用户名: 密码: 验证码:
阿尔金构造系晚更新世中晚期以来的构造隆升及其变形机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿尔金断裂带、库鲁塔格东部的塞里克沙依断裂、塔里木盆地东南缘的车尔臣河隐伏断裂带,以及其间100-200km范围内的一系列北东向、北北东向断裂和断块统称为“阿尔金构造系”。构造系位于青藏块体与新疆块体间,为两个块体的分界构造,总体走向NE60°。构造系的主要构造组分——阿尔金断裂带是一条巨型左旋走滑断裂带,在平面上呈一拉长的S形,其西起西藏郭扎错,走向NE60°,至阿依耐克后,走向转折,平均走向约NE70°,并一直延至宽滩山,经过宽滩山后折向SE98°,延至阿拉善一带,断裂带全长约2000km。构造系内部其它主要断裂有江尕拉萨依断裂带、红柳沟断裂带,三危山-多坝沟断裂带,这些断裂以逆冲为主,兼有走滑特征,而边界断裂则主要以走滑为主,兼具逆冲分量。由于阿尔金构造系特殊的大地构造位置,对它的研究有助于揭示青藏高原北缘的构造变形机制及现今地球动力学特征。因此,一直是地质工作的重点研究地区。前人从大地构造、几何学、运动学、动力学等诸方面对构造系开展了大量的研究工作。在已有的研究中,与阿尔金运动学相关的研究,主要涉及阿尔金断裂带的左旋走滑速率,而很少涉及断裂的逆冲活动,特别是晚更新世中晚期以来逆冲活动的论述较少。同时,阿尔金山构造系隆升研究也主要涉及了晚更新世以前的隆升历史,对晚更新世以后的隆升研究很少。
    宽谷阶地和逆断层陡坎是两种较为典型的构造地貌,是构造隆升的地貌响应,蕴涵了丰富的构造隆升信息。通过对阿尔金构造系航卫片的判读和野外调查,可知在阿尔金断裂带存在较为明显逆冲分量,阿尔金山北缘的逆冲断层也有明显的较新逆冲活动形迹,同时,在阿尔金构造系内许多河流有宽谷阶地发育,地貌特征明显。所以,本文以阿尔金构造系中的宽谷阶地和逆断层陡坎作为研究对象,研究构造系的最新隆升速率,并结合构造系的其它运动学特征,探讨构造系现今的构造变形机制。
    本文的研究遵循“点—线—面—体”的研究思路。所谓“点”,就是根据卫片判读,选择构造地貌形迹明显,同时易于实地调查的构造点开展研究,通过各点的研究结果,将各点串联,这样就能形成沿构造系走向的一条“线”,揭示不同点之间的隆升的异同。对于逆断层陡坎来说,线的两侧则构成“面”,从而可以得到上升面相对于下降面在区域纵向上的异同,而对于宽谷阶地来说,各点实际上也反映了局部面与面之间的相对抬升活动,各点串成的线,则可以反映构造系在横向上局部面之间的隆升差异(本文选择的宽谷阶地观测点的河流均垂直于构造系发育,构造系内的河流流向绝大部分垂直于构造系走向,至少在穿过断层是这样的),通过上述三个步骤的研究,结合构造系深部探测结果、走滑活动特征,探讨构造系的现今隆升机制,是谓“体”。
    本文用于研究构造隆升的观测点15个,共有25个剖面,其中10个宽谷阶地横剖面,15个逆断层陡坎剖面,其他地貌面实测点17个。通过对这些观测点的野外地质调查及室内
Strath terrace and thrust scarp are two typical tectonic geomorphy and the geomorphicresponses to tectonic uplift. They imply abundant information of tectonic uplift. Based on theinterpretation to satellite images and field investigations, I found that there are obvious thrustcomponents in the Altun Fault zone, and the latest thrust movements of thrust faults in thenorthern margin of the Altun Mountains. In the meantime, there are strath terraces with cleargeomorphic characters in a lot of streams of the Altun structural system. Therefore, I regard thestrath terrace and thrust scarp in the Altun structural system as subjects, research the latest upliftrate of the structural system, and combine these data with other kinematic characters to discuss thepresent deformation mechanism of the Altun structural system.
    Based on the investigating of field geological of fifteen sites, testing of age samples andcalculation of uplift rates, interoperating of satellite images, analyzing of other data, I can obtainseveral major conclusions as below.
    1) In the Altun structure system, the thrust fault can be divided into three segments, thewestern segment, middle segment and eastern segment. The western segment is toward west fromthe debouchment of the Cheerchenhe River. The characters of the segment are that there are thrustcomponents on the major fault of Altun and there are a few of thrust faults in the system.The middle segment is located from the debouchment of Cheerchenhe River to Qingyazi. Themajor fault forms the boundary between the Qaidam Basin and the Tarim Basin, the thrust faultsspread on the northern margin of the Altun Mountain, and there are thrust components on themajor fault of Altun.
    The eastern segment is towards east from Qingyazi. There are thrust components on thenorthern marginal fault of Altun. There are thrust faults with different scales between theSanweishan fault and the major fault of Altun. There are latest thrust faults with small scales onthe alluvial fan of pediment, which have intermittent, non-linear and convex shapes and extendtoward north.
    On the whole Altun structure system, there are thrust components in strike-slip faults andmost thrust faults have strike-slip components.
