用户名: 密码: 验证码:
固体地球的环境变化响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气负荷、内陆水负荷、海洋潮汐和非潮汐海洋负荷变化使得地表物质重新分布,从而使地表位移、重力、地倾斜和应变等发生变化,同时也会引起地心、大地水准面和地球自转的变化。环境变化引起的地表垂直位移可达几十mm,对水平位移的影响为垂直位移的1/3~1/10,对重力的间接效应可达几十μgal。在利用现代大地测量技术监测地表构造性运动时,必须将环境负荷效应从观测值中剔除,否则会严重污染测量的结果。同时,环境负荷引起的形变也可用现代空间大地测量和地面重力测量进行探测。
     论文主要研究了固体地球环境变化响应的物理机制和计算方法,编写了相应的计算软件,利用气象数据和卫星测高数据进行了实际计算,对计算结果进行了相关分析,并与GPS测站坐标的时间序列进行比较,对GPS精密测量中的环境负荷改正进行了讨论。本文主要研究成果和结论为:
     (1) 系统地总结了环境负荷变化造成地表形变的计算理论和探测方法。将计算理论归纳为三类:线性模型趋近、球谐函数趋近、格林函数趋近。线性模型趋近是将地球形变归因于当地环境变化,建立局部地区环境负荷变化与形变量关系:球谐函数趋近是将环境负荷进行球谐展开,然后结合负荷勒夫数进行计算;负荷格林函数趋近是将环境荷量与负荷格林函数进行卷积积分,得到测站在环境负荷作用下的形变。其中线性模型趋近方法简单,主要用于计算大气负荷引起的地表垂直位移和重力变化,并且计算精度不高,后两种方法可以计算各种环境负荷变化引起的地表形变,计算精度较高。综述了地表位移、重力变化的探测方法。
     (2) 综述了温度变化引起地壳位移和应变变化的计算方法,编写了相应的计算程序,进行了实例计算。计算结果表明:温度变化引起的地表垂直位移的最大值不超过±0.5mm,应变的最大值为±0.4nstrain。
     (3) 在经典的负荷理论基础上,从运动方程着手,定义了大气引力勒夫数,推导了高阶引力勒夫数、大气引力造成的地表位移、重力、地倾斜、应变等格林函数表达式,编写程序计算了引力勒夫数和大气引力负荷格林函数的理论值。定义了大气压强勒夫数,推导了大气压强格林函数的计算公式,编写程序并计算了大气压强负荷勒夫数和大气压强负荷格林函数。
     (4) 基于理想大气模型,推导了空间大气密度与地面压强的关系,将大气引力格林函数转化为只依赖于地表大气压强的形式,结合大气压强负荷格林函数,得到了大气格林函数的实用计算公式和数值结果。将该数值结果同海洋负荷格林函数进行比较,发现二
Mass above Earth's surface are redistributed due to temporal variations of atmospheric, continental hydrologic and oceanic loading. Mass redistribution causes variation of Earth's surface displacement, gravity, tilt and strain, as well as geocenter, geoid and Earth's rotation. Vertical displacement of Earth's surface due to environmental loading can reach several centimeters, and horizontal displacements have amplitudes of several millimeters with accompanying gravity variation of several tens u gal. These deformations may add noise to geodetic observations, so the effect of environmental variation can not be ignored for modem geodesy. In many instances, the deformation is large enough to be detected with space based geodetic techniques as well as terrestrial gravity observations.This dissertation focuses on physical mechanism and computing method of solid Earth response to environmental variation. Software for computing environmental variation effect is developed. Some cases are investigated using weather and altimetry data, and related analyses are done. The main products and conclusions of this dissertation are:(1)Theory and computing method of environmental effect on Earth's surface are addressed. The computing methods can be divided into three kinds: linear model approach, spherical harmonic function approach and Green's functions approach. Principles of each kind of methods are put forward, advantages and disadvantages of each kind of methods are evaluated. Detection methods of displacement and gravity variation are summarized.(2)Computing method for crust's displacement and strain variation caused by temperature variation are presented, some related software are developed, and some instances have been investigated. From the results, we can see that the maximum value of vertical displacement variation does not exceed 0.5mm and that of strain does not exceed 0.4nstrain.(3)Atmospheric gravitational load Love numbers (AGLLN) are defined and a set of asymptotic equations of AGLLN are put forward. Green's functions of atmospheric gravitational loading, describing the Earth deformation which includes horizontal and vertical displacements, horizontal and vertical accelerations and strain tensor, are derived out by evaluating the properly weighted sums of AGLLN. Atmospheric pressure loads Love numbers (APLLN) are defined and the formulas of Green's functions for pressure are deduced. Some related programs are developed and the numerical values of Green's function are computed using the preliminary reference Earth model (PREM).
