用户名: 密码: 验证码:
扬子陆块南缘(桂北地区)前泥盆纪构造演化的运动学和动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与扬子陆块南缘东段的浙、皖、赣、湘地区相比,扬子陆块南缘西段桂北地区前泥盆纪地壳演化研究相对薄弱,特别是在元古代-早古生代地层和岩浆岩构造变形的几何学、运动学、动力学及年代学研究方面尤显薄弱。本文在大量的野外地质工作和丰富的第一手资料的基础上,运用现代构造解析、显微构造学、岩石学、岩石地球化学、构造地球化学、古地磁学、构造年代学、大地构造学、GIS(地理信息系统)、GPS(全球定位系统)及RS(遥感)等方法和手段,研究了桂北地区前泥盆纪地层变形构造、元古代-早古生代花岗岩岩类和镁铁质-超镁铁质岩类中韧性剪切带的几何学和运动学、韧性剪切带中糜棱岩的矿物成分和显微构造特征、岩浆岩和沉积地层的岩石地球化学和大地构造环境、前泥盆纪地层的古地磁特征、前泥盆纪地壳演化的年代学和动力学背景等内容,取得了以下主要成果:
     1.首次在新元古代丹洲群中发现了普遍存在的“褶叠层”构造,在龙胜马海地区、融水四荣和安太地区、罗城宝坛地区最为典型。“褶叠层”构造由不同尺度的顺层掩卧褶皱、顺层劈理、粘滞型石香肠、构造透镜体、同构造分泌脉、顺层韧性剪切带等组成。以褶叠层构造为特征的顺层固态流变构造群落反映了地壳中深层次伸展环境下的顺层剪切作用,可能是雪峰运动在桂北地区的特殊表现形式,雪峰运动不是以往认为的挤压机制下的地壳收缩增厚过程,而是伸展体制下的地壳减薄过程。
     2.首次在中元古代本洞花岗闪长岩体、新元古代摩天岭和元宝山花岗岩体、加里东期越城岭花岗岩体中发现并厘定了大规模的伸展型韧性剪切带。主体韧性剪切带为高绿片岩相条件下形成的糜棱片麻岩带,糜棱面理走向为NNE向,倾向NWW,倾角40~80°;拉伸线理向SWW或NWW倾伏;根据S-C面理构造、不对称长石残斑眼球体、不对称石英残斑眼球体等剪切指向标志判断,韧性剪切带运动学主要为正滑剪切。本洞、摩天岭和元宝山韧性剪切带内糜棱岩中新生云母类矿物的~(40)Ar/~(39)Ar法坪年龄分别为404.3±6.2Ma、425.67±0.9Ma、324.82±0.58Ma,为加里东晚造山期-后造山阶段。
     3.首次在桂北地区元古代变镁铁质-超镁铁质岩体中发现韧性剪切带和镁铁质-超镁铁质糜棱岩。主要韧性剪切带的走向为NNE向,与桂北地区加里东期构造线一致。九万大山地区镁铁质-超镁铁质糜棱岩糜棱面理缓倾,倾角小于40°,倾伏角小于35°,运动学性质为正滑剪
Pre-Devonian crust evolution in North Guangxi at the west part of south margin of Yangtze block is less studied than in Zhejiang, Anhui, Jiangxi and Hunan at the east part. Especially, the geometry, kinematics, dynamics and chronology of Proterozoic-Early Paleozoic strata and igneous rocks are under-explored. On the basis of hard field work and abundant first-hand data, the deformation structures of Pre-Devonian strata, the geometry and kinematics of ductile shear zones in Proterozoic-Early Paleozoic granites and mafic-ultramafic rocks, mineralogy and microstructures of mylonites in the ductile shear zones, geochemical characteristics and tectonic environments of Pre-Devonian strata and igneous rocks, paleo-magnetic properties of Pre-Devonian strata, chronology and dynamics of Pre-Devonian crust evolution are extensively studied by using techniques such as modern structure analysis, microstructures, petrology, petrological geochemistry, structural geochemistry, paleo-magnetics, tectonic chronology, tectonics, Geographic information system(GIS), Global positioning system(GPS) and Remote sensing(RS). Achievements are made as follows:1. "Folding layers" are first widely discovered in Neoproterozoic Danzhou Group at Mahai of Longsheng, Sirong and Antai of Rongshui, Baotan of Luocheng. The "folding layers" are bedding solid rheological structures, which are composed of bedding recumbent folds, bedding cleavages, viscous boudins, lens-like structures, syn-tectonic secretion veins and bedding ductile shear zones. The bedding solid rheological structure, which indicates bedding shearing under extensional circumstance at middle-deep crust, is likely to be a special structure formed by Xuefeng orogeny in North Guangxi. The Xuefeng orogeny, a crust thinning process under extensional environment, may not be a crust thickening process under compressional environment as previously suggested.2. Large scale extensional ductile shear zones are first discovered and identified in Middle-proterozoic Bendong granodiorites, Neoproterozoic Motianling and Yuanbaoshan granites and Caledonian Yuechengling granites. Major ductile shear zones host mylonitic gneisses, which develop foliations striking to NNE and dipping to NWW at dip angle from 40° to 80° , stretching lineations plunging to SWW or NWW. Shear sense
