用户名: 密码: 验证码:
甘薯淀粉生产废液中糖蛋白的提取及其生物活性和结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是甘薯生产世界第一大国,甘薯在加工中主要用于甘薯淀粉的生产。而甘薯淀粉生产中产生大量的废水,废水中又富含多糖和糖蛋白类物质,这些有机物是造成环境污染的主要原因。同时,日本科学家发现甘薯中存在的糖蛋白具有很好的调节免疫力和抗肿瘤的功能。如果能把甘薯生产淀粉的废水中的糖蛋白提取出来不但可以减少甘薯生产淀粉废水的环境污染,而且可以得到一种具有高附加值的生物活性物质,具有很大的理论意义和实用价值。
    本课题采用超滤技术从甘薯淀粉生产废水中提取甘薯糖蛋白,并对其生物活性和结构进行了研究,主要研究内容如下:
    确定了从甘薯淀粉生产废水中提取甘薯糖蛋白的工艺路线:甘薯淀粉生产的废水经过两次离心(1,900和3,000r/min)和过滤(400目滤布)后,通过无机陶瓷膜超滤进行初级浓缩,然后再经过真空浓缩,加入70%(终浓度)的乙醇得到沉淀,沉淀经过冷冻干燥得到甘薯粗糖蛋白样品。
    采用中空纤维聚砜超滤设备浓缩甘薯淀粉生产废水的最佳工艺条件、糖蛋白的截留率和粗糖蛋白的提取率分别为:压力0.17MPa,pH=6.5,温度20℃。将100L料液进行浓缩,体积浓缩倍数为7.7倍,糖蛋白浓缩倍数5.25倍,糖蛋白的截留率为68.25%,粗糖蛋白的提取率为0.67%(占甘薯鲜重)。采用无机陶瓷超滤设备浓缩甘薯淀粉生产废水的最佳工艺条件、糖蛋白的截留率和粗糖蛋白的提取率分别为:压力0.35MPa,pH=6.5,温度20℃,u=2m/s。将100L料液进行浓缩,体积浓缩倍数为8.3倍,糖蛋白浓缩倍数为7.5倍,糖蛋白的截留率达到91%,粗糖蛋白的提取率为0.88%(占甘薯鲜重)。
    两种超滤膜各有特点,虽然中空纤维聚砜超滤设备成本低,处理量大,但是和无机陶瓷膜超滤设备相比膜污染严重,膜清洗困难,糖蛋白损失多,所以相比较而言无机陶瓷膜超滤设备更适合于从甘薯淀粉生产废水提取糖蛋白。
    建立了采用无机陶瓷膜超滤设备从甘薯淀粉生产废水中提取糖蛋白的数学模型:
    采用该数学模型和相应的数学软件,当超滤操作条件改变时,可以预测超滤通量的变化;同时当通量一定时,采用该模型可以选择合适的操作条件。通过甘薯粗糖蛋白的急性毒性试验,结果证明甘薯粗糖蛋白并不存在急性毒性。研究了甘薯粗糖蛋白的调节免疫力生物活性,小鼠碳阔清试验证明甘薯粗糖蛋白具
China is the biggest country of Sweet Potato production, most of Sweet Potato wasmanufactured into starch and a great deal of wastewater was produced during the SweetPotato starch production in China. The wastewater will pollute environment because thereare a large number of organics in it. Most of organics of wastewater are glycoprotein, whichhave excellent immunodulating and antitumor biological activity found by Japanesescientists. If the glycoprotein can be extracted from the waste water, not only the pollutingproblem can be resolved, but also can obtain a kind of biological activity product highappending value.
    Ultrafiltration was used for extracting glycoprotein from wastewater of Sweet Potatostarch production and the structure and biological activities of the glycoprotein were studiedin this paper. Major content of this paper as following:
    Technical route of extracting glycoprotein from wastewater of Sweet Potato starchproduction were confirmed as: wastewater was centrifuged twice (1,900 and 3,000rpm) andfiltrated with filtrating fabric (400 mesh), then concentrated with ultrafiltrator and vacuumconcentrator, then precipitated with 70% alcohol (final concentration), then freezed dryinginto powder.
