用户名: 密码: 验证码:
天然气的再分配及其成藏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国油气勘探实践中发现,在一些与老构造相邻的新构造中,有时会找到早期生成的天然气;这些天然气显然是从其原来的聚集地转移而来的。根据已建立的生烃模式,烃源岩在生烃演化的早、中期阶段将产出其大部分烃类产物。因此,若在一个探区找到了再分配的早期天然气(包括油的裂解气),则意味着该探区烃源岩所生油气的主体部分很可能得以保存,从而预示该探区有着良好的勘探前景。这种再分配天然气藏的发现与油气勘探前景之间的联系已在我国塔里木、四川、准噶尔等盆地的勘探中得到印证。但由于目前对再分配天然气成藏的机制和规律知之甚少,对再分配天然气的指认亦缺乏系统的方法,因此有目的的寻找此类天然气藏成了勘探家面临的一个难题。基于此,本文应用含油气系统理论的基本思想、天然气的生成模式及油气分段捕集原理,运用油气藏地球化学方法并结合传统地质学方法,首次对再分配天然气的成藏机制、再分配天然气的判识方法以及再分配天然气的成藏模式进行了较为系统的研究。
     论文主要得出以下重要认识与成果:
     1.再分配天然气藏是指由于某种地质变动(常常为构造变动)而导致古油气藏中的天然气发生转移、进而在新的圈闭中再次聚集形成的天然气藏。在具有古老烃源岩并经历过多次构造变动的盆地中,天然气的再分配是一个非常普遍的现象;同时,再分配天然气藏可以拥有可观的储量,因此,这种特殊方式聚集而成的天然气藏为天然气勘探提供了新的领域和方向。
     2.对再分配天然气的判识关键有两点:a.现今所找到圈闭中的天然气的聚集阶段明显与烃源岩生烃史和圈闭形成时间不匹配:b.基于a的判断,结合构造研究,运用地球化学方法判识气的运移途径。
     3.为了确认再分配的天然气,在天然气的研究中除了气源研究外,本论文还特别注意了天然气捕获阶段的研究,并建立了系统识别方法。除了烃组成和天然气碳同位素组成外,还采用了氮气和氦气来区分油的裂解气和晚期干酪根裂解气。从理论与实验及气藏实测结果出发建立了油的高
It has been noted in the petroleum exploration practice in China that, in some cases, natural gases of early-generation stages were found in relatively newly formed traps. Apparently, these gases must have undergone re-migration from their original accumulation site to enter the newly formed traps. According to established models of hydrocarbon generation, a source rock will yield most of its hydrocarbons in the early to middle maturation stages; therefore, if re-distributed gases of the early- to middle-generation stages are found in an area, it would indicate that the main portion of the hydrocarbons generated by the source rock most possibly have been preserved, implying a good prospective in that area. Such a correlation between the finding of re-distributed gases and good prospective has been affirmed in the petroleum exploration in Tarim, Sichuan and Junggar basins in China. Our current knowledge about the mechanisms and regularities of the formation of re-distributed gas accumulations, however, is inadequate, and methods of recognizing such gas accumulations are in a short. As a result, purposely looking for such gas pools becomes a difficulty laying in front of the exploration geologists. In an effort to partially solve this problem, a relatively systematic research has been done, for the first time, by the author of this dissertation on the mechanisms and modes of pool formation, and methods of recognition of redistributed natural gases, with the application of the essential thoughts of petroleum system theory, models of natural gas generation, principles of fractionation trapping and methods of reservoir geochemistry, integrating with traditional geologic methods.Main conclusions and achievements of this research are as follows: 1、 Redistributed gas accumulations refer to those formed as a result of natural gas re-migrating from its original accumulation site into another trap, caused by geologic (in most cases tectonic) changes. In basins where source rocks are old and multiple-phase tectonic changes have taken place, natural gas redistribution is a fairly common phenomenon. Furthermore, reserves of some redistributed gas accumulations can be quite large. Therefore, such gas accumulations provide a new domain and new direction for natural gas exploration.2、 The key procedures in recognizing redistributed gas accumulations are: (a) to prove that there is a mismatch between the timing of accumulation