    (4)Based on ideal atmospheric model, relationship between atmospheric density fluctuation in the air and pressure fluctuation at the Earth's surface is established. Formula and numerical values of gravitation Green's function only depending on pressure are presented. Together with Green's function for atmospheric pressure, we get the practical form of atmospheric Green's function. There is no observable difference between Green's function of atmospheric loading and the corresponding one of ocean loading. The effects of terrain, temperature variation and atmospheric model are discussed.(5)For computing the quantities describing Earth's deformation caused by atmospheric loading, it needs to be evaluated convolutions of the Green's function with the fluctuant pressure. In practical computation, we always adopt the pressure data at certain grid at certain time interval provided by various organizations, so we can transfer integral operation into operation of sum. The inner zone should be specially treated because the Green's function generally has larger absolute value with smaller angular distance. High-resolution land-sea data base is one of the important factors for the accurate loading estimation, especially for adjacent-sea sites. Details of process and computing flow chart are addressed, and related C++ programs for computing the deformation due to atmospheric loading are developed. Deformation time series of 40 GPS sites due to atmospheric loading, from Jan 1, 1952 to Jul. 6, 2003, are computed using atmospheric pressure data from National Center for Environmental Prediction (NCEP). Inverted barometer (IB) hypothesis and non-inverted barometer (NEB) hypothesis, as the oceanic response to pressure forcing, are investigated. From the results, we can see that the amplitude of vertical displacement due to atmospheric loading can reach ±20mm, the amplitude of horizontal displacement is about ± 5mm, and the amplitude of gravity variation is about ± 50 u gal. The power spectrum, time-frequency distribution, annual period and semi-annual period of the deformation series are analyzed. We have computed differences of deformations for different Green's function numerical results and different land-sea database as well as different atmospheric response models. The admittance factors are computed by least square estimation, and most of results are between -0.1 and -0.8 mm/mbar.(6)Continental water models are presented, and numerical recipes for computing the deformation due to Continental water variation are addressed. The programs for computing the deformation due to snow loading and soil moisture changes have be developed. Displacement and gravitation variation series due to continental water loading are computed using the about 50 years data from NCEP. It is shown that the amplitude of vertical displacement due to snow loading can reach ±8mm, the amplitude of horizontal displacement is about ±2mm, and the amplitude
    of gravity variation is about ±10fj,gal. It also shown that the amplitude of vertical displacement due to soil moist variation can reach rtlOmm, the amplitude of horizontal displacement is about ±3mm, and the amplitude of gravity variation is about ±20figal .The power spectrum, time-frequency distribution ,annual period and semi-annual period of the deformation are analyzed. We have computed differences of deformations for different Green's function numerical results and different land-sea database as well as different data sources.(7)The modern global tide models can be categorized into three groups: hydrodynamical model, empirical model and assimilation model. Main ocean tide models are evaluated, and numerical recipes for computing Earth deformation due to ocean tide loading are addressed. The C++ programs for computing the effect of ocean tide loading are developed, and displacements of 40 sites response to M2, S2, N2, K2, K^,O\, Pi, Qi,MF, MM, and ssa are computed. M2, S2, N3, Ki,Oi and Pi have important effect on Earth's surface , even for island and adjacent-sea sites.(8)Deformation series of 40 sites, due to sea level anomalies of nearly 10 year's Topex/Poseidon and ERS1/2 altimetry data from Centre National d'Etudes Spatiales(CNES), are computed. From the results we can see that the maximum value of vertical displacement due to sea level anomalies can reach ±5mm, and that of horizontal displacement is about ±2mm. From power spectrum analysis, it is shown that annual term is the main period in displacement series. As the trend of sea level rising, The trend is also existed in the displacement series of each site. The trend for horizontal displacement is less than ±0.15mm/yr, and that of vertical displacement is about ±0.35mm/yr.(9)Load moment of atmospheric loading, continental hydrologic loading and sea level anomalies are computed. Potential and vertical displacement, due to environmental variation of every 2 months in 2000, are computed using the theory of Blewitt(2001). It is shown that the potential variation is about l~3gal and the vertical displacement is about lmm.(lO)Geoid variation, which is caused by environmental variation, can be computed by spherical harmonic function approach . Geoid variations, due to environmental variation of Feb. 1, Mar. 29, May 31, Aug. 2, Oct. 4, and Nov. 29 in 2000, are computed. From the results, we can see that maximum value of Geoid variation can reach 25mm.(1 l)Power spectrum and periods of pole motion(PM) and of length of day(LOD) variation, from geodesy and from effect of environmental variation (inverted barometer,wind and continental water), are computed. From the results, we know that the main periods are annual term
    and semi-annual term, and the amplitudes of annual term and semi-annual term are reduced after removing environmental effect.(12)Vertical annual and semi-annual terms of 40 IGS GPS sites are analyzed. The amplitudes of annual and semi-annual terms are deduced after pole tide, ocean tide loading, atmosphere, notidal ocean, snow, and soil wetness corrections. So environmental loading corrections should be added to time series of GPS coordinate.(13)GPS baseline time series of "GNS-JIAN" , "GNS-CTK" and "WUHN-GNS" are computed. The corrections of tide and environmental effect for vertical component of those baselines are investigated. From the results,we know that the corrections of tide and environmental effect should be considered when the length of baseline is much longer and accuracy is required higher.(14)The software SEREV 0.1 (Solid Earth Response to Environmental Variation, Version 0.1) is developed. The Earth's deformation due to environmental effect and tide can be computed using SEREV 0.1. It can compute power spectrum, time-frequency distribution and period. SEREV 0.1 also provide utility for coordinate transferred and data formats changed.
引文
[1] Chao B F, Dehant V, Gross R S, Ray R D, Salstein D A, Watkins M M, and Wilson C R. Space geodesy monitors mass transports in global geophysical fluids. Eos. Trans. AGU, 81(20): 247, 249-250, 2000.
    [2] Dong D, Gross R S, and Dickey J O. Seasonal variations of the Earth's the gravitational feild: an analysis of atmospheric pressure, oceanic tidal, and surfeace water excitation. Geophys. Res. Lett. , 23(7): 725-728, 1996.
    [3] Van Dam T M. Atmospheric loading response the solid Earthand oceans. PhD thesis, University of Colorado at Boulder, 1991.
    [4] 徐绍铨,吴祖仰.大地测量学.武汉:武汉测绘科技大学,1996.
    [5] 胡明城,鲁福.现代大地测量学(上册).北京:测绘出版社,1993.
    [6] 胡明城,鲁福.现代大地测量学(下册).北京:测绘出版社,1995.
    [7] 胡明城.跨世纪的大地测量.北京:国家测绘科技信息研究所,1997.
    [8] Chao B F. Geodesy is not just for static measurements any more. Eos. Trans. AGU, 84(16): 145, 150, 2003.
    [9] Van Dam T M and Herring T A. Detection of atmospheric pressure loading using very long baseline interferometry measurements. J. Geophys. Res., 99(B3): 4505-4517, 1994.
    [10] Van Dam T M, Blewitt G, and Heflin M B. Atmospheric pressure loading effects on global positioning system coordinate deteminations. J. Geophys. Res., 99(B12): 23939-23950, 1994.
    [11] Schwiderski E W. On charting global ocean tides. Rev. Geophys. Space Phys., 18: 243-268, 1980.
    [12] Eanes R and Bettadpur S. The CSR3.0 global ocean tide model: Diurnal and semi-diurnal ocean tides from TOPEX/POSEIDN altimetry. Univ. of Tex. Cent. for Space Res., Austin, Texas, 1996.