    Optimum technical parameters and the retentive ratio and extracting ratio ofglycoprotein using hollow fabric ultrafiltrator was studied: pressure 0.17MPa, pH 6.5,temperature 20℃;volume concentration times after concentrating 100L wastewater was 7.7,glycoprotein concentration times was 5.25, retentive ratio of glycoprotein was 68.25%,extracting ratio of crude glycoprotein was 0.67%.
    Optimum technical parameters and the retentive ratio and extracting ratio ofglycoprotein using ceramic ultrafiltrator was studied: pressure 0.35MPa, pH 6.5,temperature 20℃, cross-flow velocity 2m/s;Volume concentration times after concentrating100L wastewater was 8.3, glycoprotein concentration time was 7.5, retentive ratio ofglycoprotein was 91.0%, extracting ration of crude glycoprotein was 0.88%.
    Although hollow ultrafiltrator can deal with large number of wastewater and use at alow cost, its membrane was polluted badly and difficult to clean, and lost of glycoproteinwas seriously compared with ceramic ultrafiltrator. So ceramic ultrafiltrator was moresuitable for concentrating glycoprotein from wastewater of Sweet Potato starch productionthan hollow fabric ultrafiltrator.
    A mathematic model of concentrating glycoprotein from wastewater of Sweet Potatostarch production using ceramic ultrafiltrator was described as following:26232. 43510.37780.9342390.91290.184910000ucPucJ =+ ? ?P?×+?Using this model and corresponding software, flux change can be predicted andoperating conditions also can be selected when flux confirmed.Glycoprotein of Sweet Potato has no acute toxicity certified by mice acute toxicityexperiment.Glycoprotein of Sweet Potato has excellent immunomodulating activity certified bycarbon clearance ratio of mice. Glycoprotein has the highest clearance index (4.52) at thedose of 50mg /kg.d. When used together with Cycolphosphamide, glycoprotein also canreduce damage of body by Cycolphosphamide.Glycoprotein of Sweet Potato has excellent antitumor activity certified by mice againstSarcoma 180 implanted tumor experiment. Glycoprotein has the highest tumor inhibitionrate (62%) at the dose of 50mg /kg.d. Glycoprotein also can enhance antitumor effect whenused together with Cycolphosphamide.Antitumor mechanism of glycoprotein of Sweet Potato was studied. Glycoproteinexerted its antitumor effect possibly through enhancing immunity of body, which proved bythe effects of proliferation of active splenocyte by ConA and S180 inhibition in vitroexperiment.Glycoprotein was separated and purified for screening high biological activitycomponents. Combining sulfate acid phase precipitation, ion-exchange, gel filtration,affinity chromatogram with the determining the effects of proliferation of active splenocyteby ConA and S180 inhibition in vitro experiment, Sp-3241 was got. Its purity was certified bygel filtration, PAGE and HPLC. The simulating index of no-active spleen lymphocyte invitro of the purified fraction SP-3241 was 1.727, which was enhanced 40.75% comparedwith index of crude glycoprotein, and the simulating index of active spleen lymphocyte invitro was to 1.965,which was enhanced 49.43% compared with index of crude glycoprotein.The structure of SP-3241 was studied, the result describe as following: SP-3241 is akind of glycoprotein;protein content is 91.60%;sugar content is 6.43%;it is rich in Asp(13.59%), Glu (7.75%) and Leu (7.27%);there were 4 kinds of sugar in the glycoproteinwith a ratio of glucose: galactose: rhamnose: arabinose 10.2:1.25:1:2.5;the relativemolecule weight of the glycoprotein determined by gel separation chromatogram and HPLCis 32359 and 32606Da respectively;sugar and protein is linked with O-link band and sugarlinked with Thr. There were 2 kinds of glycans in the glycoprotein (glycan-1 and glycan-2).