of the gas found in the trap and the hydrocarbon generation history of the source rock and the timing of the trap formation; (b) if the mismatch is proved, geochemical methods integrated with structural analysis are then applied to trace the migration pathway of the gas.3、 In addition to gas source studies, special attentions are also paid to the study on the timing of gas entrapment in relation to stages of hydrocarbon generation. And a systematic set of methods has been established in the present work. Nitrogen gas and Helium are used to distinguish between oil cracked gases and late-stage kerogen cracked gases, coupled with the use of hydrocarbon composition and carbon isotope character of the natural gas. On the basis of theoretical analysis and measured data from gas fields, mathematical relationships of δC_1 and Q are
    established for oil cracked gases and late-stage kerogen cracked gases. And with these mathematical expressions, the individual amount of each in a mixed gas of the two can be estimated.Formation of gas accumulations sometimes spans a long time interval, which often requires the study of gas pool formation starting from the formation of oil pool. It is exactly the case for the gas pools (Weiyuan gas pool, Jilake gas condensate pool and gas condensate pools in the eastern section of the Tazhong Fracture Zone) dealt with in this research. Apart from study of the geochemical character of oil (often using the "whole hydrocarbon" method as proposed by Prof. Wang Tingdong ), the study of reservoir bitumen is also important. With this study, the source of oil and gas, the direction of oil and gas migration, the timing of migration and the conditions of pool preservation can often be unveiled. In recognizing redistributed gas pools in the Sichuan and Tarim basins, reservoir bitumen studies have played an essential role. Especially, in basins where only dry gas pools are present, reservoir bitumen study is extremely useful. When Reservoir bitumen study is integrated with investigation of solid reservoir bitumen (in thin sections) and fluid enclusions, information on the stages of entrapment and types of effective reservoir pore spaces in each stage can be gained. Such information helps decision making in selecting exploration targets. Using the character of changes in the gas composition is often an effective way of tracing gas migration. For example, a study of the dryness of natural gases in Tazhong reveals that the gases in the Tazhong 4 and Tazhong 6 structures came from kerogen cracked gas within an eastern paleo-structure. A case study of successfully tracing gas migration with the use of waterwashing principles has been performed in this research, and conditions for the occurrence of waterwashing is discussed.Pre-existed oil/gas pools function as a "gas provider" for re-distributed gas pools. And tectonic activities in the geologic past are frequently the direct cause of natural gas re-distribution. On the basis of case studies, four formative modes of redistributed gas accumulations are proposed, which are: (1) redistribution caused by formation reversal and paleo-structure contraction; (2) redistribution caused by faulting of existing oil/gas pools; (3) redistribution caused by formation reversal, and (4) redistribution caused by activities of syn-depositional faulting.