    2) Based on analyzing and contrasting the ninety-eight ages of stream terraces, combinedwith regional paleoclimate data, nine forming periods of stream terraces are determined: Ⅰ.2-4kaBP;Ⅱ.4-8ka BP,concentrated about 6ka BP;Ⅲ.9-14ka BP,concentrated between 11-13ka BP;Ⅳ.16-23ka BP,concentrated about 18ka BP;Ⅴ.25-32ka BP,concentrated between 27-29ka BP;
    Ⅵ.35-42ka BP;Ⅶ.45-53ka BP;Ⅷ.65-78ka BP;Ⅸ:103ka BP.The ages of terrace surface indicate synchronism of the terraces formation, especially on theyoung terraces. In the meantime, the terraces formation is related with the changes of regionalpalaeoclimate. The major terraces formed in the periods when the paleoclimate changed from cooland dry to warm and humid, controlled by the changes of regional palaeoclimate. The formation ofstrath terrace also indicates the same characters.3) Based on the surveying of geomorphy, testing of ages and calculating of uplift rates onstrath terraces of eight investigated sites, the uplift rates of every site are obtained.On the western segment of the Altun structural system, the uplift rate is 6.67±0.50mm/yr inNaoqi since18.98±1.42ka BP, 1.75±0.09 mm/yr in Tuohepayi since 18.31±0.99ka BP.On the middle segment of the Altun structural system, the uplift rate is 0.64±0.05mm/yr atthe debouchment of the Milan River since 10.70±0.81ka BP.On the eastern segment of the Altun structural system, the uplift rates are between 4.21±0.64mm/yr to 2.15±0.16mm/yr since 40.5±3.16ka BP in Tuanjiexiang, the averaging rate is3.38±0.24mm/yr;The uplift rates are between 1.26±0.23mm/yr to1.2±0.03mm/yr since11.44±0.86ka BP in Changcaogou, the averaging rate is 1.23±0.11mm/yr;The uplift rates arebetween 4.89±0.59 mm/yr and 4.46±0.19 mm/yr 4.21±0 since 16.07±0.27ka BP in Yandantu,the averaging rate near the front of the mountain is 4.68±0.31mm/yr since 12.83±0.97ka BP, theaveraging rate near the margin of the platform is 4.54±0.08mm/yr, the averaging rate is4.61±0.16mm/yr since 16.07±0.27ka BP in the Yandantu area;The uplift rate is 1.05±0.08mm/yrsince 53.26±4.05ka BP in Erjiatai;The uplift rates range from 1.09±0.48 mm/yr to 0.40±0.03mm/yr since 103.47±9.42ka BP in the area around the debouchment of Shulehe River, theaveraging rate is 0.75±13 mm/yr. In the middle part of Yingzuizhan, the uplift rate is 0.79±0.06mm/yr since 23.71±1.73 ka BP.The uplift movements indicated by strath basically took place during the time when thepalaeoclimate changed from warm and humid to cool and dry. Among the eldest ages of the treadsabove for all sites, the youngest is 10.70±0.81ka BP of debouchment of the Milan River. Therefore,the uplift rates or averaging rates at these sites can be regarded as the distribution of uplift rates inthe Altun structural system since 10.70±0.81ka BP, representing the distribution of uplift ratessince Holocene. And there is a tendency that the rates dwindle from west to east in the wholesystem, and the same in the every segment.4) Based on the surveying of geomorphy, testing of ages and calculating of thrust rates onthrust scarps of nine investigated sites on the middle and eastern segments of Altun StructuralSystem, the thrust rates of all sites are obtained.On the middle segment, the thrust rates are 0.33±0.04 mm/yr and 0.09±0.01 mm/yrrespectively since 16.09±1.24ka BP in Jianggalasayi;the rate is 1.42±0.11 mm/yr since31.96±2.40ka BP in Jianggalasayi;0.57±0.05mm/yr since 72.36±5.28ka BP in Liuchengzi;and0.15±0.04mm/yr since 74.51±5.41ka BP in Akesaigou.
    On the eastern segment, the thrust rate is 0.91±0.18mm/yr since 18.52±1.01ka BP inTuanjiexiang;0.57±0.04mm/yr since 47.43±3.51ka BP in Dalebayi;0.37±0.07mm/yr since35.38±2.58ka BP in Bangeba;0.13±0.01mm/yr since 65.41±4.71ka BP in west of Shulehe;and0.05±0.01mm/yr since 8.99±0.68ka BP in Hongliugou.In all ages of treads related with thrust scarps above, the youngest is 8.99±0.68ka BP at theHongliugou site. Therefore, these rates represent the distribution of thrust rates in the Altunstructural system since 8.99±0.68ka BP, namely since early Holocene.5) In general, in the area where strath terrace and thrust scarp coexist, the height of strathabove channel and the uplift rate are bigger than or equal to those of thrust scarp and thrust rate,respectively.6) It is a boundary structure and a sinistral transpression zone for the Altun structural systembetween the Qing-zang Massif and Xinjiang Massif. All of data, including GPS, inversion of stressfield, surface and deep structures, indicate oblique slip convergence between the bilateral massifsof the Altun structural system. The boundary structures of this system are sinistral strike-slip faults.The northwestern boundary is the Cheerchenhe River Concealed faults and the Sailikesayi fault,and the southeastern boundary is the major fault of Altun. The southwestern segment of thissystem generates structural conversion with Aqike Structure. The northeastern segment generatesstructure conversion with Danhenanshan and Qilianshan Fold Systems. There are thrustcomponents in the strike-slip faults and there are strike-slip components in most thrust faults.7) In the Altun structural system, the surface structure appears as a combination of strike-slipfaults and thrust faults. The lithosphere has lateral discontinuity and vertical lamination.Deformation partitioning exists in the Altun structural system. In the meantime, the major fault ofAltun extends downwards to the upper mantle and forms a shear zone with 40km width, otherthrust faults end on the major fault at depth. Therefore the deformation partitioning in the systemaccords with the oblique slip partitioning model. However the system's deformation is notpartitioned into single deformation domains of simple shear (strike-slip) or pure shear (contract).There are thrust components in the strike-slip faults and there are strike-slip components in mostthrust faults. The deformation partitioning of the Altun structural system is an incompletedeformation partitioning.8) In the background of the India plate underthrusting and pushing towards north, the obliqueconvergence between the Qingzang massif and Xinjiang massif is the major driving force of thepresent deformation in the Altun structure system. When the southeastern lateral Qingzang massifof the structural system moves, the northwestern lateral Xinjiang massif also does.
引文
柏美祥, 戈澍漠, 胡军等. 1987. 阿尔金断层地震活动特征. 中国地震, 3(1): 77-82.
    车自成, 刘良, 孙勇. 1995a. 阿尔金铅、钕、锶、氩、氧同位素研究及其早期演化. 地球学报, 36::334-337.
    车自成, 刘良, 洪福, 罗金海. 1995b. 阿尔金山地区高压变质泥质岩石的发现及其产出环境,科学通报, 40(14): 1298-1300.
    车自成, 刘良, 刘洪福, 罗金海. 1998. 阿尔金断裂系的组成及相关中生代含油气盆地的成因特征. 中国区域地质, 17(4): 377-384.
    车自成, 孙勇. 1996. 阿尔金麻粒岩相杂岩的时代及塔里木盆地的基底. 中国区域地质, 15(1): 51-57.
    陈柏林, 陈宣华, 王小风, 杨风等. 2002. 阿尔金北绿地区韧性剪切带型金矿床构造控矿解析. 地质学报, 76(2): 235-243.
    陈桂华, 徐锡伟. 2004. 变形分解作用研究综述. 华南地震, 24(4): 11-20.