    Relative molecule weight of glycan-1 was 1725Da and there were 3 kinds of sugar in theglycan-1 with a ratio of rhamnose: glucose: galactose 1:10:1.2. Relative molecule weight ofglycan-1 was 468Da and there were 2 kinds of sugar in the glycan-2 with a ratio ofarabinose: glucose 1:2.05.Relationship between structure and biological activity was studied. The result was:there was no immunomodulating activity when using protein or sugar chain along;there wasimmunomodulating activity only when protein and sugar chains being linking together.
引文
1. 何明勋,资源植物学,华东师范大学出版社, 1996:114。
    2. 中国农业百科全书总编辑委员会农作物卷编辑委员会, 中国农业百科全书 农作物卷, 中国农业出版社,1991: 166。
    3. 张立明, 王庆美, 王荫墀,甘薯的主要营养成分和保健作用,杂粮作物,2003, 23 (3): 162~166。
    4. 马代夫,世界甘薯生产现状和发展预测,世界农业,2001, 1:17~19。
    5. 聂凌鸿,甘薯资源的开发利用,现代商贸工业 ,2003,5:45~47。
    6. 宁在兰,甘薯开发前景广阔,山东食品科技,2004,7:32。
    7. 梁敏,邹东恢,王殿友,甘薯的保健功能与开发利用, 2003,5:3。
    8. Bradbury JH, Holloway WD, Chemistry of tropical Root Crops: Significance for Nutrition and Agriculture in the Pacific, Australian Center for International Australian Center for International Agricultural Research monograph,6:201.
    9. Paul AA, Southgate DAT, McCance and Widdowsont's The composition of foods, 4th ed. Amsterdam: Elsevier, 1988.
    10. Wenkam, N.S., Miller, C.D, Composition of Hawaiian Fruits, Hawaii Agric. Expt. Station. Bull, 1965:135
    11. Peters, Comments analysis of Central America crops, J Food Sci.1996, 6:22~25.
    12. [明] 李时珍,本草纲目,长春时代文艺出版社,2001 年 11 月第 1 版:232。
    13. 周玲, 甘薯与保健, 中国食物与营养,1998,6:47-48。
    14. 杨立明等,浅谈甘薯综合开发利用,国外农学—杂粮作物,1995,2:44~45。
    15. AMURA ITARU,JP4103669,Production of Purple Sweet Potato Pigment,1992。
    16. ODANAKA KURAKO,JP3041167 ,Method for Extracting Color from Improved Variety Of Sweet Potato, Yamakawamurasaki or Its Progeny, And Method for Dyeing Textile Product with the Color,1991.
    17.Goda-y, et al, Two Acylated Anthocyanins from Purple Sweet Potato, Phytochemistry (Oxford), 1997,44 (1): 183~186.
    18. SHI-Z, et al, Anthocyanin Pigments of Sweet Potatoes: Ipomoea Batatas, Journal of Food Science, 1992,57(3): 755~757, 770.
    19. Terahara-Norihiko, et al, Six Diacylated Anthocyanins from the Storage Roots of Purple Sweet Potato, Ipomoea Batatas, Bioscience-Biotechnology-And-Biochemistry, 1999;63 (8): 1420~1424.
    20. Suda-Ikuo, et al, Changes Of Serum Gamma-GTP, GOT And GPT Levels in Hepatic Function-Weakling Subjects by Ingestion of High Anthocyanin Sweetpotato Juice, Nippon-Shokuhin-Kagaku-Kogaku-Kaishi, 1998, 45 (10): 611~617.
    21.Yoshimoto-Makoto, et al, Antimutagenicity of Sweetpotato (Ipomoea Batatas) Roots, Bioscience-Biotechnology-And-Biochemistry, 1999;63 (3): 537~541.
