合分析显示,这些断裂为一系列多期活动的同沉积断裂系。它们将盆地分割成多个呈叠瓦状排列的次级盆地,具有背驮型增生特征。深部热液沿着盆地基底同生断裂发生广泛喷流作用,为生物礁的形成提供了物质和能量,从而在其周围形成大量热水喷流沉积岩、生物礁及铅锌矿床。
     古水流方向分析显示出西秦岭晚古生代弧前盆地是由多个逆冲断隆和深水盆地组成的。盆地内的沉积物主要来自北侧岛弧带,岩石碎屑组成、地球化学特征共同表明,盆地内充填物源区的大地构造环境为岛弧。
     盆地内沉积相变规律明显。平面上,从北向南呈现出由浅水到深水的变化,即陆缘斜坡冲积扇→浅海相、生物礁→半深海、深海相。这一现象揭示泥盆纪时西秦岭具有北高南低的大陆斜坡古地理格局。由南向北及山西向东均表现为超覆,且由北向南表现为同期异相。盆地内碎屑组成具有向北变粗的特征,这与盆地内充填物垂向变化相一致,表现为一进积型盆地充填序列,显示了多级水下冲积扇互相叠加特征。
     弧前盆地内的铅锌矿床与西汉水群同时期形成,严格受同沉积断裂构造控
The Western Qinling Orogenic belt in the Taibai-Fengxian and Xihe-Lixian areas can be subdivided into three units structurally from north to south, which are the island-arc, forearc basin and accretionary wedge, respectively. The forearc basin developed in the Late Paleozoic mainly controls sedimentation and some larger lead-zinc and gold deposits in the western Qinling.Stratigraphically, the island arc is dissected into the Liziyuan Group, the Danfeng Group and the Luohansi Group. The metavolcanic rocks include basic, intermediate and acidic rocks, and their geochemistry demonstrates that these igneous rocks generated in an island arc. Where, the basalts are subalkaline series charactered by low-medium potassium, with enriched LREE, negative Eu anomaly, and positive Nd anomaly. Cr-content of volcanic rocks is 2-3 times higher than that of island arc tholeiite all over the world. In addition, the lightly metamorphosed accretionary wedge in the areas of Huixian, Chengxian, Liuba and Shiqun is dominated by terrigenous sediments with carbonatite, chert, mafic and volcanic rocks. The age of the wedge is the Late Palaeozoic to the Trassic, while previous work suggested that it is the Silurian.The Upper Paleozoic between the island arc belt and accretionary wedge are mainly the sediments filled in the fore arc basin. The fillings in the forearc basin were subdivided into the Dacaiotan Group, the Tieshan Group, the Shujiaba Group and the Xihanshui Group, previously. They outcropped along the southern margins of the Liziyuan Group. The Dacaotan Group, the Upper Devonian, is close to the island arc complex, and composed of a suite of red and gray-green thick and coarse terrestrial clastics. The Shujiaba Group, the Mid-Upper Devonian, is located in the middle of the basin, is mainly fine-grained clastics with a few intercalations of limestone. The Xihanshui Group, which distributes in the southern of the basin, is mainly slates, phyllites and sandstones with carbonatite and reef blocks. The Tieshan Group, the Upper Devonian, just outcrops in the southwest of the basin, is carbonatite and clastic rocks, and deposited in the shallow -sea environment.The faults in the basin are mainly NW trend. The sedimentary characteristics, slump folds, biological assemblages in both sides of and within those faults demonstrate that they were syn-sedimentary faults with multi-period activities. They separated the forearc basin into several sub-basins, which imbricate in the background of a forearc basin with sedimentary characteristics of the piggyback basin. The deep hydrothermal fluid erupted along the syn-sedimentary faults, supported nutrition and
    energy for the reef, and resulted in hydro thermal-sedimentary rocks, reef and lead-zinc deposits along these faults.The sedimentary facies in the basin varies from the continental slope alluvial fan, to shallow-sea reef facies, and then to deep-water from north to south, which implies that there was a continental slope in the Devonian in the west Qinling. The strata overlap to north and to east respectively. Additionally, the coeval sedimentary facies in north and south are significantly different. The elastics become more and more coarser to north in the basin as well as upward coarsing. These features indicate prograding fillings followed by overlaps of the different fans underwater. The paleocurrent analyses show that the forearc basin is composed of thrust-ramp-basins and deep-water basins. The provenance of the fillings in the basin is the island arc in the north.The lead-zinc deposits were synchronous with the Xihanshui Group in the early stage of development of the forearc basin. They were strongly constrained by syn-sedimentary faults and then modified by the hydrothermal fluids. The gold deposits distributed in the north of the basin resulted from the tectonic activities and magmatism in the later stage of the basin evolution, and occurred at the top of the lead-zinc deposits spatially. The scales of lead-zinc deposits in the south of the basin are larger than that of the gold-deposits. The Pb-Zn deposits in the west of the basin are larger than those in the east, while the Gold deposits in the west of the basin are smaller than those in the east. Mineralizing ages of these deposits become younger and younger to west.
引文
1.安三元,胡能高.1993.北秦岭裂陷的形成与变质作用[M].西安:西北大学出版社,p 1-203.
    2.蔡凯蒂.1993.甘肃省的三叠系[J].甘肃地质学报(增刊):p 50-100.
    3.蔡雄飞,肖劲东,黄思骥,等.1990.厂坝含矿地层的沉积特征及与铅锌矿床的关系[J].矿产与地质.4(17):37-43
    4.曹宣铎,胡云绪,赵江天等.1994.秦岭石炭纪裂陷盆地的沉积—构造演化[M].西安:陕西科学技术出版社,1-75.
    5.曹宣铎,胡云绪.2000.秦岭加里东晚期-华力西期早期复式前陆盆地[J].西北地质科学 20(2):1-14.
    6.曹宣铎,张瑞林,张汉文,等.1990.秦巴地区泥盆纪地层及重要含矿层位形成环境的研究.西安地质矿产研究所所刊.27:1-123.
    7.窦元杰.1992.甘肃成县—李家沟热水—沉积铅锌矿床地质特征[J].甘肃地质学报,1(2):31-50.
    8.杜远生.1995.西秦岭北带泥盆纪前陆盆地的沉积特征及盆地格局[J].岩相古地理,15(4):47-62.
    9.杜远生.1997.秦岭造山带泥盆纪沉积地质学研究[M].武汉:中国地质大学出版社,1-130.
    10.端木合顺.陕西凤县—山阳泥盆系同沉积断裂砾岩[J].古地理学报,2000,2(3):92~98.
    11.樊硕诚,金勤海.1994,陕西双王金矿床.见:刘东升 主编.中国卡林型(微细侵染型)金矿.南京:南京大学出版社.254-287.
    12.方国庆.张晓宝,李育慈.1994.西秦岭海西—印支期裂陷活动及其与古特提斯的关系[J].沉积学报,12(3):76-81
    13.方维萱,张国伟,李亚林.2001.南秦岭晚古生代伸展构造特征及意义[J].西北大学学报(自然科学版),31(3):235-240.
    14.冯建中,邵世才,汪东波,等.2002,陕西八卦庙金矿脆—韧性剪切带控矿特征及成矿构造动力学机制[J].中国地质,29(1):p.58-66.