    陈国星, 高维明. 1987. 阿尔金断裂东段第四纪活动的时空特征. 中国地震, 3(增刊): 35-51.
    陈文彬, 徐锡伟, 戴华光等. 2000. 阿尔金南缘断裂安南坝段滑动量的初步研究. 西北地震学报, 22(4): 424-428.
    陈文彬. 2003. 河西走廊及邻近地区最新构造变形基本特征及构造成因分析. 博士论文,中国地震局地质研究所.
    陈宣华, 王小凤, 杨风, 陈正乐, 陈柏林, 王克卓. 2001. 阿尔金山北缘早古生代岩浆活动的构造环境. 地质力学学报,7(3): 193-200.
    陈宣华, 杨风, 王小风等. 2002. 阿尔金北缘地区剥离断层控矿和金矿成因—以大平沟金矿为例. 吉林大学学报(地球科学版), 32(2): 122-127.
    陈正乐, 陈宣华, 王小风, 陈柏林, 场风, 李学智, 杨韶. 2002. 新疆阿尔金山拉配泉铜矿矿区地质特征及成因初析. 地质力学学报, 8(1): 71-78.
    陈正乐, 王小凤, 冯夏红, 王长秋, 刘健. 2003. 青藏高原北缘山脉隆升时限的同位素证据. 吉林大学学报(地球科学版), 33(3): 270-275.
    陈正乐, 张岳桥, 王小风, 陈宣华. 2001. 新生代阿尔金山脉隆升历史的裂变径迹证据. 地球学报, 22(5): 413-418.
    程绍平, 杨桂枝. 1994. 大地貌学研究进展综述. 地球科学进展, 9(1): 1-7.
    崔军文, 李朋武, 李莉. 2001. 青藏高原的隆升: 青藏高原的岩石围结构和构造地貌. 地质论评, 47(2): 157-163.
    崔军文, 唐哲民, 邓晋福等. 1999. 阿尔金断裂系. 北京: 地质出版社.
    崔军文, 张晓卫, 李朋武. 2002. 阿尔金断裂: 几何学、性质和生长方式. 地球学报, 23(6): 509-516.
    崔之久, 高全洲, 刘耕年等. 1996. 夷平面、古岩溶与青藏高原隆升. 中国科学(D 辑), 26(4): 378-385.
    单新建, 宋晓宇, 柳稼航, 王长林. 2001. 星载INSAR技术在不同地形地貌区域的DEM提取及其应用评价. 科学通报, 46(24): 2074-2079.
    邓起东, 张培震. 2000. 史前古地震的逆断层崩积楔. 科学通报, 45(6): 650-655.
    邓起东, 张培震, 冉勇康, 杨晓平, 闵伟, 楚全芝. 2002. 中国活动构造基本特征. 中国科学(D 辑), 32(12): 1020-1030.
    丁国瑜. 1995. 阿尔金活断层的古地震与分段. 第四纪研究, (2): 97-106
    董英君, 薛光琦, 马开义, 姜枚. 1999. 阿尔金断裂系及邻区剪切波各向异性研究. 地球物理学进展, 14(4): 58-65.
    杜国云, 王竹华, 李晓燕. 2002. 构造地貌分析体系及相关的构造地貌标志. 烟台师范学院学报(自然科学版),18(2): 105-112.
    冯先岳. 1982. 阿尔金断裂带. 中国活动断裂, 北京: 地震出版社, 219-225.
    甘卫军, 沈正康, 张培震,任金卫, 万永革, 周德敏. 2004. 青藏高原地壳水平差异运动的GPS观测研究. 大地测量与地球动力学, 24(1): 29-35.
    葛肖虹, 段吉业, 刘先文等. 1996. 中国西北的大陆构造.地质矿产部岩石圈构造与动力学开放研究实验室 1995 年年报, 北京:地质出版社: 9—18.
    葛肖虹, 张梅生, 刘永江等. 1998. 阿尔金断裂研究的科学问题与研究思路. 现代地质,12(3): 295—301.
    葛肖虹, 刘俊来. 1999. 北祁连造山带的形成与背景. 地学前缘, 6(4): 223-229.
    葛肖虹, 刘俊来. 2000. 被肢解的西域克拉通. 岩石学报, 16(1): 59-66.
    葛肖虹, 刘永江, 任收麦. 2002. 青藏高原隆升动力学与阿尔金断裂. 中国地质, 29(9): 346-350.
    葛肖虹, 刘永江, 任收麦等. 2002. 对阿尔金断裂科学问题的再认识. 地质科学, 36(3): 319—325.
    郭召杰, 张志诚, 王建君. 1998. 阿尔金北缘蛇绿岩的 Sm—Nd 等时线年龄及其大地构造意义,科学通报, 143(18): 1981-1984.
    郭召杰, 张志诚. 1998. 阿尔金盆地群构造类型与演化. 地质论评, 44(4): 357-364.
    国家地震局阿尔金活动断裂带课题组. 1992. 阿尔金活动断裂带. 北京:地震出版社.
    虢顺民, 向宏发. 1998. 阿尔金构造系渐新世—中新世以来断裂左旋位错时空分布规律研究. 地震地质, 20(1): 9-18.
    虢顺民等,2001,阿尔金断裂带阿克塞——红柳峡段晚第四纪活动性状的新观察,活动断裂研究——理论与应用,8,P159-168.
    韩恒悦, 米丰收, 刘海云. 2001. 渭河盆地带地貌结构与新构造运动[J]. 地震研究, 24(3): 251-257.
    韩慕康. 1992. 构造地貌学. 地球科学进展, 7(5):6l-62.
    胡世雄, 王河. 2000. 现代地貌学的发展与思考. 地学前缘, 7(Suppl): 67-78.
    胡小猛, 杨景春. 2001. 临汾盆地末次间冰期以来地貌演化的构造和气候响应. 地质力学学报, 7(2): 176-180.
    计凤桔, 郑荣章, 李建平, 徐锡伟. 2003. 阿尔金断裂沿线阶地黄土堆积的 TL 年代与古气候变迁的关系. 核技术,26(1): 53-55.
    贾运鸿, 张瑞斌. 1991. 阿尔金断裂带中段阿卡吐一野马泉地震形变带特征及地震事件. 西 北地震学报, 13(1):93-96.
    姜枚, 许志琴, 薛光琦, 史大年. 1999. 青海茫崖一新疆若羌地震探测剖面及其深部构造的研究. 地质学报, 73(2): 153—161.
    景才瑞, 饶扬誉. 1995. 地貌学史述要. 华中师范大学学报(自然科学版), 29(3): 382-386.
