用户名: 密码: 验证码:
高光谱土壤成分信息的量化反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着土地资源调查的深入,土地资源的管理已从数量管理向质量维护生态保护方向发展,同时向着自动化、定量化方向迈进。利用成像光谱技术的高光谱分辨率特点可提高土地质量评价精度,为土地调查、评价和管理提供更丰富、精确的数据源,对土地资源的管理具有重要的指导意义。高光谱遥感凭借其极高的光谱分辨率在岩石矿物、土壤、植被以及水域等物质组分定量反演研究中表现出非凡的潜力。就土壤而言,其矿物质、有机质、湿度、粗糙度、土壤质地等均是土壤光谱的主要贡献者。
     本论文从土壤反射光谱特性入手,揭示土壤物质组分与其光谱成因机理之间的内在联系。运用各种土壤反射率数学变换形式,找出最佳单相关分析波段,利用统计学相关分析方法,建立多组回归分析模型,成功地实现了土壤有机质、湿度、氧化铁的三组分的成像光谱土壤成分填图。具体研究内容如下:
     1.通过野外、室内一定数量的光谱测试及其化学成分鉴定,详细地分析和研究山东招远东良乡潮棕壤土光谱特点,认为该土属沙土和沃土的混合。在反射光谱0.45~2.5μm区间范围内,随土壤含水量、有机质以及铁氧化物含量增加,光谱曲线呈下降趋势;而可见光到近红外光是反演土壤有机质的最佳波段。
     2.光谱微分处理技术是提取土壤成分信息的有效方法之一。尤其是反射率对数一阶、二阶微分变换可提高土壤有机质、氧化铁与反射率变换值之间的相关性。据此建立线性回归分析模型,完成有机质、氧化铁二组分特征参量填图。同时光谱微分技术还能部分地清除大气效应,特别是一阶微分处理能较好地去除部分线性或接近线性的背景噪声光谱对目标光谱的影响。
     3.去包络线法是土壤光谱特征分析的有效方法之一。它简便、准确而有效地提取土壤中某些成分(如:湿度等)的“峰值点”的特征参量。经包络线去除后的土壤光谱反射率归一化到0~1.0之间,可快速有效地突出土壤光谱曲线吸收和反射特性。从而提取“吸收峰”处的特征参量值,如:波段波长位置、深度、宽度、面积等,据此预测土壤中某些组分含量信息。本次研究利用土壤水分在1933nm附近的吸收峰特征值(面积参量)检测土壤含水量(土壤墒情),从而实现了土壤湿度面积填图。
     4.定标是定量遥感的基础。辐射定标是通过大气校正来实现的,从而完成相对反射率转换。在此介绍了三种相对反射率转换方法:(1)线性法相对反射率转换,(2)对数残差法相对反射率转换,(3)大气传输模型法相对反射率转换。本次工作采用的是第一种方法。
     5.遥感分析的过程就是一个定量反演的过程。如何精确而成功地反演地表或大气组分参量信息是定量遥感研究的热点与难点。除了传感器定标、辐射定标以及大气校正等因素需考虑之外,还应考虑土壤二向反射特性BRDF问题。本文阐述了三种描述土壤二向反射特性模型:经验模型、几何光学模型和辐射传输模型,并对土壤二向反射特性进行了初步探讨。
     6.本文还对土壤蒙塞尔颜色模型作为表述土壤重要属性做了一般性的评述。分析认为Munsell模型作为颜色立体模型可对土壤的重要属性作定性或定量分析。如:土壤分类、预测土壤有机质含量或质地等。前人研究证明:土壤明度与土壤反射率有较高的相关性:由于土壤颜色仅限于可见光范围内,因此Munsell颜色立体模型只能预测影响土壤颜色的属性参量,这给定量研究土壤属性带来一定的局限性。
Hyperspectral remote sensing is characterized by high spectrum resolution, and has a great potential to quantitatively identify mineral, soil, vegetation and water content through inverse analysis. Soil spectrum is mainly influenced by the following constituents: mineral, water, organic matter, roughness and texture, etc.Through investigating soil reflectance spectroscopy, this dissertation aims to uncover the genetic relationship between soil constituents and their spectroscopy. The best spectral band is selected based on mathematic analysis of soil reflectance. Several multi-component linear regression models are established through cross-correlation analysis. Soil organic matter, its moisture and its iron oxide content could be spectrally mapped with a great success. This dissertation concentrates on the following aspects.1. Through soil spectral and chemical analysis, it is found that the brown soil in Dongling Xiang, Zhaoyuan, Shangdong is sandy loam. Its reflectance ranges from 0.45 to 2.5 μm. With increasing water, organic matter and iron oxide, the soil reflectance spectral curve goes downward. Visible and near infrared reflectance are the best bands to study the soil organic matter content.2. Spectral derivative analysis is a useful method to investigate the soil constituents. Correlation between soil organic matter/iron oxides and soil reflectance is enhanced by the 1~(st) and 2~(st)derivative of logarithm of reflectance. On this basis, multi-component linear regression