    15.冯建中.汪东波,邵世才,等2002.西秦岭小沟里石英脉型金矿床成矿地质特征及成因[J].21(2):159-167.
    16.冯庆来,杜远生,殷鸿福.1996.南秦岭勉略蛇绿混杂岩中放射虫的发现及其意义[J].中国科学(D).26(增刊):78-82.
    17.冯益民,朱宝清.西秦岭“混杂堆积“及构造发展史[J].地质学报,1980,1:34~43.
    18.高联达.1990.甘肃漳县王家店组孢子组合及时代[J].甘肃地质,11:1-12.
    19.高珍权.1999.李坝金矿床地球化学特征及成因探讨[J].甘肃地质学报(增刊):41-47.
    20.耿树方,严克明,周伟勤,等著.1994.秦巴金属矿产成矿概论[M].地质出版社,1-175.
    21.郭健,李作华,黄长青.1990.陕西凤太矿田同生断裂的确定及找矿方向[J].矿产与勘查,3
    22.郭健,等.1998.秦岭沉积岩容矿的金矿成矿特征[j].矿床地质(增刊),p.397-400.
    23.郭守年,董治平,蒋梅,廖泽富.1997.天水地震区综合地球物理剖面的建立与壳幔结构西北地震学报,19(3):46-51.
    24.何海清.1996.西秦岭早三叠世沉积特征及其构造控制作用[J].沉积学报,14(1):86-91.
    25.黄杰,王建业,韦龙明.2000.甘肃李坝金矿床地质特征及成因研究[J].矿床地质,19(2):105-114.
    26.黄振辉.1962.秦岭西段古生代地层.全国地层会议兰州地质现场会议报告汇编,科学出版社
    27.霍福臣,李永军著.1995.西秦岭造山带的建造与地质演化[M].西安:西北大学出版社,1-165
    28.姜春发,张庆贵,张玉蚰,等.1963.东秦岭地槽型印之运动之存在[J].地质论评,21(3).
    29.姜春发,朱松年.构造迁移论概述[J].中国地质科学院院报,1992.第25号:1-14.
    30.姜春发.1993.中央造山带主要地质构造特征[J].地学研究,第27号:p.68.
    31.姜春发.1994.中央造山带金矿远景评估及找矿设想[J].黄金地质科技,2:61-62.
    32.姜春发.王宗起,李锦轶,等.2000.中央造山带开合构造[M].北京:地质出版社.p.1-154.
    33.晋慧娟.李育慈.1996.西秦岭北带泥盆系舒家坝组深海陆缘碎屑沉积序列的研究[J].沉积学报,14(1):P.1-10.
    34.晋慧娟,李育慈.1997.西秦岭北带泥盆系遗迹群落在浊积岩中的分布特征[J].沉积学报,15(1):1-6.
    35.晋慧娟.李育慈.1998.西秦岭北带泥盆纪Nereites遗迹相及其沉积环境[J].沉积学报,16(1):p.15-21.
    36.赖少聪,张国伟,杨永成,等.1998.南秦岭勉县—略阳结合带蛇绿岩与岛弧火山岩地球化学及其大地构造意义[J].地球化学,22(4):362.
    37.赖少聪,张国伟,杨永成.1997.南秦岭勉县—略阳结合带变质火山岩地球化学特征[J].岩石学报,(4):p.561-573.
    38.黎观城.1989.甘肃西和洞山西汉水群首次发现牙行石.西北地质,1:64-65.
    39.李春昱,王荃,刘雪亚,汤耀庆.1982.亚洲大地构造图及其说明书[M].北京:地图出版社,1-49.
    40.李春昱等.1978.秦岭及祁连山构造发展史[A].国际交流地质学术论文集(一).北京:地质出版社.p.174-185.
    41.李继亮,郝杰,柴育成,等.1993.赣南混杂带和增生弧联合体:图尔其型碰撞造山带的缝合带[A].见:李继亮主编,东南大陆岩石圈结构与地质演化[C].北京:冶金工业出版社.p.2-11.
    42.李继亮,孙枢,郝杰,等.1999b.论碰撞造山带的分类[J].地质科学,34(2):129-135.
    43.李继亮,孙枢,郝杰,等.1999c.碰撞造山带的碰撞事件时限的确定[J].岩石学报.15(2):315-320.
    44.李继亮.1992b.中国东南地区大地构造基本问题[A].见:李继亮主编.中国东南海陆岩石圈结构与演化研究[C].北京:中国科学技术出版社,3~16.
    45.李继亮.1999a.造山带研究的缩微景观fJ].地学前缘,6(3):1~3.
    46.李继亮.1992a.碰撞造山带大地构造相[A].见:李清波,戴金星,刘如琦,李继亮主编.现代地质科学研究论文集(上)[C].南京:南京大学出版社,.9~22.
    47.李健中.高兆奎,孙省利,等.1996.西秦岭原“舒家坝组”地层学解体及其李坝群浊流纵向搬运模式[J].甘肃地质学报,5(2):32-39.
    48.李键中.西秦岭碎屑岩型金矿成矿地质特征.甘肃地质学报,1999,8(增刊):41-47
    49.李锦轶.牛宝贵,刘志刚.等.1996.秦岭山脉李子园群变质变形时代的40Ar/39Ar年代学证据[J]中国区域地质,16(1):21-25.
    50.李晋僧,曹宣铎,杨家禄,等著.1994.秦岭显生宙古海盆沉积和演化[M].北京:地质出版社,p.1-206.
    51.李实.西秦岭金矿床成因类型及地质特征.甘肃地质学报,1998,7(2):72-80.
    52.李曙光,s R Hart,郑双根,等.1989.中国华北、华南陆块碰撞时代的钐—钕同位素年龄证据[J].中国科学(D),19(3):312-319.
    53.李曙光,孙卫东,张国伟.1996.南秦岭勉略黑沟峡变质火山岩的年代学和地球化学—古生代洋盆及闭合时代的证据[J].中国科学(D辑),26(3):p.223-230.
    54.李通国,司国强,盖艾鸿.西秦岭金矿类型及成矿区带划分.甘肃地质学报,2000.9(1):51—58
    55.李文亢.1994.秦岭东部微细金矿床成矿条件[M].北京:地质出版社.
    56.李先梓,严阵,卢欣祥.1993.秦岭—久别山花岗岩.北京:地质出版社,1-124.
    57.李亚林,李三忠.张国伟.2001.秦岭勉略缝合带组成与古洋盆演化[J].中国地质,29(2):130-134.
    58.李亚林,张国伟,李三忠,等.2001.秦岭略阳—白水江地区双向推覆构造及形成机制[J].地赝科学,36(4):p.465~473.
    59.李永军,霍镉臣,1996.西秦岭东段侵入岩的构造成因类型.甘肃地质学报.5(1):30-49
    60.李永军.1989.关于西汉水群的新认识[J].两北地质,3:p.95-163
    61.李育慈.晋慧娟.1993.西秦岭北带泥盆系中遗迹化石及其环境意义[J].中国科学(B),23(12):p.1322-1328.
    62.梁自兴.1994,甘肃天水地区丹凤群变质火山岩地质地球化学特征及其构造环境研究[J].甘肃地质学学报,3(1):71—78.