    康来迅.1989. 昌马断裂带活动构造地貌之研究. 地理研究, 8(2): 35-43.
    李炳元, 张青松, 王富葆. 1991. 喀喇昆仑山—西昆仑山地区的湖泊演化. 第四纪研究, (1)∶64~70.
    李春昱. 1980. 中国板块构造的轮廓. 中国地质科学院院报, 2(1): 11~22.
    李海兵, 杨经绥, 许志琴, 吴才来等. 2001a. 阿尔金断裂带的形成时代. 地质论评, 43(3): 315-316.
    李海兵, 杨经绥, 许志琴, 吴才来等. 2001b. 阿尔金断裂带印支期走滑活动的地质及年代学证据. 科学通报, 46(16): 1333-1338.
    李海兵, 杨经绥,史仁灯等. 2002. 阿尔金走滑断陷盆地的确定及其与山脉的关系. 科学通报, 47(1): 63-67.
    李朋武, 崔军文, 高锐, 李莉. 2001. 柴达木地块新生代古地磁新数据及其构造意义. 地球学报, 22(6): 563-568.
    李四光. 1979. 地质力学概论. 北京: 科学出版社.
    李永安, 李强, 刘玉良等. 1989. 塔里木陆块晚古生代以来古地磁特征研究. 新疆地质, 7 (3) : 1-88.
    李永安, 李向东, 孙东江, 韩玉玲. 1997. 中国新疆西南部喀拉昆仑羌塘地块及康西瓦构造带构造演化. 乌鲁木齐: :新疆科技卫生出版社, 77-88.
    李有社, 崔军文, 高静. 1997. 唐哲明青藏高原北缘断裂擦痕的构造分析. 地球学报, 8( 2): 129-133
    李志中.阿尔金山及其毗邻地区构造地貌的形成和演化. 地理研究,1994,13(3):35-43.
    刘德民,李德威,谢德凡等. 2003. 喜马拉雅造山带中段北坡构造地貌初步研究. 地球科学, 28(6): 639-644
    刘良, 车自成, 罗金海, 王焰, 高章鉴. 1996. 阿尔金山西段榴辉岩的确定及其地质意义. 科学通报, 41(16): 1485-1488:
    刘良, 车自成, 王焰, 罗金海, 陈丹玲. 1999. 阿尔金高压变质带的特征及其构造意义. 岩石学报, 15(1): 57-64.
    刘良, 车自成, 王焰, 罗金海等. 1998. 阿尔金茫崖地区早古生代蛇绿岩的 Sm-Nd 等时线年龄证据. 科学通报, 43(8): 880-882.
    刘锡清, 马道修. 1996. 1: 860 万中国海区及邻域地貌图: 板块构造地貌分类例析. 地理学报, 51(3): 240-250
    刘永江, 叶慧文, 葛肖虹等. 2000. 阿尔金断裂变形岩激光微区 40Ar/39Ar 年龄. 科学通报, 45(19): 2101-2104.
    卢华复, 王胜利, Suppe J., Hubert-Ferrari A., 印栋豪, 阎福礼, 陈剑. 2002. 天山中段南麓的第四纪褶皱作用. 科学通报, 47(21): 1675-1679.
    鲁新便. 1995. 阿尔金山及邻近地区深部地电结构探讨. 新疆地质, 13(3): 256-263.
    鲁新便, 石彦, 田春来, 吴燕冈. 1996. 塔里木盆地东南部及阿尔金地区深部地质构造分析. 新疆石油地质, 17(4): 314-317.
    吕德徽, 向光中. 1993. 阿尔金断裂东段断层泥特征及断层滑动方式. 西北地震学报, 15(2): 13-23.
    吕太乙. 1986. 阿尔金北缘断裂带东北段第四纪构造活动与地震[J]. 西北地震学报. 8(1): 91-99.
    罗来兴, 杨逸畴. 1963. 川西滇北地貌形成的探讨. 地理集刊, 5: 1-57.
    罗晓琳. 1997. 浅论新构造运动在我国地貌上的表现. 殷都学刊(自然科学版), 4: 57-61.
    马杏垣等编著. 1988. 中国岩石圈动力学地图集. 北京: 中国地图出版社.
    孟自芳, 邓云山, 丁兆海, 郑彦鹏, 李永安, 孙东江. 1998. 塔里木盆地南缘中新生代火山岩古地磁新结果. 中国科学(D 辑) ,28 (增刊) : 79-89.
    孟自芳, 李永安, 邓云山等. 1997. 新疆普鲁火山岩古地磁研究. 科学通报, 42 (2) :177-180.
    米广尧, 苗培森. 1997. 吕梁山北段变质岩系变形分解作用初探. 华北地质矿产杂志, 12(2): 167-175.
    莫仲达. 1988. 外国地貌发育理论系统述评. 热带地貌, 9(1): 56-64.
    潘宝田, 高红山, 李吉均. 2002. 关于夷平面的科学问题—兼论青藏高原夷平面. 地理科学, 22(5): 520-526.
    潘保田, 高红山, 李炳元等. 2004. 青藏高原层状地貌与高原隆升. 第四纪研究, 24(1): 50-57
    潘桂棠, 焦淑沛, 徐耀荣等. 1984. 阿尔金山新生代构造及造山性质. 青藏高原地质文集(15),北京: 地质出版社, 113-119.
    申旭辉, 田勤俭, 韦开波, 等. 2000. 中上地壳应变分配模型及其地震学研究意义. 地震, 20((增刊): 58-64.
    施雅风,孔昭宸,王苏民,等. 1992. 中国全新世大暖期的气候波动与重要事件. 中国科学(B 辑), 12: 1300-1308.
    施雅风,李吉均,李炳元等.1999. 晚新生代青藏高原的隆起与东亚环境变化. 地理学报, 54(1): 10-20.
    史大年, 姜枚, 马开义等. 1999. 阿尔金断裂带地壳和上地幔结构的 P 波层析成像. 地球物理学报, 42(3): 341-350
    史兴民, 杨景春. 2003. 河流地貌对构造活动的响应. 水土保持研究, 10(3): 48-51,108
    孙勇, 刘池阳, 车自成. 1997. 阿尔金山拉配泉地区元古宙裂谷火山岩系及其构造意义. 地质论评, 43(1): 17-24.