引文
1.陈景山等。塔里木盆地寒武、奥陶系碳酸盐储层分析及预测.塔里木石油勘探开发指挥部科研报告,1994
    2.买光荣,何凳发等.塔里木盆地西南坳陷石油地质特征、油气资源综合评价及油气勘探方向.塔里木石油勘探开发指挥部科研报告,1997
    3.何凳发等.中国含油气系统的应用与进展.石油工业出版社,1997,120-130
    4.胡云扬等.塔里木盆地巴楚隆起及麦盖提斜坡勘探目标选择与评价.塔里木石油勘探开发指挥部科研报告,1998,1-205
    5.卫平生等.古隆起与大气田的关系.天然气地球科学,1998,9(5):1-9
    6.潘裕生,青藏高原西北部构造特征——以叶城——狮泉河路线为例.中国青藏高原研究会第一届学术讨论会文集,1992,263-271
    7.李洪辉,张光亚,刘建新等.塔里木盆地巴楚断隆油气勘探模式.石油勘探与开发,1998,25(5):11-13
    8.贾承造.中国塔里木盆地构造特征与油气.石油工业出版社,1997,1-438
    9.王振宇等.塔里木盆地塔中Ⅰ号断裂构造带中上奥陶统岩溶系统研究.塔里木石油勘探开发指挥部科研报告,1999,1-201
    10.刘岭山等.塔里木盆地巴楚凸起和4井单井综合评价报告,1998,1-191
    11.Meshri.论碳酸和有机酸的反应能力和次生孔隙的形成.储层地球化学(译文集),1992,原文载于:Roles of organic matter in sediment diagenesis,1986,38:123-128
    12.Surdam等.有机——无机相互互作用和砂岩成岩作用.储层地球化学(译文集),1992,原文载于:AAPG,73:1-23
    13.陈安定等.沉积岩成烃热模拟实验产物的同位素特征及其应用.中国科学B辑,1993,23(2):209-217
    14.陈景山等.塔里木盆地寒武系、奥陶系储层特征与生物礁分布规律研究.“九五”国家重点科技攻关项目成果报告,1998
    15.程克明等.烃源岩成烃过程热压模拟实验研究.“七五”国家重点科技攻关项目成果报告,1989
    16.戴金星.各类烷烃气鉴别.中国科学B辑,1992,22:185-193
    17.戴金星等.天然气碳同位素系列倒转的成因问题.天然气工业,1992,10(6):5-20
    18.戴金星等.中国天然气地地质学.石油工业出版社,1992,1-200
    19.戴金星等.中国大中型天然气气田形成条件与分布规律.北京地质出版社 1997,1-200
    20.杜建国等.天然气中氮的地球化学特征.沉积学报,1996,14(1):143-148
    21.陈世加等 塔里木盆地中高氮成因及其与油气富集的关系 沉积学报,2000,(4):123-126
    22.傅家谟等.煤成烃地球化学.科学出版社,1990
    23.黄第藩等.塔里木盆地东部天然气的成因类型及其成熟度判别.中国科学B辑,1996,26(4)
    24.卢双舫等.塔里木盆地气源岩有效层段及潜力评价.“九五”国家重点科技攻关项目成果报告,1998
    25.王涵云等.原油热解成气模拟实验.天然气工业,1982,4(2):28-32
    26.王涵云等.原油和干酪根演变下限模拟实验在研究高变质地区中的应用.天然气工业,1984,4(3):21-24
    27.王廷栋等.生物标志物在凝析气藏天然气运移和气源对比中的应用.石油学报,1990,11(1):25-30
    28.王廷栋等.我国典型凝析气藏形成机制及分布特征.“九五”国家重点科技攻关项目成果报告,1989
    29.王廷栋等.凝析油中C4-C7轻烃分布特征与生成运移的关系.天然气工业,1989,专刊
    30.王廷栋等.根据油(凝析油)中C4-C7轻烃特征和天然气碳同位素共同判断气源.西南石油学院学报,1989
    31.王廷栋等.四川盆地磨溪、卧龙河气田主要气藏探索研究.“八五”国家重点科技攻关项目成果报告,1994
    32.王廷栋等.塔里木盆地凝析气藏油气地化特征及成因.“八五”国家重点科技攻关项目成果报告,1994
    33.王廷栋等.四川盆地加里东古隆起震旦系、寒武系天然气有效运聚系统研究.“九五”国家重点科技攻关项目阶段报告,1998
    34.徐永昌等.天然气成因理论及应用.科学出版社,1994
    35.张保民等.塔里木盆地油源区的展布及其在地质历史中的演化.“九五”国家重点科技攻关项目阶段报告,1998
    36.张子枢.气藏中氮的地质地球化学.地质地球化学,1988,2:51-56
    37.赵孟军.塔里木盆地奥陶系偏腐殖型烃源岩的发现.天然气工业,1998,18(5):32-35
    38.赵孟军等.塔里木盆地天然气分布规律及勘探方向.“九五”国家重点科技攻关项目阶段报告,1997
    39.周中毅等.塔里木盆地生油岩成熟度及确定及成烃演化史.“九五”国家重点科技攻关项目阶段报告,1997
    40.郝石生等.天然气藏的形成和保存.石油工业出版社,1995
    41. Bakel, A. J. et al., The distribution and quantitation of organic nitrogen compounds in crude oils and rock pyrolysates. Org. Geochem., 1990, 16: 353-367
    42. Baxby, M. Patience, R. L et al., The origin and diagenesis of sedimentary organic nitrogen. Journal of Petroleum Geology. 1994, 17(2): 211-230
    43. Behar, F. et al., Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking. Org. Geochem, 1991, 19 (1-3): 73-189
    44. Behar, F. Experimental simulation of gas generation from coals and a marine kerogen. Chem. Geol., 995, 126: 247-260
    45. Behar, F. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochim, 1997, 26(5-6): 321-339
    46. Berner, U., Faber E. et al., Kinetic models of carbon isotope variations in methane, ethane, and propane in comparison with field data of Europe. AAPG, 1993, 77(9): 1607