    [13] Marsumoto K, Takanezawa T, and Matsatsugu O. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around japen. J. Oceanogr., 56: 567-581, 2000.
    [14] Agnew D C. Spotl: Some program for ocean-tide loading. SIO Ref Ser., 8: 1-35, 1996.
    [15] Egbert G and. Deformation of the Earthby surface loads. Rev. Geophys. Space Phys., 10: 761-797, 1972.
    [16] Darwin G H. On variations in the vertical due to elasticity of the Earth's surface. Phil. Mag. ser., 4(14): 409-427, 1882.
    [17] Sun H P. Static deformation and gravity changes at the Earth's surface due to the atmosheric pressure. PhD thesis, Belgium: Cath. Univ. Louvain, 1995.
    [18] Warburton P R. The influence of barometric pressure variations on gravity. Geophys. J. R. Astron. Soc., 48: 281-292, 1977.
    [19] Caputo M. Deformation of a layered Earthby an axially symmetric surface mass distribution. J Geophys. Res., 66(5): 1479-1483, 1961.
    [20] Rabbel W and Zschau J. Static deformations and gravity changes at the Earth's surface due to atmospheric loading. J. Geophys., 56: 81-99, 1985.
    [21] Sun H P, Ducarme B, and Dehant. Effect of the atmosphric pressure on surface displacement. J Geod., 70: 131-139, 1995.
    [22] 孙和平,罗少聪.大气重力信号的理论计算及其检测.地球物理学报,41:634-641,1998.
    [23] McCarthy D D. IERS technical note 21: IERS conventions(1996). Technical report, U. S. Naval Observatory, July 1996.
    [24] Longman I M. A green's function for determining the deformation of the Earthunder surface mass loads, 1. theory. J, Geophys. Res., 67(2): 845-850, 1962.
    [25] Longman I M. A green's function for determining the deformation of the Earthunder surface mass loads, 2. computation and numerical results. J. Geophys. Res., 68(2): 485-496, 1963.
    [26] Longrnan I M. Computation of love numbers and load deformation coefficients for a model Earth. Geophys. J. R. Astron. Soc., 11: 133-137, 1966.
    [27] Longman I M. On the stability of spherical gravitating compressible liquid planet without spin. Geophys. J. R. Astron. Soc., 42: 621-635, 1975.
    [28] Molodensky S M. Relation between love numbers and load factors, Izv. Acad. Sci. USSR. Earth. Phys., 13: 147-149, 1977.
    [29] 汪汉胜,许厚泽,李国营.SNERI地球模型负荷勒夫数数值计算的新进展.地球物理学报,39(增刊):182-189,1996.
    [30] 郭俊义.负荷勒夫数渐近表达式的直接证明.地球物理学报,43(4):515-521,2000.
    [31] Guo J Y, Ning J S, and Deng H T. More accurate asmptotic values and precise copmputa- tion of the load love numbers. 2002.
    [32] Cazenave A and Remy F et al. Global ocean mass variation, continental hydrology and the mass balance of Antarticaice sheet at seasonal time scale. Geophys. Res. Lett. , 27:3 755-3 758, 2000.
    [33] Mangialotti S, Cazenave A, Soudarin L, and Creux J F. Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy. J. Geophys. Res., 106:4 277-4 291,2001.
    [34] Cretaux J F, Soudarin L, Davidson F J M, Gennero M C, Berge-Nguyen M, and Cazenave A. Seasonal and interannual geocenter motion from FFTand DOR- RISmeasurements: Comparson with surface loading data. J. Geophys. Res. , 107(B 12):doi: 10.2374/2002JB001820, 2002.
    [35] Boy J P and Chao B F. Precise evaluation of atmospheric loading effects on Earth's time- variable gravity field. 2003(unpublished).
    [36] Blewitt G, Lavallee D, Clarke P, and Nurutdinov K. A new global mode of Earthdeforma-tion: seasonal cycle detected. Science, 294:2 342-2 345, 2001.
    [37] Lavallee D and Blewitt G. Degree-1 Earthdeformation from very long baseline interfer- ometry measurements. Geophys. Res. Lett. , 29(20):doi:10.1029/2002GL015883, 2003.
    [38] Blewitt G and Lavallee D. Effect of annual signals on geodetic velocity. J. Geophys. Res. , 107(B7):doi: 10.1029/2001JB000570, 2002.
    [39] Blewitt G. Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res. , 108(B2):doi:10.1029/2002JB002082, 2003.
    [40] Blewitt G and Clarke P. Inversion of Earth' s changing shape to weigh sea level in static equilibrium with surface mass redistribution. J. Geophys. Res. , 108:DOI: 10.1029/2002JB002290, 2003.
    [41] Blewitt G and Lavallee D. Correction to effect of annual signals on geodetic velocity by geoffrey blewitt and david lavallee. J. Geophys. Res. , 108(Bl):doi:10.1029/2002JB002297,2003.
    [42] Slichter L B and Caputo M. Deformation of an Earthmodel by surface pressures. J. Geophys. Res. , 65(12):4 151-4 156, 1960.
    [43] Caputo M. Tables for deformation of an Earthmodel by surface mass distribution. J. Geophys. Res. , 67(4): 1 611-1 616, 1962.
    [44] Kuo J T. Static response of a multilayered medium under inclined surface loads. J. Geophys. Res., 74(12): 3195-3207, 1969.
    [45] Farrell W E. Deformation of the Earthby surface loads. Rev. Geophys. Space Phys., 10: 761-797, 1972.
    [46] Merriam J B. Transverse stress green's fuctions. J. Geophys. Res., 910314): 13903-13913, 1986.
    [47] Merriam J B. Atmospheric pressure and gravity. Geophys. J. Int., 109: 488-500, 1992.
    [48] 孙和平.大气重力格林函数.科学通报,42(15):1640—1646,1997.
    [49] Mitrovica J X, Davis J L, and Shapiro I I. spectral formalism for computing three-dimensional deformations due to surface loads, 1. theory. J. Geophys. Res., 99(B4): 7057-7073, 1994.