    索书田, 钟增球等. 2001. 大别-苏鲁超高压变质带内变形分解作用对榴辉岩透镜体群发育的影响——以碧溪岭地区为例. 地质科技情报, 20(2): 15-22
    田勤俭, 丁国瑜, 申旭辉, 等. 2002. 青藏高原东北隅强震构造模型. 地震, 22(1): 9-16.
    吐尔逊· 哈斯木, 孜娜提. 2000. 天山山地构造地貌初步研究. 新疆大学学报(自然科学版), 17(4): 73-78
    王峰, 徐锡伟, 郑荣章等. 2002. 阿尔金断裂带东段地表破裂分段研究. 地震地质, 24(2): 145-158.
    王峰, 徐锡伟, 郑荣章等. 2003. 阿尔金断裂带东段距今 20ka 以来的滑动速率. 地震地质, 25(3): 349-358.
    王峰, 徐锡伟, 郑荣章等. 2004. 阿尔金断裂带西段车尔臣河以西晚第四纪以来的滑动速率研究[J]. 地震地质, 26(2): 200-208.
    王国灿, 吴燕玲, 向树元等. 2003. 东昆仑东段第四纪成山作用过程与地貌变迁. 地球科学, 28(6): 583-592
    王乃墚, 韩慕康. 1984. 构造地貌学的理论、方法、动向与应用.中国地理学会第一次构造地貌学术讨论会论文选集. 科学出版社, 1-9
    王萍, 卢演俦, 陈杰. 2004. 阿尔金断裂东端的旋转构造及其动力学意义. 中国地震,20(2): 134-142.
    王琪, 游新兆, 王启梁. 1996. 用全球定位系统(GPS)监测青藏高原地壳形变. 地震地质, 18(2): 97-103
    王琪, 张培震, Freymueller, J.T., 赖锡安, 李延兴, 朱文耀, 刘经南, Bilham, R., Larson, K.M.. 2001. 中国大陆现今地壳运动和构造变形. 中国科学(D), 31(7): 529-536.
    王琪, 张培震, 马宗晋. 2002. 中国大陆现今构造变形GPS观测数据与速度场. 地学前缘,9(2): 416-429.
    王维达, 金嗣炤, 高钧成. 1997. 中国热释光与电子自旋共振测定年代研究. 北京:中国剂量出版社.
    王小风, 陈宣华, 陈正乐, 陈柏林等. 2001. 阿尔金山地区铜金矿化富集规律. 地质力学学报, 7(3): 201-207.
    王永兴. 1995. 天山第四纪构造地貌演化—活动性陆内古板缘的一种造山模式. 干旱区地理, 18(1): 27-35.
    王有学, 韩果花, 姜枚等. 2004. 阿尔泰一阿尔金地学断面地壳结构. 地球物理学报, 47(2):240-249.
    王瑜, 万景林, 李齐, 王非, 王二七. 2002. 阿尔金山北段阿克塞一当金山口一带新生代山体抬升和剥蚀的裂变径迹证据. 地质学报, 76(2): 191-198.
    吴峻, 兰朝利, 李继亮, 俞良军. 2002. 阿尔金红柳沟蛇绿混杂岩中 MORB 与 OIB 组合的地球化学证据. 岩石矿物学杂志, 21(81): 24-30.
    吴峻, 李继亮, 兰朝利, 俞良军. 2001. 阿尔金红柳沟蛇绿岩研究进展, 地质科学, 36(3):342-349.
    吴珍汉, 胡道功, 刘崎胜等. 2002. 西藏当雄地区构造地貌及形成演化过程. 地球学报, 23(5): 423-428.
    向宏发, 虢顺民, 张晚霞等. 2000. 阿尔金断裂带东段第四纪以来的水系位错与滑动速率. 地 震地质, 22(2): 129-138.
    肖序常, 刘训, 高锐, 罗照华. 2002. 西昆仑及邻区岩石圈结构构造演化——塔里木南—西昆仑多学科地学断面简要报道. 地质通报, 21(2): 63-68.
    谢富仁, 刘光勋. 1989. 阿尔金断裂带中段区域新构造应力场分析. 中国地震, 5(3): 26-36.
    邢成起, 张杰, 吕德徽. 1998. 关于阿尔金北缘活动断裂带运动方式的转变机制的讨论[J]. 西北地震学报, 20(2): 52-57.
    徐叔鹰. 1963. 论夷平面的成因、年龄与变形. 兰州大学学报(自然科学版), 2: 96-106.
    徐锡伟, Tapponnie, P., Woerd, J.V., Ryerson, F.J., 王峰, 郑荣章, 陈文彬, 马文涛, 于贵华, 陈桂华. 2003. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论. 中国科学(D 辑), 33(10): 967-974.
    徐锡伟, 米仓伸之, 玲木康弘等. 1996. 山西六棱山北麓晚第四纪不规则断裂作用的地貌学研究[J]. 地震地质, 18(2): 169-181.
    徐锡伟, 闻学泽, 郑荣章, 马文涛, 宋方敏, 于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学(D 辑), 33(增刊): 151-162.
    许志琴, 崔军文, 张建新. 1996. 大陆山链的变形构造动力学. 北京: 冶金工业出版社.
    许志琴, 姜枚, 杨经绥. 1996. 青藏高原北部隆升的深部构造物理作用. 地质学报, 70(3): 195-206.
    许志琴, 杨经绥, 张建新, 姜枚, 李海兵, 崔军文. 1999a. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 73(3): 193-205.
    许志琴, 杨经绥, 姜枚, 李海兵. 1999b. 大陆俯冲作用及青藏高原周缘造山带的崛起. 地学前缘, 6(3): 139-151.
    薛光琦, 姜枚, 史大年, 宿和平. 1999. 利用天然地震震相探讨阿尔金地区地壳结构. 地质论评, 45(2): 120-124.
    闫纯有. 邯郸地区地貌与构造[J].河北建筑科技学院学报, 2000,17(4):63-65.
    杨藩, 叶素娟, 曹春潮, 乔秦征, 许同春. 1994. 新生代阿尔金断层中、东段右行走滑特征. 地质科学, 29(4): 346-354.
    杨惠心, 董学斌, 李朋武. 1992. 柴达木地块古地磁研究及其演化. 长春地质学院学报, 22 (4): 420~426.
    杨经绥, 吴才来, 史仁灯. 2002. 阿尔金山米兰红柳沟的席状岩墙群: 海底扩张的重要证据. 地质通报, 21(2): 69-74.
    杨屹, 杨风, 刘新营, 司迁. 2002. 阿尔金大平沟金矿床地质特征及成因初探. 新疆地质, 20(1): 44-48.