    47. Berner, U., Faber E. et al., Primary cracking of algal and landplant kerogen: kinetic models of isotope variations in methane and propane. Chem. Geol., 1995, 126: 233-245
    48. Berner, U., Faber, E., Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis. Org. Geochem, 1996, 24(10-11): 947-955
    49. Blanc, P., Connan, J., Origin and occurrence of 25-norhopanes: a statistical study. Org. Geochem, 1992, 18(6): 813-828
    50. Boudon, J. P., Molecular nitrogen from coal pyrolysis: kinetic modeling. Chem. Geol.. 1995, 126: 319-333
    51. Carpentier, B., Ungerer, P., Koralewsk, Magnier, Courcy, J. P., Huc, A. Y., Molecular and isotopic fractionation of light hydrocarbon between oil and gas phases. Org. geochem, 1996, 24(12): 1115-1139
    52. Charlesworth, M., Interation of clay minerals with organic nitrogen compounds released by kerogen pyrolysis. Geochemica et Cosmochmica Acta, 1986, 50: 1431-1435
    53. Cramer, B., Kross, B. M, Littke, R., Modelling isotope fractionation during primary cracking of natural gas: a reaction kinetic approach. Chem. Geo., 1998, 149: 235-250
    54. Cubitt, J. M., Englang, W. A., The Geochemictry of reservoirs. Geological Society Special Publication, 1995
    55. Dahl, B., Speers, G. C., Geochemical charaterization of a tar mat in the Oseberg Field Norwegian Sector, North Sea. Org. Geochem., 1986. 10: 547-558
    56. Delrio, C. J. et al. Nature and geochemistry of high molecular weight hydrocarbons (above 40) in oils and solid butumens. Org. Geochem., 1992, 18: 541-554
    57. Duin, A, C. T. V., Larter, S. R., Unravelling Mango's mysteries: akinetic scheme describing the diagenetic fate of C7-alkanes in petroleum systems. Org. Geochem, 1997, 27(7-8): 597-599
    58. Dzou, L. I. P., Hughes, W. B., Geochemistry of oils and condensates, K field, offshore Taiwan: a case study in migration fractionation, Org. Geochem., 1993, 20(4): 437-462
    59. Dzou, L. I. P, Noble, R. A., Senfile, J. T,. Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Org. Geochem., 1995, 23(7): 681~697
    60. Dzou, L. I. P., Hughes, W. B., Geochemistry of oils and condensates, K field, offshore Taiwan: a case study in migration fractionation, Org. Geochem., 1993, 20(4): 437-462
    61. England, et al., The movement and entrapment of petroleum fluids in subsurface, Journal of the Geological Society, London, 1987, 144: 327-347
    62. England, W. A., The organic geochemistry of petroleum reservoirs, Org. Geochem., 1989, 16(1-3): 415-425
    63. England, W. A. et al., Geochemistry of petroleum reservoirs. Geologische Rundschau, 1989, 78: 291-303
    64. England, W. A. et al. Migration from source to trap and trap filling and mixing. Handbook of Petroleum Geology. 1990,
    65. England, W. A., Fleet, A. J., Petroleum Migration: Geological Society of London Special Publication, 1991, 1-286