model is established, and a map is prepared to display the content of soil organic matter and iron oxide. Additionally, spectral derivative analysis can also partially eliminate atmospheric effect. Especially, the 1~(st) derivative analysis can eliminate some linear or near linear noises affecting the target spectra.3. Continuum-removal is an effective method in soil spectral analysis. Because it extracts the peak absorption eigenvalues of some soil constituents with a simple and an accurate way. After the continuum-removal, the reflectance is normalized to a range of 0-1.0. This enhances the soil absorption and reflection spectrum. The eigenvalues of absorption peak could be easily obtained, such as the wavelength, depth, width and area, etc. These results are used to predict the content of some constituents in the soil. In this study, it is observed that there is a strong absorption around 1450 nm due to water present in the soil. This is used to map the soil moisture.4. Quantitative remote sensing analysis is based upon calibration. Radiance calibration is realized by atmospheric correction, and from which relative reflectan-ce could be derived. Three kinds of relative reflectance are investigated in this study: linear relative reflectivity, residual error of logarithmic relative reflectivity and atmospheric radiance transmit relative reflectivity. The first is used in this investigation.5. The essence of remote sensing is a process of quantitative inversion. How to successfully and accurately extract information on atmospheric and soil constituents through inversion analysis is the hotspot and frontier. Besides sensor calibration, radiance calibration and atmospheric correction, BRDF of soil reflectance property should be taken into account. Available geometric optical model and radiance transmit model are used to investigate the soil BRDF property.6. A general discussion is made on the Munsell model and its properties in this study. This model is a three-dimensional model, and it can be used to qualitatively or quantitatively describe the soil properties, such as soil classification and prediction of organic matter content, etc. Previous study shows that there is a strong correlation between soil brightness and its reflectivity. Since the soil color is determined by the visible light, this sets a limit to use the soil color to investigate the soil properties.
引文
1 刘爱民、封志明、徐丽明.现代精准农业及我国精准农业的发展方向。中国农业大学学报,2000、5(2):20-25
    2 郑良永、曹启民、夏炜林、胡剑非.精准农业发展趋势及其在我国的应用。华南热带农业大学学报,2005、11(1):40-44
    3 陆家驹等,应用遥感技术连续监测地表土壤含水量,水科学进展,1997,8(3),281-287
    4 魏文秋等,热红外遥感监测土壤含水量模型及应用,遥感技术与应用,1993,(1),18-25
    5 金继运.“精准农业”及其在我国的应用前景.植物营养与肥料科学报,1998,4(1):1-7
    6 石元春,土壤学的数字化和信息化革命.土壤学报,2000,37(4):289-295
    7 戎恺等,精准农业的研究应用现状和发展趋势(综述).上海农业学报,2000,16(3):5-8
    8 梁红.我国“精准农业”现状及发展对策.农业与技术,2002,22(3):55-59
    9 刘世洪.精准农业的发展现状.农业科技通讯,1999(10):1-4
    10 方时娇.21世纪中国农业发展的新趋势.河北学报,2001,21(6):25-2611
    11 陈述彭、童庆禧、郭华东主编.遥感信息机理的研究[M],北京:科学出版社,1998,139-233