    杨志红, 姚檀栋, 皇翠兰,等. 1997. 古里雅冰芯中的新仙女木期事件记录. 科学通报, 42(18): 1975-1978.
    姚檀栋,Thompson L G,施雅风,等. 1997. 古里雅冰芯中末次间冰期以来的气候记录研究. 中国科学(D 辑), 27(5): 447-452.
    姚檀栋,徐柏青,蒲健辰. 2001. 青藏高原亚轨道时间尺度的气候变化.中国科学(D 辑),31 (增刊): 287—294.
    姚檀栋. 1999. 末次冰期青藏高原的气候突变-古里雅冰芯与格陵兰GRIP冰芯对比研究. 中国科学(D 辑), 29(2): 175-184.
    尹光华, 蒋靖样, 朱令人, Bilham R., Bendick R. 2002. 阿尔金断裂乌尊硝段的现今活动速率. 大地测量与地球动力学, 22(3): 52-55.
    游长江. 1996. 试论地貌学与大地构造学. 大地构造与成矿学, 20(1): 89-封 3.
    张秉良, 刘行松, 何昌荣. 2000. 阿尔金断裂东段断层滑动方式的研究[J]. 工程地质学报, 8(3): 259-264.
    张建新, 许志琴, 崔军文. 1998. 一个韧性转换挤压带的变形分解作用——以阿尔金断裂带东段为例. 地质论评, 44(4): 348-356.
    张建新, 许志琴, 扬经绥, 张泽明, 崔军文. 2001. 阿尔金西段榴辉岩岩石学、地球化学和同位素年代学研究及其构造宣义. 地质学报, 75(2): 186-197.
    张建新, 杨经绥, 许志琴, 孟繁聪, 宋述光, 李海兵. 2002. 阿尔金榴辉岩中超高压变质作用证据. 科学通报, 47(3):231-234
    张建新, 张泽明, 许志琴, 杨经绥, 崔军文. 1999. 阿尔金构造带西段榴辉岩的 Sm-Nd 及U-Pb 年龄——阿尔金构造带中加里东期山根存在的证据. 科学通报, 44(10): 1109-111
    张培震, 邓起东, 张国民, 马瑾, 甘卫军, 阂伟, 毛凤英, 王琪. 2003b. 中国大陆的强震活动与活动地块. 中国科学, 33(增刊): 12-20.
    张培震, 沈正康, 王敏, 甘卫军. 2004. 青藏高原及周边现今构造变形的运动学. 地震地质, 26(3): 367-376.
    张培震, 王敏, 甘卫军, 邓起东. 2003a. GPS 观测的活动断裂滑动速率及其对现今大陆动力作用的制约. 地学前缘, 10(suppl): 81-92.
    张培震, 王琪, 马宗晋. 2002. 青藏高原现今构造变形特征与GPS速度场. 地学前缘, 9(2): 442-450.
    张文佑. 1984. 断块构造导论. 北京: 石油工业出版社. 218~243.
    张岳桥, 陈正乐, 杨农. 2001. 阿尔金断裂晚新生代左旋走滑位错的地质新证据[J]. 现代地质, 15(1): 8-12.
    张泽明, 杨勇, 张建新. 1999. 阿尔金西段榴辉岩中石榴石的成分环带及其动力学意义. 科学通报, 44(16): 1769-1773.
    张治洮. 1985. 阿尔金断裂的地质特征. 中国地质科学院西安地质矿产研究所所刊, 第 9 期,北京: 地质出版社, 20-31.
    章新平, 施雅风, 姚檀栋. 1995. 青藏高原东北部降水中 δ13O 的变化特征. 中国科学(B 辑), 25: 540-547.
    赵小麟, 邓起东, 陈社发. 1994a. 龙门山逆断裂带中段的构造地貌学研究.地震地质, 16(4): 422-428.
    赵小麟, 邓起东, 陈社发. 1994b. 岷山隆起的构造地貌学研究. 地震地质, 16(4): 429-439.
    郑剑东. 1988. 阿尔金断裂与大陆走滑断裂. 内陆地震, 2(2): 123-130.
    郑剑东. 1991a. 阿尔金断裂带的几何学研究. 中国区域地质, 36: 54-59.
    郑剑东. 1991b. 阿尔金山大地构造及其演化. 现代地质, 5(4): 347-354.
    郑剑东, 程国良, 白云虹, 周春平, 孙宇航, 孙青格, 李素玲. 1991c. 塔里木和柴达木盆地的古地磁测试及其地质意义. 中国地震, 7(1): 32-37.
    郑剑东.1996. 青藏高原西北缘地球动力学初探. 地震地质, 18(2): 119-128.
    郑荣章, 徐锡伟, 王峰, 李建平, 计凤桔. 2004. 阿尔金北缘断裂雁丹图、长草沟河流阶地与 构造抬升. 地震地质, 26(2): 189-199
    中国地理学会. 1984. 中国地理学会第一次构造地貌学术讨论会论文选集. 北京:科学出版社
    中国地质科学院成都地质矿产研究所. 1988. 青藏高原及邻区地质图. 北京: 地质出版社.
    中国科学院地质研究所大地构造编图组. 1974. 中国大地构造基本特征及其发展的初步探讨. 地质科学, 1: 1-16.
    周新源, 罗金海, 王金华. 2004. 塔里木盆地南缘冲断带构造特征及其油气地质特征. 中国科学(D 辑), 34(增刊Ⅰ): 56-62.
    周勇, 潘裕生. 1998. 茫崖一肃北段阿尔金断裂右旋定滑运动的确定. 地质科学, 33(1): 9-16.
    周勇, 潘裕生. 1999. 阿尔金断裂早期走滑运动方向及其活动时间探讨. 地质论评, 45(1): 1-9.
    朱日祥, 杨振宇, 吴汉宁, 马醒华, 黄宝春, 孟自芳, 方大钧. 1998. 中国主要地块显生宙古地磁视极移曲线与地块运动. 中国科学(D 辑) , 28 (增刊) :1-16.
    朱允铸, 钟坚华, 吴必豪等. 1990. 阿尔金山上升史与塔里木、柴达木成盐关系初探. 石油与天然气地质, 11(2): 136-142.
    Acosta, J., Lonergan, L., Coward, M.P.. 2004. Oblique transpression in the western thrust front of the Colombian Eastern Cordillera. Journal of South American Earth Sciences, 17(3): 181-194.
    Aderns G. 1975. Planation surface. Dowden, Hutchinson & Ross, Inc Strouds burg. Pennsylvania:Halsted Press.