    66. England, W. A., Secondary migration and accumulation of hydrocarbons, The petroleum system-from source to trap, 1994, 211-218
    67. Erdman, J. G., Morris, D. A., Geochemical Correlation of Petroleuml, AAPG, 1974, 58(11): 2326-2337
    68. Fowler, M., Brooks, P. W., Organic geochemistry as an aid in the interpretation of the history of oil migration into different reservoirs at the Hibernia K-18 and Ben Nevis Ⅰ-45 wells, Jeanne d' Arc Basin, offshore eastern Canada. Org, Grochem.., 1990, 16(1-3): 461-475
    69. Galimov, E. M. Sources and mechanism of formation of gases hydrocarbons in sedimentary rocks. Chemical Geology, 1988, 71: 77-95
    70. Gold, T., Helium-nitrigen-methanes systematics in natural gases of Texas and Kansas, journal of Petroleum Geology, 1987, 10(4): 415-424
    71. Greibrokk, T. et al., Experimental simulation of oil migration-distribution effects on organic compound groups and on Metal/Metal rations. Chem. Geol., 1994, 116(3-4): 281-299
    72. Halpern, H. I. Development and Applications of Light-Hydrocarbon-Based Star diagrams. AAPG Bulletin 1995, 79(6): 801-815
    73. Haven, H. L. Ten, Applications and limitations of Mango' s light hydrocarbon parameters in petroleum correlation studies. Org. Geochem. 1996, 24(10-11): 957-976
    74. Hillebrand, T., Leythaeuser, D., Reservior geochemistry of Stockstadt oilfield: compositional heterogeneities reflecting accumulation history and multiple source input. Ors. Geochem. 1992, 19(1-3): 119-131
    75. Hiyagon, H. et al. Nobel gases in CH4-rich gas field, Alberta, Canada. Geochem. Cosmochim Acta, 1992, 56(4): 1569-1589
    76. Holba, A. G., Dzou, L. I. P., Hickey, J. J., Reservoir geochemistry of South Pass 61 Field, Gulf of Mexico: compositional heterogeneities reflecting filling history and biodegradation. Org. Geochem 1996, 24(12): 1179-1198
    77. Horsfield, B. et al., An investigation of the in-reservoir conversion of oil to gas: compositional and kinetic findings from closed-system programmed-temperature pyrolysis. Org. Geochem, 1991, 19(1-3): 191-204
    78. Horstad, Larter, S. R., Dypvik, H., Aagaard, P., Bjornvik, A. M., Johansen, P. E., Eriksen, S., Degradation and maturity controls on oil field petroleum column heterogeneity in the Gullfaks field, Norwegian North sea. Org. Geochem., 1990, 16(1-3): 497-510
    79. Horstad, Larter, S. R., Petroleum migraion, alteration, and remigration within troll field, Norwegian North Sea 1. AAPG., 1997, 81(2): 222-248
    80. Hwang, R. J., Ahmend, A. S., Moldowan, J. M., Oil compositon variation and reservoir continuity: Unity Field, Sudan. Org. Geochem., 1994, 21(2): 171-188
    81. Hwang, R. J. et al., Reservoir connectivity and oil homogeneity in a large sacle reservoir: Middle East Petroleum Geoscience, Geo., 94, 2: 529-541
    82. Idiz, E., Gerling, P., Carbon and nitrogen stable isotope study of North German Rotliegend gas fields-implications for the source and occurrence of nitrogen on gas accumulations.