    12 童庆禧.高光谱遥感及其应用[M]序(蒲瑞良、宫鹏著).:高等教育出版社,2000
    13 王润生、甘甫平.成像光谱矿物填图技术与应用示范(课题技术报告).2004
    14 王润生等.1992,地质勘查图像综合与分析,地质出版社,北京
    15 王润生等.1999,成像光谱方法技术开发应用研究,国土资源部“九五”重点科研项目报告,航空物探遥感中心
    16 童庆喜.高光谱遥感的现在与未来.遥感学报,2003,7(增刊),1-12
    17 蒲瑞良、宫鹏.高光谱遥感及其应用[M].北京,高等教育出版社,2000
    18 戴昌达.中国主要土壤光谱反射特性分类与数据处理的初步研究[A].见:遥感文选[C].北京:科学出版社,1981
    19 孙奎祯等,1991年11月,招远县志,华龄出版社
    20 鲍士旦,土壤农化分析,2000,中国农业出版社
    21 胡宝新等.1996,大倾角光学遥感中大气点扩散函数的近似模型,中国图像图形学报,1 (1)
    22 黄昌勇.土壤学[J].北京,中国农业出版社,2000
    23 徐彬彬等.中国陆地背景和土壤光谱反射特性的地理分区的初步研究,环境遥感,1991,6,142-151
    24 徐彬彬等.土壤光谱反射特性与理化性状的相关分析,见:宁芜土壤遥感研究专集,京:科学出版社,1987,66-76
    25 徐彬彬,戴昌达.1980,南疆土壤光谱反射特性与有机质含量的相关分析,科学通报6-282
    26 彭玉奎等.土壤水分、有机质和总氮量的近红外光谱分析研究[J].土壤学报,1998,35(4):554-559
    27 于飞健等.近红外光谱法分析土壤中的有机质和氮素[J].分析实验室,2002,21(3):49-51
    28 谢伯承等.土壤参数的光谱实时分析,干旱地区农业研究,2005,23(3):54-57
    29 谢伯承等.基于包络线法土壤光谱特征的提取及其分析,土壤学报,2005,42(1):41-43
    30 朱永豪等.不同湿度条件下黄棕壤光谱反射率的变化特征及其遥感意义[J].土壤学报, 1984,21(21):194-202
    31 田国良.土壤水分的遥感监测方法,环境遥感,1991,6(2):89-98
    32 邓孺孺等.粗糙地表土壤含水量遥感模型研究,遥感学报,2004,8(1)75-80
    33 赵英石等.遥感应用分析原理与方法[M].北京,科学出版社,2003
    34 徐希孺.遥感物理[M].北京:北京大学出版社,2005
    35 陈述彭,童庆喜,国华东.遥感信息及理研究.北京,科学出版社,1998
    36 刘伟东.文题:[高光谱遥感土壤信息提取于挖掘研究 学位论文].北京市海淀区大屯路:中国科学院遥感应用研究所,2002
    37 吴昀昭,田庆久,季峻峰,陈骏,惠凤鸣.土壤光学遥感的理论、方法及应用.遥感信息,2003
    38 吴昀昭,田庆久,季峻峰,陈骏.遥感地球化学研究,地球科学进展,2003,18(2):228-235
    39 甘甫平,王润生等.2000c,高光谱遥感信息提取与地质应用前景,国土资源遥感,总45,第3期
    40 甘甫平,2001,遥感岩矿信息提取基础与技术方法研究,中国地质大学(北京)博士学位论文
    41 甘甫平,王润生等.2003,基业于特征谱代的高光谱遥感矿物谱系识别,地学前缘,10(2):445-454
    42 甘甫平,王润生著.2004,遥感岩矿信息提取基础与技术方法研究,地质出版社,北京
    43 徐瑞松.1992,鄂西-海南金矿地球化学的遥感研究,地质学报,66(2):170-181
    44 吴继友,倪健等.1994,山东省招远金矿区春季赤松林的植物地球化学和反射光谱特征,环境遥感,9(2):113-121
    45 周静,陈巍等.2003,我国中部沿海陆域与海岛土壤属性,土壤学报,40(3):39-41
    46 吴继友,杨旭东等.1997,山东招远金矿区赤松针叶反射光谱红边的季节特征,遥感学报,1(2):124-127
    47 张华,张甘霖等.2004,土壤-景观定量模型研究进展,土壤学报,35(3):339-346
    48 牛晔,张宇烽等.2005,陨星和月球土壤的光谱识别,航天返回与遥感,26(2):34-40
    49 李文哲等.1999,颜色光学在遥感技术中的应用,山东师大学报,14(3)282-285
    50 张华安,朱永豪.1994,土壤中粘土矿物的反射光谱定量分析,国土资源遥感,总20期,第2期
    51 周清,周斌等.成土母质对水岛土高光谱特性及其有机质含量光谱参数模型影响的初步研究,土壤学报,2004,41(6)
    52 何绪生.2004,近红外反射光谱分析在土壤肥料科学的的应用及发展方向,土壤学报,35(4):488-492
    53 唐世浩,朱启疆,李小文,王锦地,阎广建.2003,高光谱与多角度数据联合进行混合像元分解研究,遥感学报,7(3):182-189
    54 国庆喜,张峰.2003,基于遥感信息估测森林的生物量,东北林业大学学报,31(2):13-16
    55 冯云山,吴培祥等.1989,土壤反射光谱特性的研究,吉林农业大学学报,11(2):72-76
    56 杜华强,范文义,赵宪文.2003,荒漠化地区高光谱遥感图像地物光谱重建的研究,遥感技术与应用,18(4):212-215
    57 王绍庆,土壤和水体反射光谱特性及其应用[A].见童庆喜等主编:中国典型地物波谱及其特征分析[C].北京:科学出版社,1990.611-618
    58 AI-Abbas et al., Relating organic matter and clay content to multispectral radiance of soils, Soils Sci.,1972,114,477-485
    59 Andrew N. Rencz. Remote sensing of the earth sciences, Publish in cooperation with American society for photogrammetry and Remote Sensing, 2000
    60 Baungardner, M. F., L. F. Silva, L. L. Biehl, and E. R. Stoner Reflectance properties of soil. Advances in. Agronomy, 1985,38,1-44