    [50] Mitrovica J X, Davis J L, and Shapiro I I. spectral formalism for computing three-dimensional deformations due to surface loads, 2. present-day glacial isostatic adjustment. J. Geophys. Res., 99(B4): 7075-7101, 1994.
    [51] Mitrovica J X and Davis J L. Determination of tidal h love number parameters in the diurnal band using an extensive VLBI data set. Geophys. Res. Lett., 21(8): 705-708, 1994.
    [52] Tromp J and Mitrovica J X. Surface loading of a viscoelastic Earth-ⅰ, general theory. Geophys. J. Int., 137: 847-855, 1999.
    [53] Tromp J and Mitrovica J X. Surface loading of a viscoelastic Earth-ⅱ, spherical models. Geophys. J. Int., 137: 856-872, 1999.
    [54] Tromp J and Mitrovica J X. Surface loading of a viscoelastic planet-ⅲ, aspherieal models. Geophys. J. Int., 140: 425-411, 2000.
    [55] Meur E L and Hindmarsh R C A. A comparison of two spectral approaches for computing the Earthresponse to surface loads. Geophys. J. Int., 141: 282-298, 2000.
    [56] Meur E L and Huybrechts P. A model computation of the temporal changes of surface gravity and geodial signal induced by the evolving Greenlandice sheet. Geophys. J. Int., 145: 835-849, 2001.
    [57] 罗少聪.大气负荷响应计算误差估计模型.武汉大学学报.信息科学版,26(3):217-221,2001.
    [58] 罗少聪,孙和平,徐建桥.大气负荷引起的重力与位移变化理论计算的精度估计.测绘学报,30(4):209-315,2001.
    [59] 李英冰,黄勇,郭俊义,徐绍铨.大气引力负荷格林函数.武汉大学学报.信息科学版,28(4):435-439,2003.
    [60] 黄勇,李英冰,郭俊义.大气负荷格林函数的压强效应.武汉大学学报.信息科学版,28(5):577-580,2003.
    [61] Petrov L and Boy J-P. Study of the atmospheric loading signal in vlbi observations. J. Geophys. Res., 2003(submitted).
    [62] Sorrels G G and McDonald J Aet al. Earthrnotion caused by local atmospheric pressure changes. Geophys. J R. Astron. Soc., 26: 83-98, 1971.
    [63] Wunsch C. Bermuda sea level in relation to tides, wearther and baroclinic fluctuations. Rev. Geophys., 10: 1-49, 1972.
    [64] Wunsch C and Stammer D. Atmospheric loading and the oceanic inverted barometer effect. Rev. Geophys., 35(1): 79-107, 1997.
    [65] Stolz A and Larden D R. Seasonal displacement and deformation of the Earthby the atmosphere. J. Geophys. Res., 84(B11): 6185-6194, 1979.
    [66] Whittake L M and Horn L H. Geographical and seaonal distribution of north american cycogenesis, 1958-1977. Monthly Weather Rev., 109: 2312-2322, 1981.
    [67] Merriam J B. An ephemeris for gravity tide predictions at the nanogal level. Geophys. J. Int., 108: 415-422, 1992.
    [68] Merriam J B. The nearly diurnal free wobble resonance in gravity measured at cantley, quebec. Geophys. J. Int., 119: 369-380, 1994.
    [69] Merriam J B. Nonlinear tides observed with the superconducting gravimeter. Geophys. J. Int., 123: 529-540, 1995.
    [70] Merriam J B. The atmospheric pressure correctin in gravity at cantley quebec. In Hsu H T, editor, Proceedings of the 12th international symposium on Earthtides, pages 161-168. Beijing: Sicence Press, 1995.
    [71] Merriam J B. The response method applied to the analysis of superconducting gravimeter data. Phys. Earth. Planet. Inter., 121: 289-299, 2000.
    [72] Spratt R S. Modelling the effect of atmospheric pressure variations on gravity. Geophys. J. R. Astron. Soc., 71: 173-186, 1982.
    [73] Muller T and Zurn W. Observation of gravity changes during the passage of cold fronts. J. Geophys., 53: 155-162, 1983.
    [74] Van Dam T M and Wahr J. Displacements of the Earth's surface due to atmospheric loading: effects on gravity and baseline measurements. J. Geophys. Res., 92(B2):1 281-1 286, 1987.
    [75] Van Dam T M and Wahr J. The atmospheric load response of the ocean determined using geosat altimeter data. Geophys. J. Int., 113:1-16, 1993.
    [76] Van Dam T M, Wahr J, and Chao Y et al. Predictions of crustal deformation and of geoid and sea-level variability caused by oceanic and atmospheric loading. Geophys. J. Int., 129:507-517, 1997.
    [77] Van Dam T M and Wahr J. Modeling environment loading effect: a review. Phys. Chem. Earth., 23(9): 1 077-1 087, 1998.
    [78] Van Dam T M and Francis 0. Two years of continous mesurement of nortidal variations of gravity in boulder. Geophys. Res. Lett. , 25:393-396, 1998.
    [79] Van Dam T M and Wahr J. Using GPS and gravity to infer ice mass changes in Greenland. Eos. Trans. AGU, 81(37):421, 426-427, 2000.
    [80] Van Dam T M, Wahr J, and Milly P C D et al. Crustal displacements due to continental water loading. Geophys. Res. Lett. , 28(4):651-654, 2001.
    [81] Van Dam T M, Plag H P, Francis O, and Geout P. GGFC speical bureau for loading: current status and plans. 2002(unpublished).
    [82] Plag H P and Van Dam T M. Solid Earthdeforamtion and gravity changes due to surface loading: status and scientific problems. 2002(unpublished).
    [83] Bouille F, Cazenave A, Lemoine J M, and Cretaux J-F. motion from the DORRISs- pace system and laser data to the lageos satellites: comparison with surface loading data. Geophys. J. Int., 143:78-82, 2000.
    [84] Boy J P, Hinderer J, and Gegout P. Global atmospheric loading and gravity. Phys. Earth. Planet. Inter. , 109:161-177, 1998.
    [85] Boy J P, Gegout P, and Hinderer J. Reduction of surface gravity data from global atmospheric pressure loading. Geophys. J. Int., 149:534 - 545, 2002.