    63.刘本培,周正国,肖劲东,等.1992秦岭泥盆纪沉积相带分异及其大地构造意义[A].见:刘本培,肖劲东,周正国.等著.古大陆边缘沉积地质文集[A],武汉:中国地质大学出版社,p.1-10
    64.刘方杰,方维萱,赫英,等.2000.秦岭造山带热水沉积矿石建造特征及意义[J].有色金属矿产与勘查.8(6):343-347.
    65.柳淼.1994.李坝金矿床地质特征.刘东升主编.中国卡林型(微细浸染型)金矿.南京:南京大学出版社,160-202.
    66.卢纪英,李作华,张复新,等.2001.秦岭板块金矿床[M].西安:陕西科技出版社,p.1-439.
    67.卢欣祥等.2000.秦岭花岗岩大地构造图和说明书.西安:西安地图出版社
    68.骆庭川.张宏飞,刘建雄.1990.华北地台南缘与北秦岭花岗岩类地球化学特征及构造环境[A].见:张本仁,主编.秦巴区域地球化学论文集,武汉:中国地质大学出版社,p.67-84.
    69.毛景文.2001.西秦岭地区造山型与卡林型金矿床[J].矿物岩石地球化学通报,20(1):11-13.
    70.孟庆任,于在平,梅志超.1997.北秦岭南缘弧前盆地沉积作用及盆地发展[J]地质科学,32(2):p.136-145.
    71.孟庆任,张国伟,于在平.1996.南秦岭南缘晚古生代裂谷—有限洋盆沉积作用及构造演化[J].中国科学(D辑),26(增刊):p.28-33.
    72.祁思敬,李英等著.1993.秦岭泥盆系铅锌成矿带[M].北京:地质出版社,187-210.
    73.任纪舜,姜春发,张正坤,等.1980.中国大地构造及演化[M].北京:科学出版社,p.1-124.
    74.任纪舜,张正坤,牛宝贵,刘志刚.1991.论秦岭造山带.见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集[M].西安:西北大学出版社.99-110.
    75.任纪舜.1989.中国东部及邻区大地构造演化的新见解[J].中国区域地质,4:289-300.
    76.尚瑞钧,严阵等.1988.秦巴花岗岩.武汉:中国地质大学出版社,1-214
    77.邵世才.汪东波.1999.古生代—中生代秦岭金属成矿构造控制作用[J].地球学报,20(增刊:281-286.)
    78.邵世才.汪东波.2001.南秦岭三个典型金矿床Ar-Ar年代及地质意义.地质学报,75(1):106-110.
    79.石准立,刘瑾璇,金勤海.1993.与碱性碳酸盐有关的双王金矿[A].秦巴金矿地质论文集.北京:地质出版社.133-146.
    80.宋春晖,武安斌,周少平 1992.西成矿田热水喷溢沉积成因硅质岩及其与成矿意义[J].沉积学报,10(4):60-67.
    81.宋志高,贾群子,张治洮,张莓.1991.北秦岭-北祁连(天水-宝鸡)间早古生代火山岩系及其构造连接关系的研究[J].中国地质科学院西安地质矿产研究所所刊,第34号,1-71页.
    82.宋志高.1993.北秦岭丹凤群向西延入到祁连造山带的地质意义[J].中国地质科学院院报,第27、28号:16-26.
    83.宋忠宝,冯益民,何世平,等.1996.西秦岭柴家庄花岗岩的同位素时代.甘肃地质学报.5(1):96-97
    84.宋忠宝,冯益民.何世平,等.1996.西秦岭酒刺梁花岗岩的同位素年代学及其地质意义.西北地质科学,17(2):6-9.
    85.苏建平,黄万堂,2000.西秦岭舒家坝组古孢子化石组合特征及时代讨论.甘肃地质学报.9(1):16—22.
    86.孙明.2000.甘肃礼县马泉金矿地质特征及其成因探讨[J].甘肃地质学报.9(2):28-36.
    87.孙省利,王国安,袁明坤.1992,西成铅锌矿田铅、硫同位素特征及成矿物质来源的研究[J].甘肃地质学报.1(2):51-65.
    88.孙省利,曾允孚.2002.西成况化集中区热水沉积岩物质来源的0同位素示踪及其意义[J].沉积学报,20(1):41-46.
    89.谭运金.邵世才,田民民.西秦岭礼县-太白地区金、铝锌矿床的地质地球化学.矿床地 质,2000,19(3):201-210.
    90.汤耀庆,卢一伦.1986.东秦岭蛇绿岩的形成时代与构造环境[J].成都地质学院学报,2:52-65.
    91.汪东波1998.金同铅锌矿化的分离及共生[J].地质找矿论丛,13(4):53-60.
    92.王相.等.1996.秦岭造山与金属成矿[M].北京:冶金工业出版社.187-229.
    93.王洪亮,校培喜.1999.太白黄柏塬—带变质结晶基底的厘定及其地质意义[J].陕西地质.17(1):19-25.
    94.王鸿祯,徐成彦,周正国.1982.东秦岭古海域两侧大陆边缘区的构造背景[J].地质学报,3:270-279.
    95.王集磊,何伯犀,李健中等.1996.中国秦岭型铅锌矿床[M].北京:冶金工业出版社,79-153.
    96.王驹.1994.碳硅泥岩型金(铀)矿床成矿富集地球化学[M].北京:原子能出版社.
    97.王平安,陈毓川,裴荣富,等著.1997.秦岭造山带区域矿床成矿系列、构造—成矿旋回与演化.北京:地质出版社,101-108.
    98.王清晨,孙枢,李继亮,等.1989.秦岭大地构造演化[J].地质科学,2:p.129-142.
    99.王相,等著.1996.秦岭造山与金属成矿.北京:冶金工业出版社,187-382.
    100.王祥文.1999.甘肃李坝金矿床地质特征及成因初探[J].有色金属矿产与勘查,8(6).
    101.王学明,邵世才,汪东波,2000.西秦岭金矿床包裹体、氢氧同位素特征及其地质意义.9(1):44-48.
    102.王治平,杜远生,陈素华.1995.西秦岭岷县地区二叠纪裂陷带斜坡沉积及其构造意义[J].现代地质,9(3):p.300-310.
    103.王宗起,陈海泓,郝杰.1999a.南秦岭晚古生代一三叠纪弧前增生楔的初步认识[A].见:陈海泓等主编,中国碰撞造山带研究.北京:海洋出版社.p.100-113.
    104.王宗起,陈海泓,李继亮,等.1998.南秦岭西乡群发现晚古生代放射虫化石[J].地质论评,44(3):p.263.
    105.王宗起,陈海泓,李继亮,等.1999b.南秦岭西乡群放射虫化石的发现及其地质意义[J].中国科学(D辑),29(1):p.38-44.
    106.王宗起,王涛,闫臻,等.2002.秦岭晚古生代弧前增生的背驮型盆地体系[J].地质通报,21(8-9):456-464.
    107.韦龙明,卢汉堤,李晓斌等.1998.甘肃西成地区金矿石英脉与金矿化的关系研究.有色金属矿产与勘查,7(4):216-221.
    108.韦龙明.1995.秦岭地区与滇黔桂接壤区微细侵染型金矿地质地球化学特征对比[J].黄金科学技术,3(5):49-52
    109.隗合明,丁华.1999.陕西马鞍桥金矿床成因探讨[J].黄金地质,5(2):1-8.