    indicators, including S-C fabric, unsymmetrical feldspar and quartz phenocryst augens, indicate a normal ductile shearing. The 40Ar/39Ar ages of new micas in mylonites of Bendong, Motianling and Yuanbaoshan ductile shear zones are 404.3+ 6.2Ma, 425.67±0.91V^ 324.82±0.58Ma, respectively, which is from late Caledonian to post- Caledonian.3. Ductile shear zones and mafic-ultramafic mylonites are first discovered in Proterozoic altered mafic-ultramafic igneous rocks in North Guangxi. The major ductile shear zones, striking to NNE, are parallel to Caledonian structural trends. In Jiuwandashan area, mafic-ultramafic mylonites, with foliations gentle dipping at less than 40° and stretching lineations plunging at less than 35° , indicate a normal shearing. The 40Ar/39Ar age of actinolite in ultramafic mylonite is 339±36.4Ma, which demonstrates that it might be related to post-Caledonian extension. Mafic-ultramafic mylonites, with foliations steeply dipping at 50-80° , show a thrust shearing in Longsheng. They might be related to near W-E compression during Caledonian orogeny.4. Geochemical studies show that mafic-ultramafic igneous rocks in Jiuwandashan terrene are volcanic arc calc-alkaline basalts, which are generated by magmatism along convergent plate margin, not mantle plume. Mafic-ultramafic igneous rocks in Longsheng terrene are characterized by magmatic arc, MORB and in-plate basalt, which reflects a complicated tectonic environment. Two types of granites, biotite granites and granodiorite granites, are formed in different tectonic environment in Jiuwandashan terrene. Biotite granites are from syn-collision to post-orogenic granites, while granodiorites are mainly volcanic arc granites. Sandstone of Sibao group reflects an active continental margin and sandstone of Danzhou group reflects a transforming continental margin from active to passive in Jiuwandashan terrene, while sandstone of Danzhou group reflects an active continental margin in Longsheng terrene.5. Paleomagnetic analyses show that paleomagnetic pole of Sibao group in Yangmeiao area was located at Vlat=49.4, Vlong= 127.0, Plat=13.6. Paleomagnetic pole of Sibao group in Xingdongkou area was located at Vlat=48.1, Vlong=109.6, Plat=16.6. Sibao fracture was unlikely to be a collision zone between two plates or blocks because two blocks at each side of Sibao fracture were not significantly split and displaced. Paleomagnetic pole of Danzhou group in Sirong area was located at
    Vlat=57.1, Vlong=354.4, Plat=9.0. Paleomagnetic pole of Danzhou group in Piaoli area was located at Vlat=18.2, Vlong=28.8, Plat=15.6. Sanjiang fracture was likely to be a collision zone between Jiuwandashan and Longsheng terrene because the two blocks were located in separate terrenes. Paleomagnetic pole of Cambrian system in Shoucheng area was located at Vlat=-70.9, Vlong=114.0, Plat=-6.1. Paleomagnetic pole of Cambrian system in Laochang area was located at Vlat—64.8, Vlong=168.2, Plat=-10.1. Paleomagnetic pole of Cambrian system in Jinxiu area was located at Vlat=-42.2, Vlong=157.0, Plat=10.8. Lipu fracture was likely to be a collision zone between Yangtze and Cathaysia plate because Jinxiu block at the south side of Lipu fracture was displaced 2000km to north and rotated 11° anti-clockwise from Laochang block at the north side of Lipu fracture.6. Axial planes of Caledonian folds are generally dipping to NWW at high or vertical dip angle and hinges trending NNE at low or horizontal plunging angle in North Guangxi, which shows that the Caledonian folds were formed under NWW-SEE compressional environment. From late Caledonian to post-Caledonian extensional stage, thickened crust was the most important dynamic constraints on extensional tectonics. Large-scale extensional ductile shear zones were controlled by gravitational collapse mechanism.
引文
[1] Bell T H. Deformation partitioning and porphyroblast rotation in metamorphic rock: a radical reinterpretation. Journal of Metamorphic Geology, 1985, (3): 109-118
    [2] Bell T H. Foliation development and reactivation in decrenulation due to shifting patterns of deformation partitioning. Journal of Metamorphic Geology, 1986, 9(3): 37-47
    [3] Burchfiel B C, Royden L H. North-south extension within the convergent Himalayan region. Geology, 1985, 13: 679-682
    [4] Burke K, Dewey J F, Kid W S F. World distribution of sutures: the sites of former oceans. Tectonophysics, 1977, 40: 69-99.