    Armijo R., Tapponnier P., Mercier J.L., Tonglin H. 1986. Quaternary extension in southern Tibet. Journal of Geophysical Research, 91: 13803-13872.
    Avouac, J.P., Tapponnier, P. 1993. Kinematic model of active deformation in central Asia. Geophysical Research Letters, 20: 895-898.
    Bell T H, Foliation development and refraction in metamorphic rocks: reactivation of earlier foliations and decrenulation due to shifting patterns of deformation partitioning. Journal of Metamorphic Geology, 1986, 4(4): 421-444.
    Bell T H. Deformation partitioning and porphyroblast rotation in metamorphic rocks: a radical reinterpretation. Journal of Metamorphic Geology, 1985, 3(2): 109-118.
    Bell T H. Foliation development-The contribution, geometry and significance of progressive, bulk, inhomogeneous shortening. Tectonophysics, 1981, 75(3-4): 273-296.
    Bendick, R., Bilham, R., Freymueller, J., Larson, K., Yin, G.H.. 2000. Geodetic evidence for a low slip rate in the Altyn Tagh fault system. Nature, 402: 69-72.
    Benn, K., Ham, N. M., Pignotta, G. S., Bleeker, W. 1998. Emplacement and deformation of granites during transpression: magnetic fabrics of the Archean Sparrow pluton, Slave Province, Canada. Journal of Structural Geology,20(9-10): 1247-1259.
    Berberian M. 1982. Aftershock tectonics of the 1978Tabas-e-Golshan(Iron) earthquake sequence: a documented active “thin-and thick-shinned”. Geophys J R Astr Soc, 68: 499-530.
    Biddle K.T., 和 Christie-Blick N.(Eds) 1985. Strike-slip deformation, basin formation, and sedimentation. Society of Economic Paleontologists and Mineralogists Special Publications 37.
    Born S M, Ritter D F. 1970. Modern terrace development near Pyramid Lake, Nevada, and its geological implication. Geol. Soc. Am. Bull. 81: 1233-1242.
    Boronkay, K. and Doutsos, T.. 1994. Transpression and transtension within different structural levels in the central Aegean region. Journal of Structural Geology,16(11):1555-1573.
    Bowman, D., King, G., Tapponnier, P.. 2003. Slip partitioning by elastoplastic propagation of olique slip at depth. Science, 300: 1121-1123.
    Braun J, Beaumont C. 1995. Three-dimensional numerical experiments of strain partitioning at oblique plate boundaries: implications for contrasting tectonic styles in the southern Coast Ranges, California, and central South Island, New Zealand. Journal of Geophysical Research, 100(B9): 18059-18074.
    Bull W B, Knuefer P L K. 1987. Adjustments by the Charwell River, New Zealand, to uplift and climatic changes. Geomorphology , 1: 15-32.
    Bull, W.B., 1991. Geomorphic responses to climate change. Oxford Univ. Press, New York
    Burchfiel, B.C., Deng, Q.D., Molnar, P., et al.. 1989. Intracrustal detachment zones of continental deformation. Geology, 17: 448-452.
    Cashman, P.H., Fontaine, S.A.. 2000. Strain partitioning in the northern Wailker Lane, western Nevada and northeastern California. Tectonophysics, 326: 111-130.
    Cashman, S. M., Kelsey, H.M., Erdman, C.F., Cutten, H.N.C., Berryman, K.R.. 1992. strain partitioning between structural domains in the forearc of the hikurangi subduction zone, New Zealand. Tectonics, 11(2): 242-257.
    Chen, Z., Burchfiel, B. C., Liu, Y., King, R.W., Royden, L.H., Tang, W., Wang, E., Zhao, J., Zhang, X.. 2000. Global Positioning System measurements from eastern Tibet and their implications for India/ Eurasia intercontinental deformation. Journal of Geophysical Research, 105: 16215-16227.
    Cobbold P.R., Gapais D., Rossello E.A. 1991. Partioning of transpressive motions within a sigmoidal foldbelt: the Variscan Sierras Australes, Argentina. Journal of Structural Geology,13: 743-758.
    Cowgill, E., Arrowsmith, J.R., Wang, X.F., Chen, Z.L.. 2004a. The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 1: Smoothing by vertical-axis rotation and effect of topographic stresses on bend-flanking faults Geological Society of America Bulletin, 116(11-12): 1423-1442.
    Cowgill, E., Arrowsmith, J.R., Wang, X.F., Chen, Z.L.. 2004b. The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 2: Active deformation and important of transpression and strain hardening within the Altyn Tagh system. Geological Society of America Bulletin, 116(11-12): 1443-1464.
    Cowgill, E., Yin, A., Wang, X.F., Zhang, Q.. 2000. Is the north Altyn fault part of a strike-slip duplex along the Altyn Tagh fault sytem? Geology, 28(3): 255-258.
    Czeck, D. M. and Hudleston, P. J.. 2003. Testing models for obliquely plunging lineations in transpression: a natural example and theoretical discussion. Journal of Structural Geology,25(6): 959-982.
    Davis, W.M., 1902. Base-level, grade, and peneplain. Journal of Geology, 10: 77-111.
    Dias, R., Ribeiro, A.. 1994. Constriction in a transpressive regime: an example in the Iberian branch of the Ibero-Armorican arc. Journal of Structural Geology, 15(3-5): 413-422.
    Dittmar, D., Meyer, W., Oncken, O., Schievenbusch, T., Walter, R., Winterfeld, C.V.. 1994. Strain partitioning across a fold and thrust belt: the Rhenish Massif, mid-Europen Variscides. Journal of Structural Geology,16(10): 1335-1352.
    Donna, K.. 1995. Strain partitioning and progressive deformation history in a transpressive belt northern Appalachians. Tectonics, 241: 15-34.
    Dutton, B. J.. 1997. Finite strains in transpression zones with no boundary slip. Journal of Structural Geology,19(9):1189-1200.
    England P , McKenzie D. 1983. A thin viscous sheet model for continental deformation. Geophys J R Ast ron Soc, 70: 295-321.
    England P, Houseman A. 1986. Finite strain calculations of continental deformation: Comparison with the India-Asia collision. J Geophys Res, 91: 3664-3667.
    England P, Molnar P. 1997. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults . Geophys J Int , 130: 551-582.
    Evans M.A., Dune W.M. 1991. Strain factorization and portioning in the North Mountain thrust sheet, central Appalachains. U.S.A. Journal of Structural Geology,13:21-25.