    110.吴汉宁,常承法,刘椿等.1990.依据古地磁资料探讨华北和华南块体运动及其对秦岭造山带构造演化的影响.地质科学,25(3):201~214
    111.吴烈善.1998.八卦庙大型金矿床深部物源的地球化学证据[J].矿床地质,17(增刊).
    112.吴正文,王自强,等.1987.北秦岭造山带的构造格局和演化(第三界构造会议论文集).
    113.武安斌.宋春晖1993:.甘肃西成矿田中泥盆统碳酸盐沉积相的初步研究[J].甘肃地质学报.2(1):25-34
    114.肖劲东,杜远生.辛建荣.1992.甘肃西城地区泥盆纪吴家山古岛屿地层模型及其意义.见:刘本培,肖劲东.周正国等著.古大陆边缘沉积地质文集[M].武汉:中国地质大学出版社,37-50.
    115.肖劲东,贾维民,杜远生.1992.甘肃礼县西汉水流域推覆构造及其沉积古地理.古大陆边缘沉积地质文集[M].武汉:中国地质大学出版社,89-95.
    116.肖文交,侯泉林,李继亮,等.2000.西昆仑大地构造相解剖及其多岛增生过程[J].中国科学(D).v 30(增刊),p.22-28.
    117.校培喜,张俊雅,王洪亮,1999.陕西凤太地区唐藏—黄柏塬构造带内各时代火山岩对比研究.陕西地质,17(2):33—41.
    118.辛建荣,陈北岳.1992.甘肃西成地区中泥盆统碎屑岩沉积特征纪古地理[M].见:刘本培,肖劲东,周正国等著,古大陆边缘沉积地质文集[M].武汉:中国地质大学出版社,1992.61-67..
    119.徐强,刘宝君,许效松,等.1994.东秦岭南带沉积盆地演化及多金属成矿条件[Mj.成都:西南交通大字出版社.
    120.许凤仪.1991.西成铅锌矿田西部中泥盆统西汉水组碳酸盐岩沉积特征[J].沉积学报,9(1):81-86.
    121.许志琴,卢一伦,汤耀庆等.1988.东秦岭复合山链的形成—变形、演化及板块动力学[M].北京:中国环境科学出版社,p.1-193.
    122.许志琴,许蕙芬,张建新,等.1994.北祁连走廊南山加里东俯冲杂岩地体及动力学[J].地质学报,69(1),p.1-14.
    123.薛春纪.1997.秦岭泥盆纪热水沉积[M].西安:西安地图出版社,1-134.
    124.闫臻,王宗起,王涛,等.2002.西秦岭大草滩群的沉积环境及构造意义[J].地质通报.21(8-9):505-515.
    125.严阵.1985.陕西省花岗岩.西安:西安交通大学出版社.68~70.
    126.阎桂林,张咏,李永涛.1992.西秦岭东段泥盆纪古地磁初步研究.古大陆边缘沉积地质义集.武汉:中国地质大学出版社[M],100-108.
    127.杨军录,冯益民,潘晓平.2001.武山蛇绿岩的特征、同位素年代及其地质意义.前寒武纪研究进展[J].24(2):p.98-106.
    128.杨军禄,冯益民.1999.西秦岭吴家山隆起的隆升过程及时代[J].西北地质,32(4):1-4.
    129.杨森楠.1985.秦岭古生代陆间裂谷系的演化[J].地球科学,4:53-62.
    130.杨巍然,简平.1996.构造年代学—当今构造研究的—个新学科[J].地质科技情报,15(4):39-42
    131.杨巍然,王国灿,简平.2000.大别造山带年代学[M].武汉:中国地质大学出版社,1-141
    132.杨巍然.1987.东秦岭“开”—“合”史[J].地质科学,12(5):p.488-494.
    133.杨志华,张传林,李勇.1997.论西成铅锌矿床的后生成因.地质学报,71(4):360-366.
    134.杨宗让.1999.中秦岭地区晚古生代增生的弧前构造带及演化初探[M].陕西地质,17(2):1-6.
    135.叶连俊,关士聪.1944.甘肃中南部地质志[M].地质专报(甲种本),第19号.
    136.叶晓荣.1986.甘肃天水舒家坝—带孢子化石的发现及其地层意义[J].中国地质科学院西安地质矿产研究所所刊,13:89-96.
    137.殷鸿福,彭元桥,1995.秦岭显生宙古海洋演化.地球科学,20(6):605—611.
    138.殷鸿福,杨逢清,黄其胜等.1992.秦岭及邻区三叠系[M].武汉:中国地质大学出版社,1-211.
    139.殷鸿福,杨逢清,赖旭龙.1991.秦岭海西—印支期构造古地理发展史.见:叶连俊,钱祥麟,张国伟主编,秦岭造山带学术讨论会论文选集.西安:西北大学出版社,68-77.
    140.于学元.1996.八卦庙大型金矿床稀土元素地球化学研究[J].地球化学,25(2).
    141.于在平,孙勇,张国伟.1988.商丹地区秦岭缝合带中弧前沉积楔形体初探.见:张国伟编.秦岭造山带的形成及其演化[A].西安.西北大学出版社.p.75-85.
    142.翟裕生,邓军,宋鸿林,等.1998.同生断层对层孔超大型矿床的控制[J].中国科学((?)辑),26(3):p.214-218.
    143.张本仁.1989.陕西榨水—山阳成矿带区域地球化学[M].北京:中国地质大学出版社.
    144.张承中.秦岭泥盆系北带金矿成矿条件及寻找人型—超大型金矿床初探.甘肃地质学报,1999,8(增刊):36—40.
    145.张传林,杨瑞东,朱立华 等.1999.西秦岭元古界的发现及其地质意义[J].地层学杂志,23(3):p.211-216.
    146.张传林,杨志华,朱立华,杨瑞东.1998.甘肃西和县-成县地区区域构造演化[J].中国区域地质,17(2):p.209-212.
    147.张传林,朱立华,杨志华.2000.西秦岭大草滩群的解体及其地质意义[J].地层学杂志,24(3):p.220-223.
    148.张二朋 等 编著,1993.秦岭及邻区地 质—构造特征概论[M].北京:地质出版社,71-84.
    149.张复新.安静婷,马建秦.1998.秦岭卡林型金矿床及相关问题探讨[M].矿床地质,17(2):172-184.
    150.张复新,王俊发.1991.陕西秦岭地区泥盆系同生断裂、岩相与海底喷流沉积铅锌矿床[J].矿床地质,10(3):217-231.
    151.张复新.1998.南秦岭热水沉积铅锌矿与浸染型金矿的共生关系及其成矿特点[J].矿床地质,17(增刊)
    152.张复新.沉积岩型金矿床综述—兼论秦岭沉积岩区金矿类型及其分布.西北地质,1996,17(4):24—30.
    153.张国伟,梅志超,李桃红.1988.秦岭造山带南部古被动大陆边缘.见:张国伟编.秦岭造山带的形成及其演化[M].西安:西北大学出版社.86-98.
    154.张国伟,盂庆任,于在平.1996.秦岭造山带的造山过程及其动力学特征[J].中国科学(D辑),26(3):p.193-200.
    155.张国伟,孙勇,于在平,薛峰.1987.北秦岭古活动大陆边缘。见:张国伟等著,秦岭造山带的形成及其演化[M].西安:西北大学出版社,p.48-64.