    [5] Chen Wen, Zhang Yan, Ji Qiang, et al. The magmatism and deformation times of the Xidatan rock series, East Kunlun Mountain. Science in China, Series D, 2002, 45(Supplement): 20-27
    [6] Coney P J, Harms T A. Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology, 1984, 12: 550-554
    [7] Coney P J. Cordilleran metamorphic core complexes: An overview. Mem. Geol. Soc.Am., 1980, 153:7-31
    [8] Costa S, Rey P. Lower-crust rejuvenation and crustal growth during post-thickening collapse: the example of the Variscan crust in the Eastern French Massif Central. Abstract volume of BRGM, 1993, 46-47
    [9] Culshaw N G, Ketchum J W F, Jamieson R A, et al. Heterogeneous extension in the orogenic mid-crust-the central gneiss belt of the Greenville orogen, Ontario, Canada. Abstract volume of BRGM, 1993, 48-49
    [10]Dalziel I W D. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent: Geology, 1991, 19: 598-601
    [11] Davis G H. A shear zone model for the structural evolution of metamorphic core complexes in south-eastern Arizona. Continental Extensional Tectonics, 1987, (28): 247-266
    [12]Dewey J F. Extensional collapse of orogens. Tectonics, 1988, 7: 1123-1139
    [13]Downes H. Shear zones in the upper mantle-relation between geochemical enrichment and deformation in mantle peridotites. Geology, 1990, 18: 374-377
    [14] Evans D A D, Li Z X. A high-quality mid-Neoproterozoic paleomagnetic pole from South China with implication for ice age and the breakup configuration of Rodinia, Precambrian Res., 2000, 100: 313-334
    [15]Fossen H, Dunlap W J. Timing and Kinematics of Caledonian thrusting and extensional collapse, southern Norway: evidence from ~40Ar/~39Ar thermochronology. Journal of Structural Geology, 1998, 20(6): 765-781
    [16]Glasmacher U A, Reynolds P, Alekseyev A A, et al. ~40Ar/~39Ar Thermochronology west of the Main Uralian fault, southern Urals, Russia, International Journal of Earth Sciences, 1999, 87(4): 515-525
    [17]Grabau, A W. Stratigraphy of China, Part I , Paleozoic and older. Peking, The geological survey of agriculture and commerce, 1924, (528): 1-6
    [18]Guo Linzhi, Shi Yangshen, Lu Huafu et al. Research on the terrene tectonics in China. Chinese Journal of Geochemistry, 1996, 15(3): 193-202
    [19]Guo Linzhi, Shi Yangshen, Ma Ruishi, et al. Plate movement and crustal evolution of the Jiangnan Proterozoic mobile belt, Southeast China. Earth Science (Japan), 1985,39(2): 156-166
    [20]Hanmer S, Passchier C. Shear sense indicators: a review. Geological Survey of Canada, 1991, Paper 9-17
    [21] Hill R I, Campbell I H, Davis G F, et al. Mantle plumes and continental tectonics. Science, 1992,256:186-193
    [22] Hoffman P F. Did the breakout of Laurentia turn Gondwanaland inside-out? Science, 1991, 183:1409-1412
    [23] Hoffman, P F. United states of America, the birth of a craton: Early proterozoic assembly and growth of Laurentia. Rev. Earth Planet. Sci, Lett., 1988, 16: 543-603
    [24] Hsu K J, Li J, Chen H, et al. Tectonics of south China: key to understanding West Pacific geology. Tectonophysics, 1990, 183: 9-39
    [25] Hsu K J, Sun S, Li J, et al. Mesozoic overthrust tectonics in South China. Geology, 1988, 16:418-421
    [26]Hsu K J. Thin-skinned plate-tectonic model for collision-type of orogenesis. Scientia Sinica, 1981,24: 100-110
    [27] Irving E, Naldrett A J. Paleomagnetism in Abitibi greenstone belt and Abitibi and Matachewan dikes: evidence of the Archaean geomagnetic field. J. Geology, 1977, 85: 157-176
    [28] Jones C H, Unruh J R, Sonder L J, et al. The role of gravitational energy in active deformation in the southwestern United States. Nature, 1996, 381: 37-41
    [29] Kroner A. Pan-African crustal evolution. Episodes, 1980, 2: 3-8
    [30]Kroner A. Precambrian plate tectonics. Amsterdam: Elsever, 1981, 1-781
    [31 ] Kumazawa M, Maruyama S. Whole earth tectonics. Jour. Geol. Soc. Japan, 1994, 100: 81-102
    [32] Lee J. Incremental ~40Ar/~39Ar thermochronology of mylonitic rocks from the northern Snake Range, Nevada. Tectonics, 1991,10(1): 77-100