    [86] Chao B F, O'Connor W P, Chang A T, Hall D K, and Foster J. Snow load effect on Earth's rotation and gravitational field: 1979-1985. J. Geophys. Res., 92(B9):9 415-9 422, 1987.
    [87] Johnson T J, Wilson C R, and Chao B F. Notidal oceanic contributions to gravitational field changes: Predictions of the parallel ocean climate model. J. Geophys. Res. , 106(B6):11 315-11 334,2001.
    [88] Johnson T J, Wilson C R, and Chao B F. Oceanic angular momentum variability estimated for the parallel ocean climate model, 1988-1998. J. Geophys. Res. , 106(B6):11 315- 11 334,2001.
    [89] Heki K. Seasonal modulation of interseismic strain buildup in northeastern Japan driven by snow loads, science, 293:89-92, 2001.
    [90] Heki K. Snow load and seasonal variation of earthquake occurrence in Japan . Earth. Planet. Sci. Lett. , 207:159-164, 2003.
    [91] Wang H. Surface vertical displacements and level plane changes in the front reservoir area caused by filling the three gorges reservoir. J. Geophys. Res. , 105(B6):13 211-13 220, 2000.
    [92] Wang H, Hsu H T, and Zhu Y Z. Prediction of surface horizontal displacements, and gravity and tilt changes caused by filling the three gorges reservoir. J. Geod., 76:105-114, 2002.
    [93] Dong D N, Fang P, Bock Y, Cheng M K, and Miyazaki. Anatomy of apparent seaonal variations from GPS derived site position time series. J. Geophys. Res. , 107(B4):10.1029/2001JB000573,2002.
    [94] Chao B F and O'Connor W P. Global surface-water-induced seasonal variations in the Earth's rotation and gravitational field. Geophys. J., 94:263-270, 1988.
    [95] Chao B F and Au A Y. Atmospheric excitation of the warm's annual wobble: 1980-1988. J. Geophys. Res. , 96(B4):6 577-6582, 1991.
    [96] Chao B F and Au A Y. Temporal variation of the Earth's low-degree zonal gravitational field caused by atmospheric mass redistribution: 1980-1988. J. Geophys. Res. , 96(B4):6 569-6575,1991.
    [97] Agnew D C. Nloadf: A program for computing ocean-tide loading. J. Geophys. Res. , 102(B3):5 109-5 110,1997.
    [98] Marsumoto K, Sato T, Takanezawa T, and Matsatsugu O. GOTIC2: A program for computation of oceanic tidal loading effect. J. Geod. Soc. Japan, 47(l):243-248, 2001.
    [99] Schenewerk H G. A parametrized solid Earthtide model and ocean tide loading effects for globel geodetic baseline measurements. Geophys. J. Int., 106:677-694, 1991.
    [100] Schenewerk H G, van Dam T M, and Weston N et al. A detailed analysis of tropospheric effects on geodetic observations at tmgo. Phys. Chem. Earth, 23(1): 103-106, 1998.
    [101] Schenewerk H G and Webb F H. Ocean tide loading and diurnal tidal motion of the solid Earthcentre. Technical report, 1998.
    [102] Schenewerk H G, Johansson J M, Koivula H, van Dam T, and Davis J L. Vertical crustal motion observed in the bifrost project. J. Geodyn., 35: 425-441, 2003.
    [103] Khan S A and Schemeck H G. The m_2 ocean tide loading wave in Alaska: vertical and horizontal displacements, modelled and observed. J. Geod., 77: 117-127, 2003.
    [104] Vey S, Calais M, Florsch N, Woppelman G, Hinderer J, Amalvict M, Lalancette M F, Simon B, Duquerme F, and Haas J S. GPS measurements of ocean loading and its impact on zenith tropospheric delay estimates: a case study in brittany, france. J. Geod., 76: 417-427, 2002.
    [105] Wu X P, Argus D F, Heflin M B, Ivins E R, and Webb F H. Site distribution and aliasing effects in the inversion for load coefficients and geocenter motion from GPS data. Geophys. Res. Lett., 29(24): doi: 10.1029/2002GL016324, 2002.
    [106] Wu X P, Heflin M B, Ivins E R, Argus D F, and Webb F H. Large-scale global surface mass variations inferred from GPS measurements of load-induced deformation. Geophys. Res. Lett., 30(14): doi: 10.1029/2003GL017546, 2003.
    [107] 张飞鹏,程宗颐,黄珹,董大南,程明康.利用GPS监测中国地壳的垂向季节性变化.科学通报,47(18):1370-1377,2003.
    [108] MacMillian D S and Gipson J M. Atmospheric pressure loading parameters from very long baseline interferometry observations. J. Geophys. Res., 99(B9): 18081-18088, 1994.
    [109] Petrov L and Ma C. Study of harmonic site position variation determined by vlbi. J. Geophys. Res., 108(B4): doi: 10.1029/2002JB001801, 2003.
    [110] Velicogna I, Wahr J, and DoolV D H. Can surface pressure be used to removed atmospheric contributions from GRACE data with sufficient accuracy to recover hydrological signals? J. Geophys. Res., 106038): 16415-16434, 2001.
    [111] Amoruso A, Crescentini L, and Scarpa R. Removing tidal and atmosperic effects from Earthdeformation mesurements. Geophys. J. Int., 140: 493-499, 2000.
    [112] Latynina L A and Vasil'ev I M. The Earthsurface deformations caused by air pressure variations. J. Geodyn., 35: 541-551, 2003.
    [113] Smylie D E and Mansinha L. The elasticity theory of dislocation in real Earthmodels and changes in the rotation of the Earth. Geophys. J. R. Astron. Soc., 23: 329-354, 1971.
    [114] Zharov V E and Gambis D. Atmospheric tides and rotation of the Earth. J. Geod., 70: 321-326, 1996.
    [115] Chao B F, Merriam J M, and Tamura Y. Geophysical analysis of zonal tidal signals in length of day. Geophys. J. Int., 122: 765-775, 1995.
    [116] Wahr J M. Body tides on an elliptical, rotating, elastic and oceaanless Earth. Geophys. J. R. Astron. Soc. , 64:677-703, 1982.