    83. James, A., Correlation of natural gas by use of the carbon isotopic distribution between hydrocarbon components 1. AAPG, 1983, 67(7): 1176-1191
    84. James, A. T., Correlation of reservoired gases using the carbon isotopic compositions of wet gas components 1, AAPG, 1990, 74(9): 1441-1458
    85. Jenden, P. D., Origin of nitrogen-rich natural gases in California Great Vally: Evidence from helium, carbon and nitrogen isotope ratios, Geochemica et Cosmochnica Acta. 1988, 52: 851-861
    86. Khorani, G. K. et al., Geological and laboratory evidence for early generation of large amounts of liquid hydrocarbon from suberinite and subereous components. Org. Geochem., 1991, 17(6): 834-863
    87. Krooss, B. M., Geocheromatography in petroleum migration: a review. From Petroleum Migration-geological Society, Special Publication, 1992, 59: 149-163
    88. Krooss, B. M. et al. Nitrogen-rich natural gases. Erdoel Kohle-Erdgas-Petrochem., 1993, 46(7-8): 271-276
    89. Krooss, Littke, Generation of nitrogen and methane from sedimentary organic matter: implication on the dynamics of natural gas accumulations. Chem. Geol., 1995, 126: 281-290
    90. Krooss, B. M. Leythaeuser, D., Diffusion of methane and ethane through the reservoir cap rock: Implications for the timing and duration of catagenesis: Discussion 1. AAPG., 1997, 81(1): 155-161
    91. Kuo, L. C., et al., A multi-component oil-reackong kinetics model for modeling preservation and composition of reservoired oils, Org. Geochem. 1994, 21(8-9): 911-925
    92. Kuo, L. C., An experimental study of crude oil alteration in reservoir rocks by water washing Org. Geochem., 1994, 21(5): 465-479
    93. Lafargue, E., Barker, C, Effect of Water Washing on Crude Oil Compositions 1, AAPG Bulletin, 1988, 72(3): 263-276
    94. Lafargue. E., Thiez, P. L., Effect of water washing on light ends compositional heterogeneity. 17th International Meeting on Organic Geochemistry. 1995, 372-374
    95. Lafargue, E., Thiez, P. L., Effect of water washing on light ends compositional heterogeneity. Org. Geochem., 1996, 24(12): 1141-1150
    96. Larter, S. R. et. al. Reservoir geochemistry: methods, applications and opportunies. In the Geochemistry of Reservoirs, 1995, 86: 5-32
    97. Leythaeuser, D., Ruckheim, J., Heterogeneity of oil composition within a reservoir as areflection of accumulation history, Geoch et Cosmo., 1989, 53: 2119-2123
    98. Littke, R., Krooss, B., Idiz, E., Frielingsdorf, J., Molecular Nitrogen in Natural Gas Accumulations: Generation from Sedimentary Organic Matter at High Temperatures 1. AAPG, 1995, 79(3): 410-430
    99. Lomando, A. J. The influence of solid reservoir bitumen on resevoir quality 1, AAPG, 1992, 76(8): 1137-1152
    100. Mango, F. D., The origin of light hydrocarbons in petroleum: A kinetic test of the steady-state catalytic hypothesis. Geoch. et Cosmoch., 1990, 54: 1315-1323
    101. Mango, F. D., The origin of light cycloalkanes in petroleum, Geoch. et Cosmo., 1990, 54: 23-27
    102. Mango, F. D., The origin of light hydrocarbons in petroleum: Ring Preference in the closure of carbocyclic rings. Geoch et Cosmo., 1994, 58(2): 895-901
    103. Mango, F. D., Transition metal catalysis in the generatfon of natural gas, Org. Geochem., 1996, 24(10-11): 977-984
    104. Mango, F. D., The light hydrocarbons in petroleum: a critical review. Org. Geochem, 1997, 26(7): 417-440