    [33]Li X H. Geochemistry of the Longsheng ophiolite from the southern margin of the Yangtze Craton, SE China. Geochem. J., 1997, 31: 323-337
    [34] Li X H. U-Pb zircon ages of granites from the southern margin of the Yangtze Block: timing of Neoproterozoic Jinning orogeny in SE China and implication for Rodinia Assembly. Precambrian Research, 1999, 97: 43-57
    [35] Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth Planet. Sci. Lett., 1999, 173: 171-181
    [36] Li Z X, Powell C McA. Breakup of Rodinia and Gondwanaland and assembly of Asia. Australian Journal of Earth Sciences, 1996a , 43(6): 591-592
    [37]Li Z X, Zhang L H, Powell C McA. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia. Australian Journal of Earth Sciences, 1996b, 43(6): 593-604
    [38]Li Z X, Zhang L H, Powell C McA. South China in Rodinia: a part of the missing link between Australia-East Antarctica and Laurentia? Geology, 1995, 23(5): 407-410
    [39]Li Z X, Zhang L H, Powell C McA. Were the east Asian continental blocks part of Rodinia? Geological Society of Australia Abstracts, 1994, 37: 248-249
    [40] Lin J L, Fuller M, Zhang W Y. The preliminary apparent polar wander paths for the North and South China blocks. Nature, 1985, 313:444-449
    [41] Liu M, Furlong K P. Crustal shortening and Eocene extension in the southeastern Canadian Cordillera: Some thermal and mechanical considerations. Tectonics, 1993, 12: 776-786
    [42]Liu M, Shen Y, Yang Y. Gravitational collapse of orogenic crust: A preliminary 3-D finite element study. J. Geophys., 2000, 105: 3159-3173
    [43] Liu. M, Shen Y. Crustal collapse, mantle upwelling, and Cenozoic extension in the North American Cordillera. Tectonics, 1998, 17: 311-321
    [44]Maluski H, Rajlich P, Matte P. ~40Ar/~39Ar dating of the inner Carpathians Variscan basement and Alpine mylonitic overprinting. Tectonophysics, 1993, 223: 313-337
    [45] Maruyama S. Plume tectonics. Jour. Geol. Soc. Japan, 1994, 100: 24-49
    [46] McCaffrey R, Nabelek J. Role of oblique convergence in the active deformation of the Himalayas and southern Tibet plateau. Geology, 1998, 26: 691-694
    [47]McDougall I, Harrison T M. Geochronology and thermochronology by the ~40Ar/~39Ar method. New York and Oxford University Press, 1999, 1 -269
    [48]McElhinny M W, Embleton B J. Australian paleomagnetism and the phanerozoic plate tectonics of eastern Gondwanaland. Tectonophysics, 1974, 22: 1~9
    [49] McLennan S M, Taylor S R. Sedimentary rocks and crustal evolution revisited: tectonic settings and secular trends. J. Geology, 1991, 99: 1-21
    [50]Mercier J L, Sebrier M, Lavenu A, et al. Changes in the tectonic regime above a subduction zone of Andean type: The Andes of Peru and Bolivia during the Pliocene-Pleistocene. J. Geophys. Res., 1992, 97: 11945-11982
    [51]Mitra G. Ductile deformation zones and mylonites: the mechanical process involved in the deformation of crystalline basement rocks. American Journal of Science, 1978,278: 1057-1084
    [52]Norton M G. Late Caledonian extension in Western Norway: a response to extremely crustal thickening. Tectonics, 1986, 5: 195-204
    [53] Park R G. Early Proterozoic tectonic overview of the northern British Isles and neighboring terrains in Lourentia and Baltica. Precambrian Research, 1994, 68: 65-79
    [54]Pearce J A, Cann J R. Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth Planet Sci. Lett., 1971, 12: 339-349
    [55]Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci. Lett., 1973, 19: 290-300
    [56]Pearce J A, Harris N B W, Tindle AG. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, 25: 956-983
    [57]Pubellier M, Quebral R, Rangin C, et al. The Mindanao collision zone: a soft collision event within a continuous Neocene strike-slip setting. J. Southeast Asia Ear. Sci., 1991, 6(34): 239-248
    [58]Rollison H R. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical Limited, 1993, 1-352