    156.张国伟,张本仁,袁学诚,等著.2001.秦岭造山带与大陆动力学[M].北京:科学出版社,1-855.
    157.张国伟,周鼎武,于在平.1991.秦岭造山带岩石圈组成、结构和演化特征.见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集[M].西安:西北大学出版社.125-138.
    158.张宏飞,张本仁,骆庭川.1993.北秦岭新元古代花岗岩类成因与构造环境的地球化学研究[J].地球科学.18(2):192-201.
    159.张秋生,朱永正.1984.东秦岭古生代蛇绿岩[J].长春地质学院学报,3:p.1-13.
    160.张旺定.2001.西秦岭中川地区构造—岩浆活动及微细侵染型金矿成矿作用分析.地质找矿论丛.16(2)。
    161.张旺定.2000.南秦岭地块构造背景与金矿类型[J].西北地质科学,2 l(2):28—36.
    162.张维吉,孟宪恂,胡健民等.1994.祁连—北秦岭造山带结合部位构造特征与造山过程[M].西安:西北大学出版社,1-283.
    163.张晓宝,方国庆,何海清.1996.西秦岭上三叠统海底扇沉积环境特征模式[J].地质科学,31(2):154-162.
    164.赵会庆.1996,中国卡林型金矿成矿构造环境与热液特征[J].地质找矿论从,14(3):34-41
    165.钟建华,张国纬.陕西凤县八卦庙特大型金矿的成因研究.地质学报,1997,71(2):150-160.
    166.周鼎武,张成立,韩松,等.1995.东秦岭早古生代两条构造—岩浆杂岩带的形成构造环境[J].岩石学报,11(2)116-126.
    167.周维君.1983.甘肃西成铅锌矿田控矿相模式雏议[J].沉积学报,1(4):37-47
    168.朱华平、张蓉,郭健,李领军.秦岭沉积岩容矿金矿类型拧矿条件与找矿方向.地质与勘探,1999,35(5):9-12.
    169.朱俊亭,王宗福,刘建德,等.1982.秦巴地区矿产资源和成矿分布规律[J].西北地质科学,53-64.
    170.朱俊亭.1993.秦岭大巴山地区矿产资源和成矿分布规律[M].西安:西安地图出版社,p.1-157.
    171.朱伟元.1988.甘肃西秦岭北部海相泥盆系研究新进展及西汉水群的再分[J].甘肃地质,9:p.16 28.
    172. Arculus. R.J., Lapierre, H., Jaillard. E., 1999, Geochemical window into subduction and accretion processes Raspas metamorphic complex. Ecuador[J]. Geology, , v.27, p. 547-550.
    173. Barr S B, Temperley S and Tarney J. 1999. Later growth of the continental crust through deep level subduction-accretion: a re-evaluation of central Greek Rhodope[J]. Lithos, v.46, p.69-94.
    174. Bhatia M A and Crook K A W. 1986.Trance element characteristics of graywackes and tectonic discrimination of sedimentary basins[J]. Contrib. Mineral. Petrol., 92: p. 181-193.
    175. Bhatia M A. 1985, Composition and classification of Paleozonic flysch mudrocks of eastern Australia: Implication in provenace and tectonic setting interprtation[J]. Sedimentary Geology, 41 p.249-268.
    176. Bhatia M A.1983. Plate tectonics and geochemical composition of sandstones[J]. Journal of Geology, 91: p.611-627.
    177. Blatt H, et al. 1980. Origion of sedimentary rocks. 2ndEd. Prentice-Hall.
    178. Bohlke, J K, Kistier R W. 1986. Rb-Sr, K-Ar, and stable istope evidence for ages and sources of fluid components of gole-bearing quartz veins in the northern Sierra Nevada foothills metamorphic belt, California. Economic Geology, 81: 296-332.
    179. Brown D and Spadea R 1999. Processes of forearc and accretionary complex formation during arc-continent collision in the southern Ural Mountains[J]. Geology, v, 27, p.649-652.
    180. Brown D, Puchkov V, Gorozhanina, et al. 2001. Structure and evolution of the Magnitogorsk forearc basin: Identifying upper crustal processes during arc-continent collision in the southern Urals[J]. Tectonics, 20(3): 364-375.
    181. Bulter R W H. 1982. The terminology ofstructuresin thrust belts[J]. Journal of Structure Geology, 4: 239-245
    182. Burchfiel B C, Davis G A. Structural framework and evolution of the southern part of the Cordilleran Orogen, Western United States[J]. Amer. Jour. Sci., 1972, 272: 97-118.
    183. Burrows D R, Spooner E TC. 1987. Generation of a magmatic H_2O-CO_2 fluid enriched in Mo, Au, and W within an Archean sodic granodiorite stack, Mink Lake, Northwestern Ontario. Economic Geology. 82: 1931-1957.
    184. Busby C, Smith D, Morris W. fackier-Adams B., 1998. Evolutionary model for convergent margins facing large ocean basains: Mesozoic Baja California, Mexico[J]. Geology, v.26. p.227-230.
    185. Castle J. W. 2001. Appalachina basin stratigraphic response to convergent-margin structural evolution[J]. Basin Research, 13(4): p.397-429.
    186. Cawood P A. 1990. Provenance mixing in an intraoceanic subduction zone: Tonga trench-Louisville Ridge collision zone, SW Pacific[J]. Sedimentary Geology, 67: p.35-53.
    187. Chang C-p, Angelier J, Huang C-Y., 2000. Origin and evolution of a melange: the active plate boundary, and suture zone of the Longitudinal Valley, Taiwan: Tectonophysics, v.325, p.43-62.
    188. Clift P D, Degnan P J, Hannigan R, et al. 2000. Sedimentary and geochemical evolution of the Dras forearc basin, Indus suture. Ladakh Himalaya, India[J]. Geologica society of American Bulletin, 112(3): p. 450-466.
    189. Clift P D, Vroon P Z. Macleod C J, Tappin D, et al. 1998. Tectonic controls on sedimentation in the Tonga Trench and forwac, SW Pacfic: Geologica society of American Bulletin, 110: R483-496.
    190. Coward M P, Ries A C, eds.. 1986. Collision tctonics[A]: Geological Society of London Special Publication 19, p. 1-415.
    191. Cullers R L. 1994. The controls on the major and trance element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas. USA[J]. Geochimica et Cosmochimica Acta, 58(22): 4955-4972.
    192. Cullers R L. 1995. The controls on the major-and trace element evolution pf shales, siltstoncs and sandstones of Ordovician to Tertiary age in the wet Moutains, Colorado, USA. Chem. Geol, 123: 107-131.
    193. Davis D M.1996. Accretionary mechanics with properties that vary in space and time[A]. In: Snbduction. Top to Botlom[M] Geophys. Monoger. Set.. v96. edited by G.Beboul et al.. p.39-48, AGU, Washington. D.C.
    194. DeCelles P G, and Giles K A., 1996. Foreland basin Systems: Basin Research, v.8, p. 105-123.
    195. DeCelles, RG, and Mitra, G., 1995, History of the Sevier orogenic wedge in terms of Critical taper modles. northest Utah and southwest Wyoming: Geological Society of America Bulletin, , v. 107, p.454-462.