    61 Baungardner, M. F., S. J. Kristof, C. J. Johannsen, and A. L. Zachary, 1970. Effects of organic matter on multispectral properties of soils, Proc. Indian Acad. Sci., 79,413-422
    62 Bowers, S. A. and Smith S. J., Spectrophotimectric determination of soil water content. Soil Science of America Preceedings 1972,36,978-980
    63 Bowers, S. A. and S. A.,and R. J., Hanks, Reflection of radiant energy from soil,
    64 Ben-Dor, E.,and A. Banin, 1995a. Near infrared analysis(NIRA)as a rapid method to simultaneously evaluate several soil properties, Soil Sci. Soc. Am. J.,59,364-372
    65 Ben-Dor, E.,and A. Banin, 1995b. Near infrared analysis(NIRA)as a method to simultaneously evaluate several soil featureless constituents in soils, Soil Sci.,159,259-269
    66 Ben-Dor, E.,and A. Banin, 1995c. Quantitative analysis of convolved TM spectra of soils in the visible, near infrared and short-wave infrared regions(0.4-2.5μm), Int. J. Remote Sensing, 18,3509-3528
    67 Ben-Dor, E.,and A. Banin, 1990a. Diffuse reflectance spectra of section minerals in the near infrared and their relation to chemical composition, Sci. Geol. Bull., 43(2-4),117-128
    68 Boardman J. W. and Kruse F. A.,1994, Automated spectral analysis: a geological example using AVIRIS data, North Grapevine Mountains, Nevada. In: Proceedings of the Tenth Thematic Conference on Geological Remote Sensing, Environmental Remote Institute of Michigan San Antonio, TX, 407-18
    69 Boardman J. W. and F. Huntington, 1997, Mingeralogic and geochemical mapping of Virginia City, Nevada using 11995 AVIRIS data Proceedings of the Twelfth International Conference and Workshop on Applied Geology Remote Sensing. Denver Colorado 1:191-198
    70 Cocks J. et al. The HYMAP Airborne Hyperspectral Imager for Dectection of Calibration and Performance. Presented at 1st EARSEL Workshop on Imaging Spectroscopy[R]. Zurich, 1998
    71 Curran, P. J., G. M. Foody, K. Ya. Kondratyev, et al.,Remote Sensing of soil and Vegetation in the USSR, 1990, Taylor & Francis, New York
    72 Condit, H. R.,1970. The spectral reflectance of American soils, Potogramm. Eng, 36,955-966
    73 Carrere. V. And Conel, J. E., 1993, Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940nm-Sensitivity analyses and application to airborn Visible/Infrared imaging spectrometer (AVIRIS) data, Remote Sensing Environment, 44: 179-204(1993)
    74 Clark R. N., Roush T. L., Reflectance spectroscopy: quantitative analysis techniques for remote sensing application. J. of Geophysical Research, 1984,89: 6329-6340
    75 Coyne, L. M. , L. Bishop, T. Sacttergood,A.Banin,G.Carle,and J.Orenberg,1989. Nearinfrared correlation spectroscopy: quantifying iron and surface water in series of variably cation-exchanged montmorillonite clays,in Spectroscopy characterization of minerals and their surfaces,ACS Symp.Ser. 415, L. M. Coyne, S. W. S. Mckeever, and D. F. Blake, eds., American Chemical Society, Washington, D. C.,PP.407-429