    [59] Seeber L, Pecher A. Strain partitioning along the Himalayan arc and the Nanga Parbat antiform. Geology, 1998, 26: 791-794
    [60]Shimizu H, Sawatari H, Kawata Y, et al. Ce and Nd isotope geochemistry on island arc volcanic rocks with negative Ce anomaly: existence of sources with concave REE patterns in the mantle beneath the Solomon and Bonin island arcs. Contri. Mineral. Petrol., 1992,110(2/3): 242-252
    [61]Sibson R H. Fault rocks and fault mechanics. J Geol. Soc. London, 1977, 133:191-213
    [62] Simpson C. Deformation of granitic rocks across the brittle-ductile transition. Journal of Structural Geology, 1985, (7): 503-511
    [63] Simpson C. Determination of movement sense in mylonite. Journal of Geological Education, 1986, 34: 241-246
    [64] Sonder L J, Jones C H. West United States extension: How the west was widened. Annu. Rev. Earth Planet Sci., 1999, 27: 417-462
    [65] Wallace P, Carmichal I S E. Alkaline and calc-alkaline lavas Los Volcanes, Jalisco, Mexico: geochemical diversity and its significance in volcanic arcs. Contri. Mineral. Petrol., 1992, 111(4): 423-439
    [66] Wang H Z, Mo X X. An outline of the tectonic evolution of China. Episodes, 1995, 18(1-2): 6-16
    [67] Wang Z H, Lu H F. Ductile deformation and ~40Ar/~39Ar dating of the Changle-Nanao ductile shear zone, southeastern China. Journal of Structural Geology, 2000, 22(6): 561-570
    [68]Westaway R. The mechanical feasibility of low-angle normal faulting. Tectonophysics, 1999, 308: 407-443
    [69] Windley B F. Uniformitarianism today: plate tectonics is the key to the past. Journal of the Geological Society, 1983,150: 7-19
    [70]Wingate M T D, Cambell I H, Compston W, et al. Ion microprobe U-Pb age for Neoproterorozoic basaltic magmatism in South Central Australia and implication for the break up of Rodinia. Precamb Res, 1998, 87: 135-159
    [71] Wyman D A. A 2.7Ga depleted tholeiite suite: evidence of plume-arc interaction in the Abitibi Greenstone belt, Canada. Precam. Res., 1999, 97: 27-42
    [72] Yin A. Origin of regional rooted low-angle normal faults: a mechanical model and its tectonic implications. Tectonics, 1989, 8: 469-482
    [73] Zhang J, Passchier C W. Structural and metamorphic evolution of the Archaean high-pressure granulite in Datong-Huai'an area, North China: an extensional collapse and uplift model from structural, petrological and paleomagnetic investigations. Beijing: Science Press, 2001,1-174
    [74] Zhang Q R, Piper J D A. Paleomagnetic study of Neoproterozoic glacial rocks of the Yangzi Block, paleolatitude and configuration of South China in late Proterozoic Supercontinent. Precambrian Res., 1997, 85: 173-199
    [75] Zhao J X, Malcolm M T, Korsch R J. Characterization of a plume-related ~800Ma magmatic event and its implication for basin formation in central-southern Australia. Earth Planet Sci Lett., 1994, 121: 349~367.
    [76] Zhao X, Coe R S, Gilder S A, et al. Paleomagnetic constraints of the paleography of China: implication for Gondwanaland. Aust. J. Earth Sci., 1996, 43: 643~672
    [77] Zhao X, Coe R S, Lin C, et al. New Cambrian and Ordovician paleomagnetic poles for the North China block and their paleogeographic implications. J. Geophys. Res., 1992, 97: 1767~1788
    [78] Zhao X, Coe R S. Paleomagnetic constraints on the collision and rotation of North and South China. Nature, 1987, 327: 141~144
    [79] Zhou MF, Zhao TP, Malpas J, et al. Crustal-contaminated komatiitic basalts in southern China: products of a Proterozoic mantle plume beneath the Yangtze block. Precam. Res., 2000, 103: 175~189.
    [80] 白立新,吴汉宁,杨振宇,等.扬子地块中寒武世古地磁新结果.中国科学(D辑),1998,28(增刊):57~62
    [81] 陈国达,陈家超,魏柏林,等.中国大地构造简述.地质科学,1975,(3):205~219
    [82] 陈国达.中国地台“活化区”的实例并着重讨论“华夏古陆”问题.地质学报,1956,36(3):239~271
    [83] 陈海鸿,孙枢,李继亮,等.华南早三叠世的古地磁学与大地构造.地质科学,1994,29(1):1~9
    [84] 陈文,罗修泉,郑宝英,等.激光显微探针~(40)Ar/~(39)Ar定年方法研究.地球学报,1994,(1-2):197~205