    196. Dewey J F and Bird R, 1970. Mountain belts and the new global tectonics[J]. Journal of Geophysical Research. v.75. p.2625-2647.
    197, Dickinson W R, Rich EI.1972. Petrologic intervals and petrofacies in the Great Valley sequences, Sacramento Vally, California: GSA Bulletin, 83: p.3007-30024.
    198. Dickinson W R, ValloniR. 1980. Plate settings and provenance of sands in modern ocean basins[J]. Geology. 8: p.82-86.
    199. Dickinson W R, . 1995. Forearc basins. In Busby C J, Ingersoll R Veds. Tectonics of Sedimentary Basins[M] Cambridge Massachusetts: Blackwell Science. 211-261.
    200. Dickinson W R.1985. Interpreting provenance relations from detrital modes of sandstones. In: G. G Zuffa(eds.), Provenance ofArenites, D. Reidel Pub. Company, p.333-362.
    201. Dickinson W R. 1988. Provenance and sediment disperal in relation to palaeotectonic and paleogeography of sedimentary basins.In: New Prspectives in Basin Analysis(ed. By K. L. Kleinspehn and C .Paola). Springer-verlay. New York, p.3-25.
    202. Dickinson W, et al. 1983. Provenance of North American Planerrozoic sandstone in relation to tectonic setting[J]. GSA Bulletin, 94: p.22-235.
    203. Dickinson WR, Suczek C A. 1979. Plate tectonics and sandstone compositions[J]. AAPG Bulletin. 63: 2164-2182.
    204. Dickinson, W.R., and Seely, D.R.. 1979. Structure and stratigraphy of forearc regions: The American Association of Petroleum Geologists Bulletin. v. 63. p. 2-31.
    205. Dickinson, W.R, 1971, Clastic sedimentary sequences deposited in shelf, slope, and trough setting beween magmatic ares and associated trenches: Pac. Geol., v.3, p. 15-30.
    206. Diclinson W R,等,1996加里福泥亚海岸山脉蛇绿岩的几种可能成因.国外地质科技,1997,2
    207. Dorsey R J. 1988. Provenance evolution and unroofing history of a modem arc-continent collision: evidence from petrography of Plio-Pleistocene sandstones, eastern Taiwan[J]. Journal of Sedimentary Petrology. 58: P.208-218.
    208. Ellis S. Beaumont C, and Pfiffner A. 1999. Geodynamic models of crustal-scale episodic tectonic accretion and underplating in subduction zones[J]. J. Geopgys. Res., v. 104, p. 15169-15190.
    209. Escher A and Beaumont C. 1997. Formation, burial and exhumation of basement nappes at crustal scale: A geometric model based on the western Swiss-Italian Alps[J]. J. Struct. Geol., v. 19, p.955-974
    210. Evans. M. J. & Elliott, T., 1999, Evolution of a thrust-sheet-top basin: The Tertiary Barreme basin. Alpes-de-Haute-Provence, France[1] Geological Society of America Bulletin. Ⅲ p. 1617-1643
    211. Feininger T. 1987. Allocthonous terranes in the Andes of Ecuador and NW Peru[J]. Can. J. Earth Sci., v.24, p.266-278.
    212. Fleming T H, Foland K A, Elliot D H. 1999 Apophyllite ~(40)Ar/~(39)Ar and Rb-Sr geochronology: Potential utility and application to the timing of secondary mineralization of the Kirkpatrick Basalt, Antarctica[J]. J Geophys Res, 104(B9): 20081-20095.
    213. Freeman S R, Butler R W H, Cliff R A, et al. 1988. Deformation migratiou in an orogen scale shear zone arry: an example from the Basal Branconniais Thrust, Internal Franco-ltalian Alps[J]. Geological Magazine. 135(3): 349-367.
    214. Gareanti E, et al. 1996. Paleogegraphic and paleotectonic evolution of the Himalayan Range as reflected by detrital modes of Tertiary sandstones and modern sands[J]. GSA Bulletin, 108(6): p631-642.
    215. Goldfarb R J, Groves D I, Gardoll S. 2001. Orogenic gold and geologic time: a global synthesis[J]. Ore Geology Reviews. V. 18, p. 1-75.
    216. Goldfarb R J, Leach D L, Pickthorn W J, and Paterson C J., 1988. Origin of lode-gold deposits of the Jureau gold belt, southeastern Alaska: Geolgy, v. 16, p.440-443.
    217. Graham S A, Hendrix M S, Wang L B, et al. 1993;. Collisional successor basins of western China: Impact of tectonic inheritance on sand composition[J]. GSA Bulletin, 105: P.323-344.
    218. Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann, Robert E 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, v. 13, p.7-27.
    219. Haeussler P J, Bradley D, Goldfarb R, et al. 1995. Link between ridge subduction and gold mineralization in southern Alaska[J]. Geology, v.23, p.995-998.
    220. Harris N B W, Pearce J A, and Tindle A G. 1986. Geochemical characteristics of collision-zone magmatism. In: Coward M P and Reis A C(eds), Collision tectonics. Spec. Publ. Geol. Soc., 19: 67-81.
    221. Hiscott R N, Colella A, Pezard P et al. Basin plain turbidite succession of the Oligocene lzu-Bonin intraoceanic forearc basin[J]. Marine and Petroleum Geology, 1993, 10: 450-466.
    222. Hollister L S, and Andronocos C L., 1997. A candidate for the Baja British Columbia Faut systerm in the Coast Plutonic Complex: GAS Today, v.7, p. 1-7.
    223. Hsu K J, Wang Q, et al. 1987. Tectonic evolution of Qinling Mountains, China[J]. Eclogae geol. Helv. 80(3): p.735-752.
    224. Hsu K J. 1991. The concept of tectonic facies[J]. Bull. Tech. Univ. Istanbul., 44: 25-42.
    225. Ingeresoll R V, Bullard T F, Ford R L, et al. 1984. The effects of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method: Journal of Sedimentary Petrology, 54: p. 103-116.
    226. Ingersoll R V, Suczek C A. 1979. Petrology and provenance of Neogene and from Nicobar and Bengal fans. DSDP sites 211 and 218[J]. Journal of Sedimentary Petrology, 49: p. 1217-1228.
    227. Ingersoll R V. 1988. Tectonics of sedimentary basins[J]. Geological Society of America Bulletin, 100: p.17-4-1719.
    228. Ingersoll R V. Petrofacies and provenance of Late Mesozoic forearc basin, Northern and Central Calofornia[J]. AAPg Bull., 1983, 67: 1125-1142.
    229. Ito M.1998. Contemporaneity of component units of the Iowstand systems tract: An cxample from the pleitocene Kazusa forearc basin, Boso Peninsula, Japan[J]. Geology, 26(10): p.939-942.
    230. Jebrak M, Marcoux E, Nasloubi M, et al. 1998. From sandstone-to carbonate-hosted stratbound deposits: an istope bstudy of galena in the Upper-Mouloya Dietrict(Morocco)[J]. Mineralium Deposita. 33: 406-415.
    231. Ji X, Coney P J. 1983. Accreted terranes of China[A] In: Tectonostratigraphic Terranes of the Circun-Pacific Region[C], edited by D G Howell, Circum-Pac. Counc. On Energy and Mineral. Resour, Houston: Tex., 1983, p.349-361.