    22. Yoshimoto-Makoto, et al, Antimutagenicity of Deacylated Anthocyanins in Purple-Fleshed Sweetpotato, Bioscience-Biotechnology-And-Biochemistry, July, 2001;65 (7): 1652~1655.
    23. Suda-Ikuo, et al, Direct Absorption of Acylated Anthocyanin in Purple-Fleshed Sweet Potato Into Rats, Journal-of-Agricultural-and-Food-Chemistry, 2002;50 (6): 1672~1676.
    24. MICHIOKA OSAMU, JP7258100, Glycolipid Contained in Sweet Potato and Exhibiting Anticancer Action by Suppressing Proliferation and Promoting Differentiation of Cancer Cell and Purification Process, 1995.
    25. SHIYOU HIROKO, JP59053427, Extract of Stalk and Skin of Sweet Potato and Antilipemicagent, 1984.
    26. KUME AKITOMO, JP2001145471, Food Material Derived from Purple Sweet Potato and Having Blood Circulation-Improving Effect, 2001.
    27. Hayase, et al, Antioxidative Components of Sweet Potatoes, J-Nutr-Sci-Vitaminol-(Tokyo),1984, 30(1): 37~46.
    28. Shimozono-H,et al, Suppression of The Melanogenesis of Mouse Melanoma B 16 Cells by Sweet Potato Extract, Journal of the Japanese Society for Food Science and Technology, 1996,43(3): 313~317.
    29. 阚健全等,甘薯糖蛋白的免疫调节作用研究,西南农业大学学报,2000,3:257~260。
    30. 阚健全等,甘薯活性多糖抗突变作用的体外实验研究,2001,1:24~24。
    31. Kusano-Shuichi, et al,Study of Antidiabetic Activity of White Skinned Sweet Potato (Ipomoea batatas L.): Comparison of Normal and Streptozotocin Induced Diabetic Rats and Hereditary Diabetic Mice, Nippon-Nogeikagaku-Kaishi, 1998;72 (9): 1045~1052.
    32. Kusano-Shuichi, et al, Antidiabetic Activity of White Skinned Sweet Potato (Ipomoea batatas L.) In Obese Zucker Fatty Rats, Biological-And-Pharmaceutical-Bulletin. Jan, 2000;23 (1): 23~26.
    33.Kusano-Shuichi, et al , Isolation of Antidiabetic Components from White-Skinned Sweet Potato(Ipomoea batatas L.) , Biosci-Biotechnol-Biochem2001 Jan;65(1): 109~14.