    [85] 程国良,孙宇航,孙青格,等.显生宙中国大地构造演化的古地磁研究.地震地质,1995,17(1):69~78
    [86] 程裕淇.中国区域地质概论.北京:地质出版社,1994,448~476
    [87] 单文琅,傅昭仁.北京西山水平分层剪切流变构造初探.地球科学,1987,(2):113~120
    [88] 单文琅,傅昭仁.北京西山的褶叠层与“顺层”固态流变构造群落.地球科学,1984,(2):33~41
    [89] 邓家瑞,张志平.雪峰古陆的加里东期推覆构造.华东地质学院学报,1996,19(3):201~209
    [90] 邓诗铠.湖南花岗岩类成因系列、时空分布及其成矿作用.见:花岗岩地质和成矿关系,国际花岗岩学术讨论会论文集.南京:江苏科学技术出版社,1984,453~465
    [91] 董宝林,覃杰.桂北九万大山地区花岗岩类新的同位素年龄数据及时代的讨论.广西地质,1987b,(1-2):20~22
    [92] 董宝林.丹洲群岩相特征及有关问题的讨论.广西地质,1993,6(3):33~37
    [93] 董宝林.关于在桂北龙胜一带丹洲群中建立三门街组的建议.广西区域地质,1990a,(18):20~23
    [94] 董宝林.广西宝坛地区丹洲群层状变形带.广西区域地质,1989,(17):19~23
    [95] 董宝林.广西四堡群及其成矿特征.广西地质,1990,3(1):53~58
    [96] 董宝林.桂北前寒武纪几个构造问题的讨论.江西地质,1988,2(2):176~181
    [97] 董宝林.中国南方前寒武纪浅变质岩Rb-Sr同位素年代学研究有了突破.广西地质,1987a,(1-2):22
    [98] 方大钧,楼刚,姜莉萍,等.华南古地磁研究的若干新进展.浙江大学学报(自然科学版),1995,29(4):501~512
    [99] 符鹤琴.华南元古宙裂谷初论.江西地质科技,1985,(2):50~58
    [100] 傅昭仁,单文琅.论横向构造置换.地球科学,1989,(1):59~65
    [101] 傅昭仁,单文琅.浅变质岩地区褶叠层构造与地层划分.中国区域地质,1990,(3):262~268
    [102] 甘晓春,李献华,赵风清,等.广西龙胜丹洲群细碧岩锆石U-Pb及Sm-Nd等时线年龄.地球化学,1996,25(3):270~276
    [103] 高明,陈亮,孙勇.论地幔柱构造与板块构造的矛盾性和相容性.西北大学学报(自然科学版),2000,30(6):514~518
    [104] 葛文春,李献华,李正详,等.桂北新元占代两类过铝花岗岩的地球化学研究.地球化学,2001c,30(1):24~34
    [105] 葛文春,李献华,李正祥,等.桂北龙胜丹洲群火山岩的地幔源区及大地构造环境.长春科技大学学报,2001a,31(1):20~24
    [106] 葛文春,李献华,李正祥,等.龙胜地区镁铁质侵入体:年龄及其地质意义.地质科学,2001b,36(1):112~118
    [107] 葛文春,李献华,李正祥.桂北“龙胜蛇绿岩”质疑.岩石学报,2000,16(1):11~18
    [108] 顾雪祥,刘建明,Oskar Schulze,等.江南造山带雪峰隆起区元古宙浊积岩沉积构造背景的地球化学制约.地球化学,2003,32(5):406~426
    [109] 广西地质矿产局.华南地区物探、化探、遥感编图广西综合解译成果报告.1997,125~141
    [110] 广西地质矿产勘查开发局.1:5万滚贝、大平东、三防、为才东幅区域地质调查报告.1995,1~221
    [111] 广西地质矿产勘查开发局.广西壮族自治区1:50万数字地质图说明书.1999,1~137
    [112] 广西壮族自治区地质局.罗城幅1:20万区域地质测量报告书.1968,1~108
    [113] 广西壮族自治区地质局.融安幅1:20万区域地质测量报告书.1967,1~72
    [114] 广西壮族自治区地质局.三江幅1:20万区域地质测量报告书.1966,1~115
    [115] 广西壮族自治区地质局.三门幅和同列幅1:5万区域地质调查报告.1977,1~86
    [116] 广西壮族自治区地质局.兴安幅1:20万地质图说明书.1964,1~125
    [117] 广西壮族自治区地质矿产局.1:5万宝坛地区加刷东、龙岸西、腊峒东、黄金西幅区域地质调查报告.1987,1~289
    [118] 广西壮族自治区地质矿产局.1:5万瓢里、泗水、龙胜幅区域地质调查报告,1993,1~142
    [119] 广西壮族自治区地质矿产局.广西壮族自治区区域地质志.北京:地质出版社,1985,1~40
    [120] 贵州省地质矿产局.贵州省区域地质志.北京:地质出版社,1988,1~50
    [121] 郭福祥.华南大地构造演化的几点认识.广西地质,1994,7(1):1~14
    [122] 郭福祥.是南华陆上三向造山带而不是华南三叠纪碰撞造山带.广西地质,1996,9(1-2):79~90
    [123] 郭洪方,黄志安.压力影构造类型及剪切指向分析.辽宁地质,1996(2):81~90
    [124] 郭令智,卢华复,施央申,等.江南中、元古代岛弧的运动学和动力学.高校地质学报,1996,2(1):1~13
    [125] 郭令智,施央申,卢华复,等.武夷-云开震旦纪-早古生代沟、弧、盆褶皱系.国际大陆岩石圈构造演化与动力学讨论会第三届全国构造会议论文集1(造山带 盆地 环太平洋构造).北京:地质出版社,1987,116~121
    [126] 郭令智,施央申,马瑞士,等.华南大地构造格架和地壳演化,国际交流地质学术论文集(构造地质 地质力学).北京:地质出版社,1980,109~116
    [127] 郭令智,施央申,马瑞士,等.江南元古代板块运动和岛弧构造的形成和演化,国际前寒武纪地壳演化讨论会论文集(第一集).北京:地质出版社,1986,30~37
    [128] 郭令智,施央申,马瑞士,等.中国东南部地体构造的研究.南京大学学报(自然科学版),1984,20(4):732~739
    [129] 郭令智,舒良树,卢华复,等.中国地体构造研究进展综述.南京大学学报,2000,36(1):1~17
    [130] 韩发,沈建中,聂凤军,等.江南古陆南缘四堡群同位素地质年代学研究.地球学报,1994,(1-2):43~50
    [131] 郝杰,李曰俊,胡文虎.晋宁运动和震旦系有关问题.中国区域地质,1992,(2):131~140
    [132] 何建坤,刘金朝.下地壳流变与造山带同挤压期地壳伸展的动力学关系.地球物理学报,2002,45(4):483~494
    [133] 候光久,索书田,魏启荣,等.雪峰山地区变质核杂岩与沃溪金矿.地质力学学报,1998a,4(1):58~62
    [134] 候光久,索书田,郑贵州,等.雪峰山加里东运动及其体制转换.湖南地质,1998b,17(3):141~144
    [135] 胡玲,宋鸿林,颜丹平,等.尚义-赤城断裂带中糜棱岩~(40)Ar/~(39)Ar年龄记录及地质意义.中国科学(D辑),2002,32(11):908~913
    [136] 胡世玲,郝杰.江西广丰“田里片岩”的~(40)Ar/~(39)Ar同位素年龄及有关问题的讨论.见:李继亮主编,东南大陆岩石圈结构与地质演化.北京:冶金工业出版社,1993,145~148
    [137] 湖南地质局区测队.城步幅1:20万区调地质报告.1972,1~67
    [138] 黄宝春,魏青山,朱日祥.华北地块早古生代地层单元的岩石磁学特征研究.地球物理学报,1995,38(6):796~804
    [139] 黄宝春,朱日祥.华北地块早古生代古地磁结果的大地构造意义.地球物理学报,1996,39(增刊):166~172
    [140] 黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓.地质学报,1977,(2):117~135
    [141] 黄汲清.中国地质构造基本特征的初步总结.地质学报,1960,40(1):1~37
    [142] 黄汲清.中国主要地质构造单位(英文版,原文为On major Tectonic Forms of China).地质专报,甲种第20号,前中央地质调查所,1945:1~165
    [143] 黄汲清.中国主要地质构造单位(曾莫休和龚素玉翻译).北京:地质出版社,1954,1~168
    [144] 黄汲清指导,任纪舜,姜春发,张正坤,等执笔.中国大地构造及其演化.北京:科学出版社,1980,1~124
    [145] 黄建中,唐晓珊,郭乐群,等.湖南前寒武纪地层古地磁特征及地质意义.中国区域地质,1996,(3):204~212
    [146] 金文山,孙大中.华南大陆深部地壳结构及其演化.北京:地质出版社,1997,1~175
    [147] 兰玉琦,叶瑛,沈炳祥,等.中国东南大陆边缘若干问题的认识.地质科学,1990,(1):37~41