    76 Crove, C. I., S. J. Hook, and E. D. Paylor, 1992. Laboratory reflectance spectra of 160 mingerals, 0.4 to 2. 5 micrometers, JPLPubl. 92-2, Jet Propulsion Laboratory, Cali- fornia Institute Technology, Pasadena, Calif
    77 Curran, P. J., G. M. Foody, K. Ya. Kondratyev, V. V. Kozoderov, and P. P. Fedchenko, 1990. Remote Sensing of Soil and Vegetation in the USSR, Taylor & FRANCIS, New York
    78 Cheng-Wen Chang .David A. et al., 2001.Near-Infrared Reflectance Spectrosopy -Principal Components Regression Analyses of Soil Properties,Soil Sci.Am. J. 65: 480-490
    79 Da Costa, L. M., 1979. Surface soil color and reflectance as related to physicochemical and mineralogical soil properties, Ph. D. dissertation, University of Missouri, Columbia, Mo., 154 pp
    80 Drake H R. The Reflectance Spectra of Evaporite Minerals (400-2500nm): Application for Remote Sensing [J]. Int. J. Remote Sensing., 1995(16): 2555-2571
    81 Gaddis,L. R. et al, Decomposition of spectral expansion to surface reflectance, atmospheric,and instrumental components, IEEE Trans. Ceosci.& Remote sensing, Vol. 34, No. I, Jauuary 1996
    82 Gao. B. C. Goetz,F.H.1990, Column atmospheric water vapor and vegetation liquid water retrieval from airborn imaging spectrometer data , J. Geophysical Rsearch, Vol. 95, No. D4, 3549-3563. April 20,1990
    83 Gao. B. C. et al, 1993, Derivation of scaied surface from AVIRIS data ,Remote Sensing Environment, 44: 165-178(1993)
    84 Green, R. O., 1991. Retrieval of reflectance from AVIRIS measured radiance using a radiative transfer coad., Proc. 3~rdAirborn Visible/Infrared imaging spectro meter(AVIRIS) Workshope(Green Ed.), JPL publication 91-28, Jet propulsion Lab., Pasadena, CA, pp. 200-210
    85 Green A. A. Berman M. ,Switzer P. ,et al,1988,Atransformation for ording multispectral data in terms of image quality with implication for noise removal. IEEE Trans. Geosci. Remote Sens. ,26(1): 65-74
    86 Goel N. S., 1988,Models of Vegetation Canopy Reflectance and their Usein Estimation of Biophysical Parameters from Reflectance Data. Remote Sensing Rev, 41- 213
    87 Goel N. S. and Strebel D. E., 1983, Iversion of vegetation canopy reflectance model [J].Remote Sensing of Environment,13:487
    88 Huete, A. R. , and R. Escadafal, 1991. Assessment of biophysical soil properties through spectral decomposition techniques, Remote Sensing Environ. ,35, 149-159
    89 Hall, A. J. , 1941. The relation between color and chemical composition in the bio tites, Am. Miner. ,26,29-33
    90 Hapke B. ,Bidirectional reflectancespectroscopy. 1. Theory, J. Geophys. es. , 1981,86,3039-3054
    91 Henderson T.L.et al.,High dimensional Reflectance analysis of soil organic matter, Soil Sci.Soc. Am. j., 1992, 56, 865-872
    92 Hide D. Fine-tuning Sugar Beet Fertility Management in the Red River Valley. Better Crop with Plant Food. 1994,78(4):26-28
    93 Hunt, G. R., 1980. Spectrosscopy proerties of rock and minerals in Handbook of physical Propertis of Rokes, C. R. Stewart, ed.,CRC Press, Boca Raton, Fla., 295pp.