    [117] Wahr J M. The effect of the atmosphere and oceans on the Earth's wobble: I, theory. Geophys. J. R. Astron. Soc. , 70:349-372, 1982.
    [118] Wahr J M. Deformation induced by polar motion. J. Geophys. Res. , 90:9 363-9 368, 1985.
    [119] Chao B F and Eanes R. Global grvitional changes due to atmospheric mass redistribution as observed by lageos nodal residual. Geophys. J. Int., 122:755-764, 1995.
    [ 120] Chao B F and Gross R S. Changes in the Earth's rotational energy induced by earth quakes. Geophys. J. Int., 122:776-783, 1995.
    [121] Dong D, Dickey J O, Chao Y, and Cheng M K. Geocenter variations caused by atmosphere, ocean and surface ground water. Geophys. Res. Lett. , 24:1 867-1 870, 1997.
    [122] Schenewerk H G and Haas R. Effect of horizontal displacements due to ocean tide loading on the determintation of polar motion and utl. Geophys. Res. Lett. , 26(4):501 - 504, 1999.
    [123] Rothacher M, Beutler G, and Hefty J. High-frequency variations in Earthrotation from global positioning sytem data. J. Geophys. Res. , 106(B7):13 711-13 738, 2001.
    [124] Jochmann H and Felsmann E. Evidence and cause of climate cycles in polar motion. J. Geod. ,74:711-719,2001.
    [125] Swenson S and Wahr J. Eastimated effects of the vertical structure of atmospheric mass on the time-variable geoid. J. Geophys. Res. , 107(B9):10.1209/2000JB000024, 2002.
    [126] Swenson S and Wahr J. Methods for inferring regional suface-mass anomlies form gravity recovery and climate experiment (GRACE ) measurements of time-variable gravity. J. Geophys. Res. , 107(B9):10.1209/2001JB000576, 2002.
    [127] Balmino G, Lambeck K, and Kaula W M. A spherical harmonic analysis of Earth's topography. J. Geophys. Res., 78:478-481, 1973.
    [128] Dahlen F A. On the static deformation of an Earthmodel with a fluid core. Geophys. J. R. Astron. Soc. , 36:461-485, 1976.
    [129] Chinnery M A. The static deformation of an Earthwith a fluid core: A physical aproach. Geophys. J. R. Astron. Soc. , 42:461-475,1975.
    [130] Zishka K M and Smith P J. The climatology of cyclones and anti-cyclones over north america and surrounding ocean environs for janduary and july. Monthly Weather Rev., 108:387-401, 1980.
    [131] 方俊.固体潮.北京:科学出版社,1984.
    [132] Wilhelm H. Spheroidal and torsional global response functions. J Geophys., 59: 16-22, 1986.
    [133] Ma C and Sauber J M. Measurement of horizontal motions in Alaskausing very long basline interferometry. J. Geophys. Res., 95: 21991-22011, 1990.
    [134] Larson K M and Agnew D C. Application of the global positioning system to crustal deformation measurement, ⅰ. precision and accuracy. J. Geophys. Res., 96: 16547-16565, 1991.
    [135] Torge W,(徐菊生等译).重力测量学.北京:地震出版社,1993.
    [136] Maruyama T. Fuild pressure responses of a water-staurated porous elastic multi-layered half-space to water pumping and atmospheric loading. J Phys. Earth., 42: 331-375, 1994.
    [137] Wolf D. Lame's problem of gravitational viscoelasticity: the isochemical, incompressible planet. Geophys. J. Int., 116: 321-348, 1994.
    [138] Mathews P M, Buffett B A, and Shapiro I I. Love number for rotating spheroidal Earth: New definitions and numerical values. Geophys. Res. Lett., 22(5): 579-582, 1995.
    [139] Larson K M. Crustal deformation. Rev. Geophys., 33(1): 371, 1995.
    [140] Woodworth P L, Windleand S A, and Vassie J M. Deparures from the local inverse barometer model at periods of 5 days in the center south atlantic. J. Geophys. Res., 100: 18281-18290, 1995.
    [141] Massonnet D and Feigl K L. Radar interferometry and it application to changes in the Earth's surface. Rev. Geophys., 36: 441-500, 1998.
    [142] Cazenave A, Mercier F, Bouille F, and Lemoine J M. Global-scale interactions between the solid Earthand its fluid envelopes at the seasonal time scale. Earth. Planet. Sci. Lett., 171: 549-559, 1999.
    [143] Larson K M and van Dam T. Measuring postglacial rebound with GPS and absolute gravity. Geophys. Res. Lett., 27(23): 3925-3928, 2000.
    [144] WolfD and Kaufmarm G. Effects due to compressional and composition on load-induced maxwell viscoelastic perturbations. Geophys. J. Int., 140: 51-62, 2000.
    [145] Yseboodt M d V, Olivier C, and Toshio M et al. Atmospheric excitation of the Earth's nutation: Comparison of different atmospheric models. J. Geophys. Res., 107(2), 2002.
    [146] Rabbel W and Schuh H. The influence of atmospheric loading on vlbi-experiments. J. Geophys., 59: 164-170, 1986.
    [147] Weber R, Bruyninx C, Scherneck H G, and et al. GPS/glonass and tidal effects. Bull Inf. Marees Terr., 134: 10559-10566, 2001.
    [148] Pagiatakis S D. The response of a realistic Earthto ocean tide loading. Geophys. J. Int., 103: 649-669, 1990.
    [149] Dziewonski A M and Anderson D L. Preliminary reference Earthmodel. Phys. Earth. Planet. Inter, 25: 297-356, 1981.
    [150] Nakada M. Implications of a non-adiabatic density gradient for the Earth's viscoelastic response to surface loading. Geophys. J. Int., 137(3): 663-674, 1999.
    [151] Nakibogiu S M and Lambeck K. A study of the Earth's response to surface loading with application to lake bonneville. Geophys. J. R. Astron. Soc., 70: 577-620, 1982.
    [152] Peltier W R. glacial-isostatic adjustment-ⅰ: the forward problem. Geophys. J. R. Astron. Soc., 46: 605-646, 1976.
    [153] Peltier W R. glacial-isostatic adjustment-ⅰ: the inverse problem. Geophys. J. R. Astron. Soc., 46: 669-705, 1976.