    [148] 李春昱,郭令智,朱夏,等.板块构造基本问题.北京:地震出版社,1986,1~464
    [149] 李春昱.中国板块构造轮廓.中国地质科学院院报,1980,2(1):11~22
    [150] 李江海,穆剑.我国境内格林威尔期造山带的存在及其对中元古代末期超大陆再造的制约.地质科学,1999,34(3):259~272
    [151] 李四光.中国地质学.北京:正凤出版社,1952
    [152] 李献华,李正祥,葛文春,等.华南新元古代花岗岩锆石U-Pb年代学及其构造意义。矿物岩石地球化学通讯,2001,20(4):271~273
    [153] 李献华.广西北部新元古代花岗岩锆石U-Pb年代学及其构造意义.地球化学,1999,28(1):1~9
    [154] 李献华.华南晋宁期造山运动—地质年代学和地球化学制约.地球物理学报,1998,41(增刊):184~194
    [155] 李志昌,赵子杰.广西晚元古代本洞和三防花岗岩类岩体Nd、Sr同位素特征.广西地质,1991,4(1):53~59
    [156] 梁国宝,黄少棠.桂北三防地区韧性剪切带研究.广西地质,1997,(4):1~4
    [157] 梁金城,徐建平,王春增,等.论新资断裂带的断层岩及其构造演化规律.全国第二届显微构造与组构学术讨论会交流论文.1984a,1~21
    [158] 梁金城,徐建平,王春增,等.越城岭片麻状花岗岩定向构造的成因研究.全国第二届显微构造与组构学术讨论会交流论文.1984b,1~23
    [159] 梁廷苞,王化云.猫儿山、越城岭花岗岩类型及其片麻状花岗岩带的成因探讨.广西地质,1986,(2):79~83
    [160] 林传勇,史兰斌,何永年.糜棱岩型幔源橄榄岩包体及其地质意义.见:中国地质学会构造地质专业委员会编.国际大陆岩石圈构造演化与动力学讨论会:第三届全国构造地质会议论文选集(Ⅰ).北京:科学出版社:1990,165~172
    [161] 凌文黎,程建萍.Rodinia研究意义、重建方案与华南晋宁期构造运动.地质科技情报,2000,19(3):7~11
    [162] 刘宝君,许效松,潘杏南,等.中国南方古大陆沉积地壳演化与成矿.北京:科学出版社,1993,9~33
    [163] 刘椿.古地磁学导轮.北京:科学出版社,1991,1~118
    [164] 刘鸿允,李日俊,郝杰.论华南的板溪群及其有关的大地构造问题.地球学报,1994,(3-4):88~96
    [165] 刘家远.华南前寒武纪花岗岩类的构造演化、成因类型及与成矿的关系.安徽地质,1994,4(1-2):39~48
    [166] 马瑞士,卢华复,叶尚夫.论扬子古陆东南边缘造山带形成时代.安徽地质,1994,4(1-2):58~69
    [167] 马文璞,丘元禧,何丰盛.江南隆起上的下古生界缺失带.华南加里东前陆褶冲带的标志.现代地质,1995,9(3):320~324
    [168] 马杏垣,游振东,谭应佳,等.中国大地构造的几个基本问题.地质学报,1961,41(1):30~44
    [169] 马宗晋,杜品仁,洪汉净.地球构造与动力学.广州:广东科技出版社,2003,1~564
    [170] 毛景文,宋叔和,陈毓川.桂北地区火成岩系列和多金属矿床成矿系列.北京:北京科学技术出版社,1988,1~196
    [171] 毛景文,张宗清,董宝林.江南古陆南缘四堡群钐钕同位素年龄研究.地质论评,1990,36(3):264~268
    [172] 莫柱孙.南岭地区陆壳的生长和花岗岩的演化.第二届全国构造地质学术会议论文选集(第1卷),大地构造和前寒武纪构造,北京:地质出版社,1981,1~9
    [173] 蒲心纯,周浩达,王熙林,等.中国南方寒武纪岩相古地理与成矿作用.北京:地质出版社,1993,1~102
    [174] 乔秀夫,耿树方.华南晚前寒武纪古板块构造.中国及其邻区大地构造论文集,北京:地质出版社,1981,77~91
    [175] 丘元禧,马文璞,范小林,等.“雪峰古陆”加里东期的构造性质和构造演化.中国区域地质,1996,(2):150~160
    [176] 丘元禧,张渝昌,马文璞,等.雪峰山的构造性质与演化——个陆内造山带的形成演化模式.广州:中山大学出版社,1999,1~153
    [177] 丘元禧.从梵净山“飞来峰”到“蓝田构造窗”—对江南-雪峰推(滑)体的若干认识.安徽地质,1994,4(1-2):23~26
    [178] 丘元禧.云开大山及其邻区构造演化.见:丘元禧,陈焕疆主编.云开大山及其邻区大地构造论文集,北京:地质出版社,1993,1~21
    [179] 全国地层委员会.中国区域年代地层(地质年代)表说明书.北京:地质出版社,2002,5~10
    [180] 饶冰,沈渭洲,张祖还.广西摩天岭岩体成因研究.南京大学学报(地球科学),1989,(3):45~57
    [181] 任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋迴缝合作用.地学前缘,1999,6(3):85~93
    [182] 任纪舜.论中国大陆岩石圈构造的基本特征.中国区域地质,1991,(4):289~293
    [183] 任纪舜.论中国南部的大地构造.地质学报,1990,(4):275~288
    [184] 任纪舜.试论中国东南部的大地构造性质.地质论评,1960,40(1):1~37
    [185] 任纪舜.中国东部泥盆纪前几个大地构造问题的初步探讨.地质学报,1964,44(4):418~430
    [186] 施实.前寒武纪摩天岭岩体同位素地质年龄讨论.地球化学,1976,(4):297~307
    [187] 水涛,徐步台,梁如华,等.绍兴-江山古陆对接带.科学通报,1986,31(6):444~448
    [188] 水涛.中国东南大陆基底构造格局.中国科学(B辑),1987,(4):414~422
    [189] 汤加富.华南变质基底的组成、边界与构造演化.安徽地质,1994,4(1-2):104~111
    [190] 田景春,张长俊.早震旦世扬子陆块东南缘构造性质探讨.矿物岩石,1995,15(2):55~59
    [191] 田景春.桂北下震旦统层序及沉积相特征-以桂北三江震旦系剖面为例.广西地质,1990,3(2):39~45
    [192] 田景春.桂北下震旦统杂砾岩成因之探讨.广西地质,1989,2(4):25~29
    [193] 仝来喜,刘小汉,张连生,等.东南极拉斯曼丘陵石榴斜长角闪岩中角闪石的~(40)Ar/~(39)Ar年龄及其地质意义.极地研究,1998,10(3):161~171
    [194] 汪绍年.广西及其邻区片麻状花岗质岩石成因初议.广西地质,1988,1(1):55~63
    [195] 王春增.变形分解作用及其研究意义.地质科技情报,1988,(2):13~19
    [196] 王德滋,周新民,孙幼群.华南前寒武纪幔源花岗岩类的基本特征.桂林冶金地质学院学报,1982,(4):1~9
    [197] 王鸿祯.从活动论观点论中国东部大地构造分区.地球科学,1980,(1):42~66
    [198] 王鸿祯.从中国东部前寒武系发育论中国东部大地构造分区.地质学报,1955,35(4):357~404
    [199] 王鸿祯.中国地壳构造发展的主要阶段.地球科学,1982,(3):155~173
    [200] 王鸿祯.中国华南地区地壳构造发展的轮廓.见:王鸿祯,杨巍然,刘本培主编.华南地区古大陆边缘构造史.武汉:武汉地质学院出版社,1986,1~15
    [201] 王剑.华南新元古代裂谷盆地演化—兼论与Rodinia解体的关系.北京:地质出版社,2000,1~146
    [202] 王瑜,李锦轶,李文铅.东天山造山带右行剪切变形及构造演化的~(40)Ar/~(39)Ar年代学证据.新疆地质,2002,20(4):315~319
    [203] 王志洪,卢华复.长乐-南澳韧性剪切带~(40)Ar/~(39)Ar热年代学研究.中国科学(D辑),1997,27(4):294~299
    [204] 王自强,索书田.华南地区中、晚元古代阶段古构造及古地理.见:王鸿祯,杨巍然,刘本培主编.华南地区古大陆边缘构造史.武汉:武汉地质学院出版社,1986,16~38
    [205] 王祖伟,周永章,赵凤清,等.华南地区深部地质研究进展.地球科学进展,1997,12(3):259~264
    [206] 吴根耀.华南的格林威尔造山带及其坍塌:在罗迪尼亚超大陆演化中的意义.大地构造与成矿学,2000,24(2):112~123
    [207] 吴汉宁,朱日祥,白立新,等.扬子地块显生宙古地磁视极移曲线及地块运动特征.中国科学(D辑),1998,28(增刊):69~78
    [208] 吴浩若.广西加罩东运动构造古地理问题.古地理学报,2000,2(1):70~76
    [209] 伍实.广西晚元古代本洞岩体同位素年代学研究.地球化学,1979,(3):187~193