    34. 华希新等,药用甘薯“西蒙 1 号”的生物学特性及其栽培技术研究,中国甘薯,1988,2:51。
    35. HASHIMOTO YOHEI,JP63283552 ,Health Food Mainly Containing Kind of Sweet Potato Originating from Brazil,1988.
    36. 向仁德等, 引种的巴西甘薯叶化学成分研究, 中草药, 1994,4 :179。
    37. 谭桂山等,引种巴西甘薯叶化学成分研究,天然产物研究与开发,1995,4:44。
    38. 叶庆林等,西蒙 1 号甘薯抗肿瘤作用的初步研究,福建医学院学报,1992,1:16。
    39. 许建华等,西蒙 1 号甘薯茎叶抗肿瘤的实验研究,福建医科大学学报,1997,1:20。
    40. Montreuil J,Vliegenthart J F G, Glycoproteins, Amsterdam:Elsevier Science Publishing Company, INC,1995.
    41. 孙册, 莫汉庆.糖蛋白与蛋白聚糖的结构、功能和代谢.北京: 科学出版社, 1998。
    42. Varki A, Glycobiology, 1993,3(20): 97~130.
    43. 朱科学 周惠明,麦胚水溶性糖蛋白的分离纯化及性质测定,无锡轻工大学学报.2003, 22(5), 83~85。
    44.秦玉青,扇贝生殖腺糖蛋白的提取与组分分析,渔业现代化.2001,(6):9~40。
    45.柯丽霞、杨晓彤,金针菇菌丝体糖蛋白(FMGP)的提取及其理化特征,中国食用菌.1998,17(4):40~43。
    46. 周勇志、沈杰,伊氏锥虫不同株的表面变异糖蛋白提取和重要特性比较,中国兽医寄生虫病.1998,6(4): 21~22。
    47. Welling-Wester, Sytske;Feijlbrief, Matty;Koedijk, Danny G.A.M.;Welling, Gjalt W.,Detergent extraction of herpes simplex virus type 1 glycoprotein D by zwitterionic and non-ionic detergents and purification by ion-exchange high-performance liquid chromatography,Journal of Chromatography A, 1998, 186(1): 29~37。
    48. 孙慧、赵辰光,一种新杨树菇(Agrocybe aegerita)凝集素的纯化及生化特性,中国生物化学与分子生物学报.2003, 19 (1) :96~102。
    49. 孟延发、杜毅峰,苦瓜籽核糖体失活蛋白的理化性质及生物活性,中国生物化学与分子生物学报.1999, 15(6) :920~923。
    50. 张梦杰、任庆广,阴沟肠杆菌(Enterbacter Cloacae)糖蛋白活性组分抑瘤效应的研究,复旦学报:自然科学版.2002, 41(4) :378~381, 387。
    51. 李云锋、王振中,贾显禄,稻瘟病菌 66kDa 糖蛋白激发子的纯化及性质研究,植物病理学报.2004, 34(2) :127~132。
    52. 秦宜德、丁益、邹思湘、张海方,猪乳中一高分子量蛋白质的分离纯化和鉴定,激光生物学报.2004, 13(1) :67~73。
    53. Kishino, Satoshi;Nomura, Akikazu;Sugawara, Mitsuru;Iseki, Ken;Kakinoki, Shigeo;Kitabatake, Akira;et. Al.,Purification method for α-1-acid glycoprotein with subsequent high-performance liquid chromatographic determination of monosaccharides in plasma of healthy subjects and patients with renal insufficiency,Journal of Chromatography B: Biomedical Sciences and Applications, 1995, 672(2): 199~205.
    54. Deepa, M.;Veerabasappa Gowda, T.,Purification and characterization of a glycoprotein inhibitor of toxic phospholipase from Withania somnifera,Archives of Biochemistry and Biophysics , 2002, 408(1):42~50.
    55. Kelly, Eileen P.;Greene, James J.;King, Alan D.;Innis, Bruce L.,Purified dengue 2 virus envelope glycoprotein aggregates produced by baculovirus are immunogenic in mice,Vaccine,2000, 23:2549~2559.
    56. Ozaki, Yasuko;Omichi, Kaoru;Hase, Sumihiro, Preparation of Neoglycolipids with a Definite Sugar Chain Moiety from Glycoproteins, Analytical Biochemistry, 1996,15(2): 151~155.
    57. Patricia E, Scott, et al, Effects of thrombospondin purified by heparin affinity or ion-exchange chromatography on the alternative completely pathway, J immunological methods, 1997,202:213~216.
    58. Davies, Michael J.;Hounsell, Elizabeth F.,Comparison of separation modes of high-performance liquid chromatography for the analysis of glycoprotein-and proteoglycan-derived oligosaccharides,Journal of Chromatography A, 1996, 720 (2): 227-233.
    59. Hartmut G, David M N, J.Biochem, 1971,246(20): 6339~6340.7
    60. Devenyi T, Gergely J, 实用蛋白质化学技术.上海: 上海科技出版社, 1982:52。
    61. David R, Anal Biochem, 1979,99:474~476.
    62.孙秀琴,中村健,伊滕洋一,石原和彦等,曼氏裂头蚴蛋白分解酶的糖链研究,中国寄生虫病防治杂志,2001,14(4):285~287。
    63. 孙建中, 王克夷.生物化学与生物物理进展, 1994, 21(2): 104~109。
    64. 郭尧君,蛋白质电泳实验技术,科学技术出版社,2003:54~123。
    65. 方积年, 用 HPLC 测定多糖的纯度及分子量的研究,药学学报,1990,24:532。
    66. Sugiwa, M, Ohno H, Kunihisa M, et al, Studies on antiumor polysaccharides esoecuakkt D-11 from mycelium of coriolus versicolor, The Japanese J Pharmacol, 1980,30:503~513.