    232. Jia Y, Kerrich R. 1999. Nitrogen isotope systematics of mesothermal lode gold deposits: Metamorphic, granitic, meteroric water, or mantle origin?[J]. Geology, v.27, p. 1051-1054.
    233. Jones H D, Kesler S E, Furman F C, et al. 1996. Sulfur isotope geochemistry of southern Appalachian Mississippi Valley-type deposits[J]. Econ Geol., 91: 355-367.
    234. Karig, D.E.. and Sharman. G.F.. 1975, Subduction and accretion in trenches: Geological Society of America Bulletin. v.86. p.377-389.
    235. Katzir. Y., Avigad. D., Matthews. Z, Garfunkel. Z., and Evans. B.W., 2000, Origin, HP/LT metamorphism and cooling of ophiolitic melanges in southern Evia(NW Cyclades), Greece: J. metamorphic Geol., v.18, p.699-718.
    236. Keerich R, Fyfe W S. 1981. The gold carbonate association source of CO_2 and CO_2 fixation reactions in Archean lode deposits. Chemical geology, 332: 265-294.
    237. Kelser S E, Cumming G L, Krstie D, et al. 1994. Lead isotope geochemistry of Mississippi Valley-type deposits of southern Appalachian[J]. Econ Geol., 89: 307-321.
    238. Kerrich R and Wyman D. 1990. Geodynamic setting of mesothermal gold deposits: an association with accretionary tectonic regimes[J]. Geology, v. 18, p.882-885.
    239. Kerrich R, Cassidy K.1994.Temporal relationships of lode gold mineralization to accretion, magmatism, metamorphism and deformation-Archean to present[J]. A review: Ore Geology Reviews, 9: 263-310.
    240. Kerrich R, Fyfe W S.1981. The gold-carbonate association: source of CO_2 and CO_2 fixation reactions in Archean lode deposits[J]. Chemical Geology, 33: p.265-294.
    241. Kerrich R. 1989. Archean gold: relation to granulite formation or felsic intrusions?. Geology. 17: 1011-1015.
    242. Kimbrough D L, Smith D, Mahoney J B, et al. 2001. Forearc basin sedimentary response to rapid Lateb Cretaceous batholith emplacement in the Peninsular Ranges of southern and Baja Call fomia[J]. Geology, 29(6): p.491-494.
    243. Kimura G, Ludden J N, Desrochers J-P, Hori R. 1993. A model of ocean-crust accretion for the Superior province. Canada[J]. Lithos, v.30, p.217-220.
    244. Kimura. G.. Maruyama. S.. lsozaki. Y., Terabayashio M., 1996. Well-preserved underplating structure of the jadeitized Franciscan complex. Pacheco Pass. California[J]. Geology, v.24, p.75-78.
    245. Kusky, T.M.. and Polar. A., 1999, Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons[J]. Tectonophysics, v.305, p.43-73.
    246. Kusky. T. M. Bradley, D. C., Haeussler, RJ. & Karl, S., 1997, Controls on accretion of flysch and melange belts at convergent margins: Evidence from the Chugach Bay thrust and lceworm melange. Chugach accretionary wedge. Alaska[J]. Tectonics, v. 16, p.855-878.
    247. Lallemand S. C.-S. Liu, Dominguez S, Schnurle P, et al. 1999. Trench-parallel.strentching and folding of forearc basins and lateral migration of the accretionary wedge in the southern Ryukyus: A case of strainpartition caused by oblique convrgence[J]. Tectonics, 18: p.231-247.
    248. Lallemand, S.. Schnurle. P., and Malavieille. J., 1994, Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion[J]. Journal of geophysical Research, v. 99, p. 12, 033-12, 055.
    249. Larroque, C., Calassou, S.. Malavieille, J., and Chanier, F., 1995. Experimental modelling of forearc basin development during accretionary wedge growth[J]. Basin Research, v.7, p.255-268.
    250. Lash G G. 1986. Anatomy of an early Paleozoic subduction complex in the central Appalachian orogen[J] Sedimentary Geology, 51: p.71-95.
    251. Lerch M F. Xuc F, Kroner A, Zhang G W, aod Todt W. 1995. A Late Silurian-early Devoman magmatic arc in the Qinling Mountains of central China[J]. Journal of Geology, 103, 437-449.
    252. Maltaman, A.J., 1998, Deformation Structures from the toes of active accretionary prisms: Journal of the Geological Society, London, v. 155, p.639-650.
    253. Mao J W, Qiu Y M, Goldfarb R J, et al. 2002. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China[J]. Mineralium Deposita, 34: p. 150-162.
    254. Maruyama. S 1997, Pacific-type orogeny revisited: Miyashiro-type proposed: The Island Arc, v.6. p.91-120.
    255. Mattauer M, Matte Ph, Malavieille, et al. 1985. Tectonics of the Qinling belt: build up and evolution of eastern Asia[J]. Nature, 317: 496-500.
    256. Mclennan S M.1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin B R and Mckay G A(eds.), Geochemistry and Mineralogy of rare earth elements. Reviews in Mineralogy, 21 p. 169-200.
    257. McNeill L C, Goldfinger C, Kulm L D, et al. 2000. tectonics of the Neogene Cascadia forearc basin: Investigations of a defprmed late Miocene unconformity[J]. Geologica society of American Bulletin. 112(8): 1209-1224.
    258, Meng Q R and Zhang G W. 2000. Geologic framework and tectonic evolution of Qingling orogen, Central China[J]. Tectonophysics, 323: 183-196.1
    259. Miall A D. 1978. TeCtonic setting and syndepositonal deformation of molasses and other nonmarine-paralic sedimentary basins[J]. Canadian Journal of Earth Sciences, 15: p. 1613-1632.
    260. Morris, J.D., Leeman, W.P. Tera, F., 1990, The subducted component in island arc lavas: constrains from Be isotopes and B-Be systematics: Nature, v.344, p.31-36.
    261. Muller W, Dallmeyer R.D, Neubauer R, et al. 1999. Deformation-induced resetting of Rb-Sr and ~(40)/~(39)Ar mineral systems in a low-grade, poly metmnorphic terrane(Eastern Alps, Austria)[J]. J Geol Soc London, 156: 261-278
    262. Murrary R W(张传恒译). 1991.海相隧石,页岩中的稀土元素指相标志[J],地质科技情报,10(1): 32-37.
    263. Murrary R W. 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications[J]. Seimentary Geology, 90: p.213-232.
    264. Musumeic G., 1999. Magmatic belts in accretionary margins, a key for tectonic evolution: the Tonalite Bclt of the North Victoria Land(East Antarctica): Journal of the Geological Society, London, v. 156. p. 177-189.
    265. Mutti E, Ricci-Lucchi F. 1978.. Turbidites of the northern Apennines: introduction tofacies analysis[J]. International Geological Review, 20: p. 125-166.
    266. Newton R C, Simith J V, Windly B. 1980.: Carbonic metmorphism, granulite and crustal growtb. Nature, 288: 45-52.
    267. Nut A., 1983. Accreted terranes: Reviews of Geophysics, v.21, p. 1779-1785.
    268. Okay G A I. 1996. A fore-arc origin for the Thrace Basin, NW Tukey[J]. Geo. Rundsch, 85: P662-668.
    269. Ori G G. Friend P F. Sedimentary basins formed and carried piggyback an active thrust sheets[J]. Geology. 1984, 12: 475~478.