    [210] 夏斌.广西龙胜元古代二种不同成因蛇绿岩岩石地球化学及侵位方式研究.南京大学学报(自然科学版),1984,(3):554~566
    [211] 夏文杰,杜森官,徐新煌,等.中国南方震旦纪岩相古地理与成矿作用.北京:地质出版社,1994,1~100
    [212] 肖交文,李继亮,孙枢,等.构造平衡分析及其对前陆褶皱冲断带构造极性的制约:以浙西北地区为例.地质科学,2000,35(3):257~266
    [213] 肖庆辉,李晓波,贾跃明,等.当代造山带研究中值得重视的若干前沿问题.地学前缘,1995,2(1-2):43~50
    [214] 谢家荣.中国大地构造问题.地质学报,1961,41(2):218~229
    [215] 谢艳霞,刘瑞殉,郭召杰.应变软化在甘肃红柳河辉长质糜棱岩形成中的作用.矿物岩石,1996,16(2):34~39
    [216] 刑凤鸣,徐祥,陈江峰,等.江南卉陆东南缘晚元古代大陆增生史.地质学报,1992,66(1):59~72
    [217] 徐备,郭令智,施央申.皖赣浙地区元古代地体和多期碰撞造山带.北京:地质出版社,1992,1~112
    [218] 徐克勤,孙鼎,王德滋,等.华南花岗岩成因与成矿.见:花岗岩地质和成矿关系,国际花岗岩学术讨论会论文集.南京:江苏科学技术出版社,1984,1~20
    [219] 徐夕生,周新民.华南前寒武纪s型花岗岩类及其地质意义.南京大学学报(自然科学),1992,28(3):423~430
    [220] 徐学义,杨军录.地幔柱理论研究概述.西安地质学院学报,1997,19(2):46~51
    [221] 许靖华,孙枢,李继亮.是华南造山带而不是华南地台.中国科学(B辑),1987,(10):1107~1115
    [222] 许靖华,孙枢,王清晨,等.1:4000000中国大地构造相图.北京:科 学出版社,1998,1~155
    [223] 许靖华.薄壳板块构造模式与冲撞型造山运动.中国科学(B辑),1980,(11):1081~1089
    [224] 薛重生,李昌年,杨晓松,等.江绍断裂带游溪混合岩~(40)Ar/~(39)Ar年龄及大地构造意义.地质科技情报,1997,16(3):82~101
    [225] 闫全人,王宗起,闫臻,等.构造变形/变质作用的精细测年及其在造山带研究中的应用.地学前缘,2001,8(3):147~156
    [226] 阎明,马东升,刘英俊.桂北四堡期火山岩微量元素地球化学特征.矿物岩石,1995,15(2):60~65
    [227] 杨超群.华南花岗岩的成因类型.见:花岗岩地质和成矿关系,国际花岗岩学术讨论会论文集.南京:江苏科学技术出版社,1984,165~179
    [228] 杨丽贞,周景辉,梁磊,等.广西罗城宝坛地区具鬣刺结构科马提岩的发现及其意义.广西区域地质,1987,(16):9~12
    [229] 杨丽贞.桂北中元古代的科马提岩.中国区域地质,1990,(1):14~24
    [230] 杨巍然,胡德祥,张旺生.华南加罩东阶段古构造特征.见:王鸿祯,杨巍然,刘本培主编.华南地区古大陆边缘构造史.武汉:武汉地质学院出版社,1986,39~64
    [231] 杨巍然,简平.构造年代学-当今构造研究的一个新学科.地质科技情报,1996,15(4):39~43
    [232] 杨学明,杨晓勇,陈双喜译,岩石地球化学.北京:中国科学技术大学出版社,2000,1~275
    [233] 杨振宇,马醒华,黄宝春,等.华北地块显生宙古地磁视极移曲线与地块运动.中国科学(D辑),28(增刊):1998,44~56
    [234] 余达淦.再论华南(东)晋宁-加里东海盆地形成、演化及封闭.安徽地质,1994,4(1-2):96~103
    [235] 袁奎荣,杨心宜.广西花岗岩类及其成矿与陆缘地体增生、演化的关系.桂林冶金地质学院学报,1988,8(3):205~224
    [236] 袁奎荣.花岗岩类中片麻状定向构造的特征及成因问题.第二届全国显微构造与组构学术讨论会交流论文,1984,1~14
    [237] 袁学诚.古地磁学原理及其应用.北京:地质出版社,1991,1~230
    [238] 袁正新,钟国芳,谢岩豹.华南地区加里东期造山运动时空分布的新认识.华南地质与矿产,1997,(4):19~25
    [239] 翟永建,周姚秀.华南和华北陆块显生宙的古地磁及构造演化.地球物理学报,1989,32(3):292~307
    [240] 张福勤,谢鸿森,许祖鸣.华南前寒武纪镁铁-超镁铁杂岩的岩石大地构造 格架.见:李继亮主编,东南大陆岩石圈结构与地质演化.北京:冶金工业出版社,1993,163~172
    [241] 张桂林,梁金城.广西龙胜基性超基性岩的变形分解构造及其大地构造意义.桂林冶金地质学院学报,1993,13(4):357~365
    [242] 张桂林,梁金城,何振培,等.广西龙胜非构造侵位的蛇绿岩.大地构造与成矿学,1997,21(2):137~144
    [243] 张桂林.韧性剪切带中S-C(C’)组构的成因及其运动学意义.桂林工学院学报,1996,16(4):338~343
    [244] 张惠民,赵风清,王富福,等.华南地区古地磁研究初步成果及其地质意义.安徽地质,1994b,4(1-2):112~121
    [245] 张惠民,赵风清.论前寒武纪变质岩地磁研究的可行性—以闽北地区的研究结果为例.地质论评,1994c,40(4):312~321
    [246] 张惠民.湘、桂地区元古宙岩石古地磁研究.中国地球物理学会年刊.北京:地震出版社,1994a,333~334
    [247] 张惠民.中国前寒武纪古地磁数据表.地球学报-中国地质科学院院报,1995,(4):441~448
    [248] 张家声.造山后伸展构造研究的最新进展.地学前缘,1995,2(1-2):67~84
    [249] 张进江,郑亚东.造山带伸展构造机制综述.地质科技情报,1996,15(3):26~34
    [250] 张拓夫.康古尔韧性剪切带变形特征及控矿作用.新疆地质,1997,2(1):67~84
    [251] 张文佑.中国大地构造纲要.北京:科学出版社,1959,59~62
    [252] 张文治.全球新元古代超大陆拼合和裂解及中国大陆所处位置古地磁研究进展.前寒武纪研究进展,2000,23(3):79~189
    [253] 张小鸥.伊通地堑上地幔剪切带.地震地质,1995,17(2):167~176
    [254] 张有学,尹安.地球的结构、演化和动力学.北京:高等教育出版社,2002,177~197
    [255] 张元志.雪峰运动在贵州天柱的表现形式.贵州地质,1995,12(1):30~36
    [256] 赵东林,胡能高,安三元.北秦岭二郎坪岩群~(40)Ar/~(39)Ar坪年龄特征及其地质意义.矿物学报,1998,18(1):101~104
    [257] 赵国春,吴福元.热幔柱构造-一种新的大地构造理论.世界地质,1994,13(1):25~34
    [258] 赵振华,熊小林,韩小东.花岗岩稀土四分组效应形成机理探讨—以千里山和巴尔哲花岗岩为例.中国科学(D),1999,29(4):331~338
    [259] 赵子杰,马大铨.桂北前寒武纪花岗岩本洞、三防岩体的研究.宜昌地质 矿产研究所.南岭地质矿产科研报告集(一).武汉:武汉地质学院出版社,1987,1~27
    [260] 郑亚东,杜思清.共轭扭折带夹角的定量解析.国际交流地质学术论文集(2)-为二十七届地质大会撰写.北京:地质出版社,1985,175~179
    [261] 郑亚东.共轭伸展褶劈理夹角的定量解析.地学前缘,1999,6:391~395
    [262] 钟自云,龚安,方积义.广西龙胜蛇绿岩带的地质特征及构造环境.岩石矿物及测试,1983,2(1):1~8
    [263] 周辉,储著银,李继亮,等.西昆仑库地韧性剪切带的~(40)Ar/~(39)Ar年龄.地质科学,2000,35(2):233~239
    [264] 周金城,王孝磊,邱检生,等.桂北中-新元古代镁铁质-超镁铁质岩的岩石地球化学.岩石学报,2003,19(1):9~18
    [265] 朱光,宋传中,王道轩,等.郯庐断裂带走滑时代的~(40)Ar/~(39)Ar年代学研究及其构造意义.中国科学(D辑),2001,31(3):250~256
    [266] 朱日祥,杨振宇,吴汉宁,等.中国主要地块显生宙古地磁视极移曲线与地块运动.中国科学(D辑),1998,28(增刊):1~16
    [267] 朱夏.活动论构造史观.石油实验地质,1991,13(3):201~209
    [268] 邹和平,王建华,丘元禧.广东南澳和莲花山韧性剪切带~(40)Ar/~(39)Ar年龄及地质意义.地球学报,2000,21(4):356~364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700