    67. 夏其昌,曾嵘等,蛋白质化学于蛋白质组学,科学出版社,2004:19。
    68. Edman P, Method for determination of the amino acid sequence in peptides, Acta Chem.Scard, 1950,4:283.
    69. Wittmann-Liebold B, Hirano H, Kimura M, Manual microsequence determination of proteins and peptides with the DABITC/PITC method. In: Wittnann-liebold B et al eds, Advanced methods in protein microsequence analysis springer-verlag, 1986.
    70. 金善炜,蛋白质顺序测定技术,有机化学,1982,5:384~386。
    71. Niu CF, Fraenhel-Conrat H, C-terminal amino acids and peptides by hydrazinolysis. J Am Chem Soc, 1995,77:5882.
    72. 陈平,梁宋平,一种优化的采用 MALDI-TOF 分析多肽 C 端序列的方法,中国生物化学与分子生物学学报,2001,17:670~676。
    73. 陈惠黎,生物大分子的结构和功能,上海医科大学出版社,1998:332。
    74. Perez S, Mouhous R, Nifnat E, et al, Crystal and Molecular Structure of a Histo-Blood Group Antigen involved incell Adhesion: The Lewis X Trisaccharide.Glycoprotein.1996, 6:537~542.
    75. Wang X, Sun P, Alqamari A, et al, Carbohydrate-Carbohydrate Binding of Ganglioside to Integrin alpha 5 Modulates alpha5beta 1 Function, J Biochem, 2001,276:8436~8444.
    76. 吴东儒, 糖类的生物化学.北京: 高教出版社, 1987:747。
    77. Fukuda M, Meth.Enzymol, 1989,197(19): 65~68.
    78. 张维杰,复合多糖生化研究技术,上海科技出版社,1987:160。
    79. Mechref Y, Novotny M V, Structural Investigationsof Glycoconjugates at High Sensitivity, ChemRev,2002,102:321~337.
    80. Dell A, Morris H R, Glycoprotein Structure Determination by Mass Spectrometry Science,2001,291:2351~2356.
    81. Van Langenhove, Carbohydr. Res, 1985,140~141.
    82. Barber M., Bordoli RS, Sedgwick RD, Tyler, AN, Fast atom bombardment of solids as an ion source in mass spectroscopy1981, 293:270.
    83. Aberth W, Strub K M, Bburlingame A L, et al, Illustrative basic description of FAB and first application of glycerol as a matrix. Cs+ ion gun for LSIMS, Anal Chem, 1982,54:20~29.
    84. Olivares J A, Nhung T, Nguyen, et al, Anal Chem, 1987,59:12~30.
    85.Duffin K L, Welply J K, Huang E, et al, Charac-terizationof N-linked oligosaccharides by electrospray and tandem mass spectrometry, Anal Chem, 1992,64:1440~1448.
    86. Li T, Ohashi Y, Matsuzaki Y, et al, Mass spectrom, 1993,28:2~11.
    87. Mechref Y, Novotny M V, Mass-Spectrometric Mapping and Sequencing of N-linked Oligosaccharides Derived from Submicrogram Amounts of Glycoproteins, Anal Chem, 1998,70:455~463.
    88. Colangelo J, Orlando R, On-target exoglycosidase digestions/MALDI-MS for determining the primary structures of carbohydrate chains, Anal Chem, 1999,71:1479~1482.