    270. Peacock, S.M.. 1990, Numercial simulation of metamorphic pressure-time paths and fluid production in subduction slabs: Tectonics, v.9, p. 1197-1211.
    271. Polat, A. & Kerrich, R., 1999, Formation of an Archean tectonic melange in the Schreiber-Hemlo greenstone belt. Superior Province. Canada: Implications for Archean subduction-accretion process[J]. Tectonics, v. 18 p.733-755
    272. Polar. a. Kerrich. R and wyman. D.A., 1998. The late Archean Schreiber-Hemlo and White-River Dayohessarah greenstone belts, Superior Province: Collages of oceanic plateaus, oceanic arcs, and subduction accretion complexes[J]. Tectonophysics, v.289, p.295-326.
    273. Potter P E. and Pettijohn F J 1977. Palaeocurrents and Basin Analysis. 2nd edn, 425pp. Springer-Verlag, Berlin.
    274. Reading H G. 1986. Sedimentary environments and facies[M]. Blackwell Scientific publications, p. 1-615.
    275. Reddy S M and Potts G J. 1999. Constraining absolute deformation ages: the relationship between deformation mechanisms and isotope systematics[J]. J Struct Geol, 21: 1255-1265.
    276. Robert F, Kelly W C. 1987. Ore-forming fluids in Archean gold-bearing quartzveins at the Sigma Mine, Abitibi greenstone belt, Quebec, Canada. Economic Geology, 82: 1464-1482.
    277. Robertson A H F. 1994. Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the Eastern Mediterranean region[J]. Earth Sciences Reviews, 37: 139-213.
    278. Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone-mudstone suits using SiO_2 content and K_2O/Na_2O ratio[J]. Journal of Geology, 94: 635-650.
    279. Roser B P, Korsch R J. 1988. Provenance signatures of sandstone mudstone suites determined using discrimiant function analysis of major-element data[J]. Chemical Geology. 67: 119-139.
    280. Rudnick R L.. 1995. Making continental crust[J[. Nature. v.378, p.571-578
    281. Schott R C, and Johnson C M. 1998. Sedimentary record of the Late Cretaceous thrusting and collapse of the Salinia-Mojave magmatic arc[J]. Geology, 26(4): 327-330.
    282 Sengor A M C. 1985. East Asia tectonicscollage[J]. Nature.318: p. 16-17.
    283. Sengor AMC. and Natal'in B A. Burtman V S.. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, v.364, p.299-307.
    284. Sengor. A.M.C., 1990, Plate tectonics and orogenic research after 25 years: A Tethyan perspective[J]. Earth Sci. Rev.. v.27, p.1-201.
    285. Sengor. A.M.C., and Natalin, B.A., 1996, Turkic-type orogeny and its role in the making of the continental crust: Annu Rev. Earth Planet. Sci., v.24, p.263-337.
    286. Sengor. A.M.C., and Okurogllar, A.H., 1991, The role of accretionary wedges in the growth of continents: Asiatic examples from Argand to plate tectonics: Eclogae geol. Heir., v.84, p.535-597
    287. Stein M. and Goldstein S L, 1996. From plume head to continental lithosphere in Arabian-Nubian shield[J]. Nature. v.382, p.773-778.
    288. Svenningsen O M. 2000.Thermal history of thrust sheets in an orogenic wedge: ~(40)Ar/~(39)Ar data from the polymetamorphic Sere Nappe Complex, northern Swedish Caledonides[J]. Geol Mag. 137(4): 437-446.
    289. Taira, A., Katto, J., Tashiro, M., Okamura, M., and Kodama, K., 1988, The Shimanto belt in Shikoku. Japan-evolution of Cretaceous to Miocene accretionary prism[J]. Modern Geologs. v. 12. p5-46.
    290. Tarney J..1976. Geochenmistry of Archaean high-grade geneises, with implications as to the origin and evolution of the Precambrian crust. In: Windley B F(eds). The early history of the earth. Wiley. New York. p.405-418.
    291. Taylor S R, McLennan S M. 1985. The Continental crust: its composition and evolution, 131ackwell, Oxford.
    292. Taylor S R, McLennan S M., 1995. The geochemical evolution of the continental crust: Reviews of Geophysics, v.33, p.241-265.
    293. Ueda. H., Kawamura, M. & Niida, K., 2000, Accretion and tectonic erosion processes revealed by the mode of occurrence and geochemistry of greenstones in the Cretaceous accretionary complexs of the ldonnppu Zone, southern central Hokkaido, Japan: The Island Arc, v.9, p.237-257.
    294. Vailoni R. 1985. Provenance from modem marine sands. In Zuffa G G. Provenance of Arenites, 309-322.
    295. yon Huene, R., and Scholl, D.W., 1991, Observations at convergent margins concerning sediment subduction. subduction ersion, and the growth of continental crust[J]. Rev. Geophys., v.29, p.279-316.
    296. Wang Z H, Lu H F. 2000. Ductile deformation and ~(40)Ar/~(39)Ar dating of the Changle-Nanao ductile shear zone. southeastern China[J]. J. Struct Geol.22: 561-570.
    297. Wang Zongqi, Jiang Chunfa, Yan Quanren, Yah Zhen. 2001. Accretion and Collision in the West Kunlun Mountains, China. Gondwana Research, Vol.4, No.4.
    298. Wang Zongqi And Wang Zuoxun.1996.Tectonic evolution of North Qinling: extension, accretion to collision. Abstracts of 30th International Geological Congress.
    299. Wang Zongqi, Jiang Chunfa, Zhao Min, et al. 1996. Evolution of continental margins and orogenic process in West Kunlun mountains, China. Abstracts of 30th International Geological Congress.
    300. White N C, Leake M J, McCaughey S N, Parris B W. 1995. Epithermal gold deposits of the southwest Pacific[J]. Journal of Geochemical Exploration, v.54, p.87-136.
    301. Williams H, and lIatcher R D. 1983.Appalachian suspect terranes[A]. In: Contributions to the Tectonics and Geophysics of Mountain Chains[M], edited by R D Hatcher, H Williams, and I Zietz. Mere. Geol. Soc. Am., v.158, p.33-54
    302. Wilson M.1989. Igneous petrogenesis. Unwin Hyman, London.
    303. Xiao W-J, Windley B K H J, Li J-L. 2002. Arc-ophiolite obduction in the Western Kunlun Range(China): implication for Palaeozoic evolution of central Asia[J]. Journal of the Geological Society. London. 159: p.517-528.
    304. Xiao W-J, Windley B K Chen H-L, et al. Carboniferous-Triassic subduction and accretion in the western Kunlun, China: Implications for the collisional and accretionary tectonics of the northern Tibetan Plateau[J]. Geology, 30(4): p.295-298.
    305. Ye S, Flueh D, Klaeschen D and yon Huene R. 1997.Crustal structure along the EDGE transect beneath the Kodiak shelf off Alska derived from OBH seismic refraction data[J]. Geophysical Journal International. v. 130, p.283-302.
    306. Zhang Guowei, Guo Anlin. Liu Futian. et al. 1996. Three-dimentional Architecture and Dynamic[J]. Science in China(Series D), 39(3): p.225-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700