    [154] Peltier W R. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-Earthgeophysics. Rev. Geophys., 36(4): 603-689, 1998.
    [155] Peltier W R. Global sea level rise and glacial isostatic adjustment. Global and Planetary Change, 20: 93-123, 1999.
    [156] 萧耐园,夏一飞,成灼.由PREM地球模型计算的洛夫数.测绘学报,27(3):246-251,1998.
    [157] 张捍卫,郑勇,刘长建.Love数的当代理论和新技术分析.地球物理学进展,14(4):49-57,1999.
    [158] 郭俊义.地球物理学基础.北京:测绘出版社,2001.
    [159] Altamimi Z, Sillard P, and Boucher C. Itrf2000: a new release of the international terrestrial reference frame for Earthscience applications. J. Geophys. Res., 107(B10): doi: 10.1029/2001JB000561, 2002.
    [160] 徐绍铨,张华海,杨志强,王泽民.GPS测量原理及应用.武汉:武汉测绘科技大学,1998.
    [161] Niebauer T M. Correcting gravity measurements for the effect of local air pressure. J. Geophys. Res., 93(B7): 7989-7991, 1988.
    [162] Warburton R J and Goodking J M. Gravity-tide spectrum between one and four cycles per day. Geophys. J. R. Astron. Soc., 52: 117-136, 1978.
    [163] McCarthy D D. IERS technical note 2?: IERS conventions(2003). Technical report, U. S. Naval Observatory, May 2003.
    [164] 海斯卡涅W A,莫里兹H,(卢福康等译).物理大地测量学.北京:测绘出版社,1979.
    [165] 莫里兹H.高等物理大地测量学.北京:测绘出版社,1984.
    [166] Velicogna I and Wahr J. A method for separating antarctic postglacial rebound and ice mass balance using future icesat geoscience laser altimeter system, gravity recovery and climate experiment, and GPS satellite data. J. Geophys. Res., 107(B10): doi: 10.1029/2001JB000708, 2002.
    [167] 郭俊义.物理大地测量学基础.武汉:武汉测绘科技大学出版社,1994.
    [168] Heiskanen W A and Moritz H. Physical geodesy. San Franciso: Freeman W H, 1967.
    [169] Romagnoli C, Zerbini S, Lago L, Richter B, Simon D, Domenichini F, Elmi C, and Ghirotti M. Influence of soil consolidation and thermal expansion effects on height and gravity variations. J. Geodyn., 35: 521-539, 2003.
    [170] Bevis M S and Businger T A et al. GPS meteorology: romote senseing of atmospheric water vpor using the global positioning system. Geophys. J. Int., 97: 15787-15801, 1992.
    [171] Bock Y and. Nikolaidis R M et al. Instantanrous geodetic positioning at medium distances with the gloabl positioning systems. J. Geophys. Res., 105: 28223-28253, 2000.
    [172] Zumberge J F and Heflin M B et al. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res., 102(B3): 5005-5017, 1997.
    [173] 孙文科.低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场.大地测量与地球动力学,22(1):92-100,2002.
    [174] Wahr J. Time variability of the Earth's gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res., 103(B12): 30205-30230, 1998.
    [175] Guo J Y. Chebyshev Collocation Method with Applications in Geophysics-Principle and Programs. Wuhan: Press of the Wuhan Technical University of Surveying and Mapping, 2001.
    [176] 黄捷.电波大气折射误差修正.北京:国防工业出版社,1999.
    [177] 熊年禄,唐存琛,李行健.电离层物理概论.武汉:武汉大学出版社,1999.
    [178] Fels S B. Analytic representations of standard atmosphere temperature profiles. J. Atmos. Sci, 43(2): 219-221, 1986.
    [179] Ge SJ and Shum C K. GPS radio occultation-a new data source for improvement of antarctic pressure field. 2002.
    [180] Forbes J M. Atmospheric tides 1. model description and results for the solar diurnal component. J. Geophys. Res., 87(A7): 5222-5240, 1982.
    [181] Forbes J M. Atmospheric tides 2. the solar and lunar semidiumal components. J. Geophys. Res., 87(A7): 5241-5252, 1982.
    [182] Li J. A formula for computing the gravity disturbance from the second radial derivative of the disturbing potential. J. Geod., 76(4): 226-231, 2002.
    [183] 科恩L(白居宪译).时-频分析:理论与应用.西安:西安交通大学出版社,1998.
    [184] 李英冰,徐绍铨,张永军,张小红.谱分析在GPS自动化监测系统中的应用研究.武汉大学学报.信息科学版,26(4):343-348,2001.
    [185] Nokolaidis R. Observation of geodetic and seimic deformation with the Global Positioning Sytem. PhD thesis, University of California, San Diego, 2002.
    [186] 武汉大学测绘学院测量平差学科组.误差理论与测量平差基础.武汉:武汉大学出版社,2003.
    [187] Milly P C D and Shmakin A B. Global modeling of land water and energy balances, part ⅰ: the land dynamics(lad) model. J. Hydrometer., 3: 283-299, 2002.
    [188] Milly P C D and Shmakin A B. Global modeling of land water and energy balances, part ⅱ: land-characteristic contributions to spatial variability. J. Hydrometer., 3: 301-310, 2002.
    [189] Shmakin A B, Milly P C D, and Dunne K A. Global modeling of land water and energy balances, part ⅲ: Interannual variability. J. Hydrometer., 3: 311-321, 2002.
    [190] Huang J, Van de Dool H, and Georgakakos K P. Analysis of model-calculated soil moisture over the united states(1931-93) and application to long-ranges temperature forecast. J. Climate, 9(8): 1350-1362, 1996.
    [191] Rignot E and Jacobs S S. Rapid bottom melting widespread near antarctic ice sheet grounding lines. Science, 296: 2020-2023, 2002.
    [192] Rignot E and Thomas R H. Mass balance of polar ice sheets. Science, 297: 1502-1506, 2002.
    [193] Wingham D J, Ridout A J, Scharroo R, Arthem R J, and Shum C K. Antarctic elevation change from 1992 to 1996. Science, 283: 456-458, 1998.