    89. Geyer H, Schmitt S, Wuhrer M, Geyer R, Structural analysis of glycoconjugates by on-target enzymatic digestion and MALDI-TOF-MS, Anal Chem, 1999,71:476~482.
    90. Yoshida, Junko;Takamura, Shozo;Nishio, Matomo,Characterization of a streptococcal antitumor glycoprotein (SAGP),Life Sciences Including Pharmacology Letters ,1998,62,12: 1043~1053.
    91. Hasegawa, Takashi;Matsuguchi, Tetsuya;Noda, Kiyoshi;Tanaka, Kuniaki;Kumamoto, Shoichiro;et. al.,Toll-like receptor 2 is at least partly involved in the antitumor activity of glycoprotein from Chlorella vulgaris,International Immunopharmacology 2002,4,2: 579~589.
    92. Noda K, Ohno N, Tanaka K, Kamiya N, Shoyama Y, et al. A,water-soluble antitumor glycoprotein from Chlorella vulgaris,Planta Med 1996;62:423– 6.
    93. 童朝阳. 林福生. 张守兰. 杨廷松. 陈乐贵,褶纹冠蚌(Cristaria plicata)提取物抗肿瘤作用的实验研究,中国海洋药物,2003,3:20~24。
    94. Kawamura Y, Morita A, Izumo K et al,Antitumor protein and corresponding gene sequence isolated from matsutake mushrooms.US Patent : US 6291648 , 2001 ,9 :18.
    95. 高居易, 陈彦,建宁莲子糖蛋白的分离、纯化及清除自由基作用,武汉植物学研究,2003,21(2):175~178。
    96. Lim, K.T., Son, Y.O., Lee, J.C., Lim, J.C., Chung, Y., 2002. Effects,of glycoprotein from Ulmus Davidiana Nakay on hydroxyl radical induced cytotoxicity, and on activation of nuclear,factor-_B and activator protein-1 in cultured mouse primary, thymocytes. Kor. J. Food Sci. Biotechnol, 11:172~178.
    97. Lee, Sei-Jung;Heo, Kyung-Sun;Oh, Phil-Sun;Lim, Kwang;Lim, Kye-Taek Glycoprotein isolated from Ulmus davidiana Nakai inhibits TPA-induced apoptosis through nuclear factor-kappa B in NIH/3T3 cells Toxicology Letters, 2004, 146(2):159~174.
    98. 于秋英 刘翠俐, 莼菜多糖蛋白体降低小鼠血脂作用的研究, 中国公共卫生学报.1997, 16,2:85~86。
    99. Lin, Kae-Yuan;Pan, Ju-Pin;Yang, Dah-Li;Huang, Kuang-Tzu;Chang, Mau-Song;Ding, Philip Yu-An;et. al.,Evidence for inhibition of low density lipoprotein oxidation and cholesterol accumulation by apolipoprotein H (β2-glycoprotein I) , Life Sciences 2001,69(6): 707~719.
    100. Harnett, William;Harnett, Margaret M., Modulation of the host immune system by phosphorylcholine-containing glycoproteins secreted by parasitic filarial nematodes,Biochimica Biophysica Acta (BBA)/Molecular Cell Research, 2001, 1539(1~2): 7~15.
    101. 谭西贵,我国甘薯生产前景展望,安徽农业科学,2004,32,1:185~190。
    102. 黄钢、谢江、林丽萍、王毅、谢开云,四川甘薯的加工与利用,西南农业学报,1998,11:101~106。
    103. 王学武,湖南省甘薯加工产业化思考,作物研究,2001,1:46~47。
    104. 王国扣,薯类淀粉厂的废水特征及处理方法,淀粉与淀粉糖,1997,4:40~45。
    105. 管大安,鲜甘薯淀粉的工业化生产,食品科技,2000,5:6~7。
    106. 汪志民,湿法生产甘薯淀粉工艺及设备设计探讨,淀粉与淀粉糖. 1990,3:25~30。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700