    94 Hunt, G. R., J. W. Salisbury, 1976. Visible and near infrared spectra of minerals and rocks:carbonates, Mod. Geol., 2, 23-30
    95 Hunt.G. R., 1980. Spectroscopyic properties of rock and minerals in Handbook of Physical Properties of Rocks, C. R. Stewart, ed.,CRC Press,Boca Raton, Fla., 295pp
    96 Huntington, J. F., Boardman, J. W., 1995, Semi-quantitative Mineralogical and geolo -gical mapping with 1995 AVIRIS data, Proc. Spectral Sensing Research ' 95, ISSSR,Published by the AGPS,26 Nov-1Dec, 1995,Melbourne,Australia
    97 Hapke B. W., 1981, Bidirectional Reflectance Spectroscopy 1Theory. Geophys Res.86:3039-3054
    98 Hapke B. W., 1986, Bidirectional Reflectance Spectroscopy 4. The Extinction Coeffcient and Effect. Icarus, 67: 264-280
    99 Hall, A.J., 1941. The relation between colour and chemical composition in the Biotites, Am. Miner., 26, 29-33
    100 ummel J. W., K. A. Sudduth, S. E. Hollinger. 2001, Soil moisture and matter predi- ction of surface and subsurface soil using an NIR soil, Computers and Elec- tronics in Agriculture, www.elesvier.com/locate/compag
    101 Irons, J. R., R. A. Weismiller, and G. W. Petersen, 1989. Soil reflectance, in Theory and Application of Optical Remote Sensing, G. Asrar, ed., Wile Ser. Remote Sen- sing, Wiley, New York,pp. 66-106
    102 Ishida T., H. Ando, and M. Fukuhara, 1991. Estimation of complex refractive index of soil particles and its dependence on soil chemical properties, Remote Sensing Environ. ,38, 173-182
    103 Jaquemoud S., F. Baret, et, Modeling spectral and directional soil reflectance , Remote Sensing of the Environment, 1992, 41, 121-132
    104 Jaquemoud S., Inversion of the PROSPECT+SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study. Remote Sensing of the Environment, 1993, 44,181-292
    105 Jaquemoud S., F. Baret, et, Prospect:a model of leaf optical properties spectra. Remote Sensing of the Environment, 1990, 34, 75-91
    106 Jepson,W. B., 1988. Structural iron in kaolinites and in associated ancillary minerals in Soil and Clay Mineral, J. W. Stucki, b.a. Goodman, and U.Schwertmann, eds. ,NATO ASI Ser.D. Reidel, Dordrecht,The Ntherlands,pp.467-536
    107 Kimes D.S.& P. J. Seller, 1985, Inferring Hemispherical Reflectance of Earth's Surface for Global Energy Budgets from Remotely Sensed Nadir or Directional Radiance Values , Remote Sensing of Environ. ,18:205-223.
    108 Kimes, D. S. , J. R. Iron, E. R. Levine, and N. A. Horning,1993. Learning data base of spectral reflectance of soil samples, Remote Sensing Environ. 43,161-169
    109 Kimes et al., Directional reflectance factor distributions for cover types of Northren Africa, Remote Sensing of Environ.,1985,18,1-19
    110 Kondratyev, K. Y.,and P. P. Fedchenko, Investigation of humus in soil from their colours, Sov. Soil Sci. 1983,15,108-111
    111 Karmanova, L. A., 1981. Effect of various iron compounds on the spectral eflectanceand color of soil, Sov. Soil Sci.,13,63-60
    112 Kaufman. Y. J., Satellite sensing of aerosol absoption, J. Geophysical Research, Vol.92, No. D4,4307-4217, April 20,1987
    113 Kosmas, C. S., N. Curi, R. B. Bryant, and D. P. Franzmeier, 1984. Characterization of iron oxide minerals by second derivative visible spectroscopy, Soil from their Colors, Soy. Soil Sci. 15,108-111
    114 Kondratyev, K. Y.,and P. P. Fedchenko, 1983. Investigation of humus in soil from their colours, Sov.Soil Sci. 15,108-111
    115 Leger, R. G. J. F. Millette, and S. Chomchan, The effects of organic matter, iron oxides and moisture on the color of twe agriculture soil of Quebec, Can. J. Soil Sci. 1979,59,191-202
    116 Lillesand T M, Kiefer R W. Remote Sensing and Image Interpretation, third editio, John Wiley & Sons, Inc., New York,1994,1-750