    105. Mango, F. D., The catalytic decomposition of petroleum into natural gas, Geochim Cosmochim Acta, 1997, 61(24): 5347-5350
    106. Melodye, A. R. et al., Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons. Chem. Geol., 1995, 126: 219-232
    107. Odden, W. A., Parience, R. L., Graas, G. W. V., Application of light hydrocarbons (C4-C13) to oil/source rock correlation: a study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway. Org. Geochem., 1998, 28(12): 823-847
    108. Prinzhofer, A., Huc, A. Y., Genetic and post-genetic molecular and isotopic fractionations in natural gases, Chem. Geo., 1995, 126(3-4): 281-290
    109. Prinzhofer, A., Pernaton, E., Isotopically light methane in natural gas: bacterial imprint or diffusive fractionation? Chem. Geo., 1997, 142: 193-200
    110. Snowdon, L. R., Powell, T. G.., Immature oil and condensate-Modification of hydrocarbon Generation Model for Terrestrial Organic Matter 1. AAPG., 1982, 66(6): 775-788
    111. Stahl, W. J., Carbon and nitrogen isotopes in hydrocarbon research and exploration, Chemical Geology., 1997, 20: 121-149
    112. Summons, R. E., Franzmann, P. E., Nichols, P. D., Carbon isotopic fraction associated with methylotrophic methanogenesis, Org. Gechem., 1998, 28(7-8): 465-475
    113. Thompson, K. F. M., Light hydrocarbon in subsurface sediments, Geochim et Cosmochim Acta, 1979, 43: 657-672
    114. Thompson, K. F. M., Classification and thermal history of petroleum based on light hydrocarbons. Geo. Cosmoch, 1983, 47: 303-316
    115. Thompson, K. F. M., Gas condensate migration and oil fractionation in deltaic system, Mar. Pet. Geol., 1988, 5: 237-246
    116. Thompson, K. F. M., Contrasting characteristics attributed to migration observed in petroleums reservoired in clastic and carbonate sequences in the Gulf of Mexico region. Petromigra Geo Society 1990, 59: 191-205
    117. Tissot, B. P., Welte, D. H., Petroleum Formation and occurrence, 2nd Edition, Springer Verlag, Berlin, 1984,
    118. Whiticar, M. J., Correlation of natural gases with their sources, The Petroleum System-from source to trap, 1994, 261-284
    119. Wilhelms, A., et al., Origin of tar mats in petroleum reservoir. Part Ⅱ: Formation mechanisms for tar mats, Marine and Petroleum Geology. 1994, 11(4): 442-456
    120. Wilhelms, A., et al., Origin of tar mats in petroleum reservoir, Part Ⅰ: Introduction and case studies. Marine and Petroleum Geology. 1994, 11(4): 418-441
    121. Wilhelms, A., et al., Overview of the geochemistry of some tar mats from the North Sea and USA: implication for tar mat origin. In Reservoir Geochemistry, 1995, 87-101
    122. Wilhelms, A., et al., Sequential extraction-auseful tool for reservoir geochemistry? Org. Geochem., 1996, 24(12): 1157-1172
    123. Williams, A., et al., Ammonium substitution in ilite during maturation of organic matter. Clays and minerals, 1991, 39(4): 400-408
    124. Williams, et al., Mineralition of organic ammonium in the Montery Formation, Santa Maria and San Joaquin Basins, Californian, USA, Geochmica et Cosmochmica Acta, 1992, 56: 1979-1991
    125. Williams, L. B. Ferrell, R., Hutcheon, I., Bakel, A. J., Walsh, M. M., Krouse, H. R., Nitrogen isotope geochemistry of organic matter and minerals during diagenesis and hydrocarbon migration. Geoch. et Cosmo. Acta., 1995, 59(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700