    [194] Krabill W, Frederick E, Manizade S, Martin C, Sonntag J, Swift R, Thomas R, Wright W, and Yungel J. Rapid thinning of parts of the southern Greenlandice sheet. Science, 283: 1522-1524, 1999.
    [195] Shum C K, Woodworth P L, Andersen O B, and et al. Accuracy assessment of recent ocean tide models. J. Geophys. Res., 102(C11): 15173-25194, 1997.
    [196] Ponte R M. Variability in homogeneous global ocean foced by barometric prussue. Dym. Atmos. Oceans., 18: 209-234, 1993.
    [197] Ponte R M. Understanding the relation bertween wind-and pressure-driven sea level variablity. J. Geophys. Res., 99: 8033-8039, 1994.
    [198] Hoar T J and Wilson C R. Geosat observations of sea level response to barometeric pressure foceing. Geophys. Res. Lett., 21(B3): 2515-2518, 1994.
    [199] Fu L L and Philos G. Determining the response of sea level and barometric pressure forcing using topex/poseidon data. J. Geophys. Res., 99: 24633-24642, 1994.
    [200] Ponte R M Gaspar P. Relation between sea level and barometric pressure determined from altimeter data and model simulations. J Geophys. Res., 102: 961-967, 1997.
    [201] Hayes S P and Schumacher J C. Description of wind, current, and bottom pressure variations on the continental shelf in the north east gulf of alaska from february to may. J. Geophys. Res., 81: 6411-6419, 1976.
    [202] Chao Y and Fu L L. A compareison between the TOPEX/POSEIDON data and a global ocean circulation model during 1992-1993. J. Geophys. Res., 100(C12): 24965-24976, 1995.
    [203] Dickman S R. Theoretical investigation of oceanic inverted barometer response. J. Geophys. Res., 93: 14941-14946, 1988.
    [204] 张捍卫,郑勇,赵方泉.海洋负荷潮汐对测站位移影响的理论研究.大地测量与地球动力学,23(1):69-73,2003.
    [205] 郑祎,伍吉仓,王解先,刘妙龙,顾国华.海潮模型和格林函数对海潮位移改正的影响.大地测量与地球动力学,22(4):71-76,2002.
    [206] Stewart R H. Introduction to physical oceanography. Department of Oceanography Texas A & M University, 2002.
    [207] 暴景阳.基于卫星测高数据的潮汐分析理论与方法研究.PhD thesis,武汉大学,10 2002.
    [208] Eanes R J. Diurnal and semidiumal tides from topex/poseidon altimetry. Eos. Trans. AGU, 75(16): 108, 1994.
    [209] Baker T F and Bos S. Validating earth and ocean t.
    [210] Boy J P, Llubes M, Hinderer J, and Florsch N. A comparison of tidal ocean loading models using superconducting gravimeter data. J. Geophys. Res., 108(B4): doi: 10.1029/2002JB002050, 2003.
    [211] Khan S A and Tschering C C. Determination of the semi-diurnal ocean tide loading constituents using GPS in Alaska. Geophys. Res. Lett., 28(11): 2249-2253, 2001.
    [212] 董晓军,黄城.海洋卫星测高技术和海洋地形试验TOPEX卫星计划.地球科学进展,12(6):528-534,1997.
    [213] 翟国君,黄漠涛,谢锡君等.卫星测高数据处理的理论与方法.北京:测绘出版社,2000.
    [214] Kroner C and Jentzsch G. Comparson of different barmetric pressure reductions for gravity data and resulting consequences. Phys. Earth. Planet. Inter., 115: 205-218, 1999.
    [215] Levine J, Harrison J C, and Dewhust W. Gravity tide mesurements with a feeedback gravity meter. J. Geophys. Res., 91: 12835-12841, 1986.
    [216] Kumar P and Eft F G. Wavelet analysis for geophysical applications. Rev. Geophys., 35(4): 385-412, 1997.
    [217] Kohl M L and Levine J. Measurement and interpretation of tidal tilts in a small array. J. Geophys. Res., 100(B3): 3929-3941, 1995.
    [218] Goad C C. Gravimetric tidal loading computed from integrated green's functions. J. Geophys. Res., 85: 2679-2683, 1980.
    [219] Cheng M K and Tapley B D. Seasonal variations in low-degree zonal harmonics of the Earth's gravity field from satellite laser ranging observations. J. Geophys. Res., 104: 2667-2682, 1999.
    [220] Crossley D J and Hinderer J Jensen O G. Effective barometric admittance and gravity residuals. Phys. Earth. Planet. Inter., 90: 221-241, 1995.
    [221] Smith D A. Computing components of the gravity field induced by distant topographic masses and condensed masses over the entire Earthusing the 1-d FFTapproach. J. Geod., 76: 150-168, DOI 10.1007/s00190-001-0227-4, 2002.
    [222] Viron O, Ponte R M, and Dehant V. Indirect effect of atmospheric through the oceans on the Earthnutation using the torque approach. J. Geophys. Res., 106(B5): 8841-8851, 2001.
    [223] Mao A C, Harrison G A, and Doxon T H. Noise in GPS coordinate time series. J. Geophys. Res. , 104:2 797-2 816, 1999.
    [224] Davis J L and Prescott W H et al. Assessmentof global positioning system mearsurements for studies of crustal deformation. J. Geophys. Res., 94:13 635-13 650, 1989.
    [225] Chen G and Herring T H. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res. , 102:20 489-20 502, 1997.
    [226] Sun W and Sjoberg L E. Gravitational potential changes of a spherically symmetric Earth-model caused by a surface load. Geophys. J. Int., 137(2):499-468, 1999.
    [227] Takeuchi H and Saito M. Statical deformations and free oscillations of a model Earth. J. Geophys. Res. , 67(3): 1 141-1 154,1962.
    [228] Trenberth K E. Seasonal variations in global sea level pressure and the total mass of the atmosphere. J. Geophys. Res., 86:5 238-5 246, 1981.
    [229] Tamisiea M E, Mitrovica J X Milne G A, and et al. Global geoid and sea level changes due to present-day ice mass fluctuations. J. Geophys. Res., 106(B12):30 849-30 864, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700