    117 Liu & F. Baret, et al., Relating soil surface moisture to reflectance, Remote Sensing of the Environment, 2002, Vol. 81(2-3),pp. 238-246
    118 Liu & F. Baret, et al., Evaluation of methods for soil surface moisture estimation from reflectance data, International Journal of Remote Sensing, 2003,24, No. 10,2069-2083
    119 Li, X. and Strahler, A. H. 1992, Geometric-optical Bidirectional Reflectance Modeling of the Discrete Crown Vegetation Canopy:Effect of Crown Shape and Mutual Shadowing, IEEE Trans. Geosci. Remote Sensing.,30(2):276-292
    120 Li, X., Strahler, A. H. and Woodcock, C. 1995, A Hybrid Geometric Optical-radiatve Transfer Approach for Modeling Albedo and Diretional Refletance of Discontinuous Canopies, IEEE Trans. Geosci. Remote Sensing.,33(2)466-480
    121 Li, X. and Strahler, A. H. Geometrical Optical modeling of a conifer forest canopy. IEEE Trans. Geosci Remote Sens.,GE-23:705-721
    122 Li, X. and Strahler, A. H. Geometric optical Bidirectional Reflectance Modeling of a Coniferous Forest Canopy. IEEE Trans. Geosci Remote Sens.,1986,24:906-919
    123 Lumme, K., and E. Bowell, 1981, Radiative transfer in the surface of atmosphereless bodies: Ⅰ. Teory, Astron. J, 86,1694-1704
    124 Mathews, H. L., RL. Cunningham, and G. W. Peterson, 1973. Spectral reflectance of selected Pennsylvania soils Proc. Soil Sci. Soc. Am. J,37,421-424
    125 Munsell Color, 1975. Munsell Soil Color Chart, MacBeth Division of Kollmorgen Corp.,Maryland USA
    126 Madeira N. J., Spectral reflectance properties Soils. Photo-Interpretation, 1996,2,59-76
    127 Madeira N. J., Cervelle A. B. B., Pouget M., and N. Flay 1997 Visible spectrometric indices of hematite (Hm)and goeithite(Gt)content in latertic soil:the apllication of a Thematic Mapper (TM image for soil-mapping in Brasilia, Brazil. Inter- national Journal of Remote Sensing 18:2835-2852)
    128 Morra,M. J. ,M. H. Hall, and L. L.Freeborn, 1991. Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy. Soil Sci. Soc. Am. J., 55, 288-291
    129 Myneni R B, et al., 1995, Optical remote sensing of vegetation modeling, caveats, and algorithms. Remote Sensing of Environment., 51:169-188
    130 Myneni R. B. and Ross J. , 1991, Photon Vegetation International Applications in Optical Remote Sensing and Plant Physiology New York:Springer-Verlag
    131 Myneni R. B. and Asrar G. Gertl S. A. W., 1990, Radiatine transferin three dimensi- onal leaf canopies. Transport Theory and Statistical Physics,19:205-250
    132 Mckeague, J. A., J. H. Day, and J. A. Shields, 1971. Evaluation relationships amongsoil properties by computer analysis, Can. J. Soil Sci., 51, 105-111
    133 Mutanga O., A. K. Skidmore and H. H. T. Prins. 2003, Predicting in pasture quality in the Kruger National Park, South Africa, using continuum- removed features, Remote Sensing of Environment 89(2004): 393-408
    134 McCarty G. W., J. B. Reeves III,et al., 2002,Mid-Infrared and Near- Infrared Diffuse Reflectance Spectroscopy for Soil Carbon Measurement, Soil Sci.Am.J. 66: 640-646
    135 Nassau,K., The causes of color,Sci. Am., 1980. 243,106-124
    136 Neill P. E. et al., Observed effects of soil organic matter content on the microwave emissivity of soils, Remote Sensing of Environment, 1990,31,175-182
    137 Obukhov, A. I., and D. C. Orlov, 1964. Spectra reflectance of the major soil groups and the possibility of using diffuse reflection in soil investigations, Sov. Soil Sci, 2, 174-184
    138 Orlov, D. C., 1966. Quantitative patterns of Light reflectance on soils: I. Influ- ence of particles (aggregate)size on reflectivity, Sov. Soil Sci, 13, 1495-1498 139 Orna, M. V., The chemical origins of color, J. Chem. Ed., 1978. 55, 478-484
    140 Philpot W D. The derivative ratio algorithm: avoiding atmospheric effects in remote sensing, IEEE Transaction on Geoscience and Remote Sensing, 1991, 29 7
    141 Privette J. L.,et al., 1996, Optimal Sampling Conditions for Estimating Grass- land Parameters via Reflectance Model Inversion. IEEE Trans Geosci Remote Sens. Environment., 48:89-105
    142 Quesney A. et al., Estimation of watershed soil moisture index from ERS/SAR data ,Remote Sensing of Environment,2000,72,290-303
    143 Reeves, J. and G. Mccarty. The potential of NIRS as a tool for spatial mapping of soil compositions.In Near Infrared reflectance International conference proceedings, July 6,1999
    144 Ronov, A. A. , and A.A. Yaroshevsky, 1971. Chemical composition of the Earth ' s crust, in The Earth ' s Crust and Upper Mantle, P. J. Hart, ed. , American Geophysical Union, Washington, D. C., PP, 37-57
    145 Walthall C.L.et al. ,Simple equation to approximate the bidirection reflec tance from vegetative canopies and bare soil surface Science ,-Appl.Opt. , 1985,24,383-387
    146 Stoner, E. R. and M. F. Baumgardner, 1981. Characteristic variations in reflectance of surface soils,Soil. Sci. Soc. AM.]., 45, 1161-1165
    148 Schwertmann,U.,1988.Occurrence and formation of iron oxides in various pedoenvironments , in Iron in Soil and Clay Minerals , J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds. NATO ASI Ser., D. Reidel, Dordrecht, The Netherlands, pp. 267-308
    149 Sudduth K. A. and Hummel J. W., Soil organic matter, CEC, and moisture sensing with a portable NIR spectrophotometer. Transaction of the ASAE, 1993, 36(6): 1571-1582
    150 Stucki, J. W., 1988, Structural iron in smection, in Soil and Clay Minerals, J. W. Stucki, B. A. Goodman, and U. Schwertmann, eds., NATO ASI Ser., D. Reidel, Dordrecht, The Netherlands, pp. 625-675
    151 Stoner, E. R., and M. F. Baumgardner, et al., 1980a, Atla of Soil Reflectance Properties, Res. Bull.962, Agricultural Experiment Station, Purdue University, West Lafayette,Ind
    152 Stark, E. , K. Luchter, and M. Margoshes, 1986, Near-infrared analysis(NIRA):a technology for quantitative and qualitative analysis,Appl. Spectrosc. Rev., 24,335-339
    153 chwertmann, U., 1988. Occurrence and formation of oxide in various pedo-environments, in Iron in Soil and Clay Minerals, J.W. Stucki, B. A. Goodman, and U. Schwretmann, eds.,NATO ASI Ser.,D.Reidel, Dordrecht, The Netherlands, pp. 267 -308
    154 Toure S. and Tychon B., 2004, Airborn hyperspectral measurements and superficial soil oorganic matter
    155 Tanre D. et al., 1979, Atmospheric modeling for space measurements of ground reflectance including bidirectional properties. Vol. 18, No. 21, 3587-3594,1979
    156 Taylor,R.M., 1982.Colour in siol and sediments:a review,Dev.Sedimentol. 35, 749-761
    157 Torrent, J. , U.Schwertmann,H. Fetcher, andF. Alferez, Quantitative relation- ships between soil color and hematite content,Soil Sci. 1983,13,354-358 (3):350 - 357
    158 Twomey, S. A. C. F. Bohren,and J. L. Mergenthaler, 1986. Reflectance and albedo differences between wet and dry surfaces,Appl. Opt., 25, 431-437
    159 Taranik, D. L., and F. A.Kruse,1989. Iron mineral reflectance in geophysical of and environmental research imaging spectrometer(GERIS)data, in Proceedings of the 7th Thematic Conference on Remote Sensing for Exploration Geology, Calgary, Al-berta, Canada, Vol. 1, pp. 445-458
    160 Vermote E. F. , et al. 1997, Second simulation of the satellite signal in the solar spectrum,6S: An Overview, IEEE Trans. Geosci. & Remote Sensing, Vol. 35,No. 3, May 1997
    161 Vane Gregg, Alexander F H. Terresttrial imaging spectrometry: current status, future trends,Remote sens. Environ,1993, 44: 117-126(1993)
    162 Wang,J., R.An overview of the measurements of soil moisture and modeling of
    ?moisture flux in IEEE. Journal of Geophysi cal Research., 1992,97-(D17), 18955-18960

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700