    Fan, G., Ni, J.F., Wallace, T. C.. 1994. Active tectonics of the Parmirs and Karakorum. Journal of Geophysical Research, (99): 7131-7160.
    Fitch T J. 1972. Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific. Journal of Geophysical Research, 77: 4432—4460.
    Flesch L M , Haines A J , Hol T W E. 2001. Dynamics of the India2Eurasia collision zone. J Geophys Res, 106: 16435-16460.
    Fossen, H., Tikoff, B.. 1993. The deformation matrix for simultaneous simple shearing, pure shearing and volum change, and its application to transpression-transtension tectonics. Journal of Structural Geology, 16(1): 1543-1554.
    Funninga, G.J., Barkea, R.M.D., Lamba, S. H., et al.. 2005. The 1998 Aiquile, Bolivia earthquake: A seismically active fault revealed with InSAR. Earth and Planetary Science Letters, 232: 39-49.
    Gaudemer, Y., Tapponnier, P., Meyer, B.P., et al.. 1995. Partition of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the ‘Tianzhu gap', on the western Haiyuan Fault, Gansu(China). Geophys J Int, 120: 599-645.
    Ge X. H., Ye H.W., Liu Y.J., et al. 1991. A new recognition of the Altun fault zone and geotectonic pattern of north-west China. In: Ren Jishun and Xie Guanglian eds. IGCP-321 Proceedings of First International Symposium. Beijing: China University of Geosciences Press, 125-128.
    Girard R. 1993. Orogen-scale strain portioning and an analogy to shear-bands in the Torngat Orogen, northeastern Canadian Shield. Tectonophysics, 224: 363-370.
    Goodwin, L.B., Williams, P.F.. 1996. Deformation path partitioning within a transpressive shear zone, Marble Cove, Newfoundland. Journal of Structural Geology,18(8): 975-990.
    Gordon, R.G.. 1995. plate motions, crustal and lithospheric mobility, and paleomagnetism: Prospective view point. Journal of Geological Research, 100: 24367-24392.
    Hack, J.T., 1960. Interpretation of erosional topography in humid temperate regions. American Journal of Science (Bradley Volume), 258-A, 80-97.
    Hack, J.T., 1965. Geomorphology of the Shenandoah Valley, Virginia and West Virginia, an origin of the residual ore deposits. U.S. Geological Survey Professional Paper 484, 84.
    Hansen, V.L.. 1989. Structural and kinematic evolution of the Teslin suture zone, Yukon: record of an ancient transpressional margin. Journal of Structural Geology, 11(6): 717-733.
    Harding T P, Vierbuchen R C, Christie-Blick N. 1985. Structural style, plate tectonic setting and hydrocarbon traps of divergent wrench faults, in Biddle K T, Christie-Blicks N, eds. Strip-slip deformation, basin formation and sedimentation, Society of Economic Paleontologist and Mineralogists. Special Publication, 37: 51-57.
    Harland, W.B.. 1971. Tectonic transpression in Caledonian Spitsbergen. Geological Magazine, 108(1): 27-42.
    Hol T W E , Chamot-Rooke N , Lepichon X , et al. 2000. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J Geophys Res, 105 (B8): 19185-19209.
    Houari, M., Hoepffner, C.. 2003. Late Carboniferous dextral wrench-dominated transpression along the North African craton margin (Eastern High-Atlas, Morocco).Journal of African Earth Sciences, 37(1-2): 11-24.
    Houseman G A , England P. 1986. Crustal thickening versus lateral expulsion in the India2Asian continental collision . J Geophys Res , 98: 12233-12249.
    Howard, A D. 1959. Numerical systems of terrace nomenclature;a critique: Journal of Geology, V.67, 239~243
    Jackson J. 1992. Partioning of strike-slip and convergent motion between Eurasia and Arabia in Eastern Turkey and the Caucasus. Journal of Geophysical Research, 97: 12471-12479.
    James, A. I. and Watkinson, A. J. 1994.Initiation of folding and boudinage in wrench shear and transpression. Journal of Structural Geology, 16(6): 1491-1494.
    Jamiscon W R. 1987. Geometric analysis of fold development in overthrust terranes. J Str Geo, 9(2): 231-243.
    Jiang D., Linb S., Williams P. F. 2001. Deformation path in high-strain zones, with reference to slip partitioning in transpressional plate-boundary regions. Journal of Structural Geology, 23(6-7): 991-1005.
    Jiang X.D., Yu J., McNutt M.K. 2004. Lithospheric deformation beneath the Altyn Tagh and West Kunlun faults from recent gravity surverys. Journal of Geophysical Research, 109: 1-14.
    Johnson, P. R., Kattan, F. 2001. Oblique sinistral transpression in the Arabian shield: the timing and kinematics of a Neoproterozoic suture zone. Precambrian Research, 107(1-2): 117-138.
    Jones R. R., Holdsworth R.E., Bailey W. 1997. Lateral extrusion in transpression zone: the importance of boundary conditions. Journal of Structural Geology, 19: 1201-1217.
    Jones R. R., Tanner P W. G. 1995. Strain partitioning in transpression zones. Journal of Structural Geology, 17(6): 793-802.
    Jones, R. R., Holdsworth, R. E., Clegg, P., McCaffrey, K. and Tavarnelli, E.. 2004. Inclined transpression. Journal of Structural Geology, 26(8): 1531-1548
    Jones. R.R., Holdsworth, R.E., Bailey, W.. 1997. Lateral extrusion in transpression zones: the importance of boundary conditions. Journal of Structural Geology, 19(9): 1201-1217.
    Jouanne F, Genaudeau N, Menard G, et al.. 1998. Estimating present-day displacement fields and tectonic deformation in active mountain belts: an example from the Chartreuse Massif and the southern Jura Mountains, western Alps. Tectonophysics, 296(3-4): 403-419.
    Keith J Tinkler. 1985. A Short History of Geomorphology: Barnes & Noble Books, 1-317
    Kirkwood, D.. 1995. Strain partitioning and progressive deformation history in a transpressive belt, northern Appalachians. Tectonophysics, 241:15-34
    Lallemant, H.G.A.. 1997. Transpression, displacement partitioning, and exhumation in the eastern Caribbean / South American plate boundary zone.
    Lallement, H.G.A.. 1996. Displacement partitioning and arc-parallel extension in the Aleutian volcanic island arc. Tectonophysics, 256:279-293.
    Leopold, L.B., Bull, W.B., 1979. Base level, aggradation, and grade. Proceedings, American Philosophical Society, V.123, 168-202
    Leopold, L.B., Miller, J.P., 1954. A post-glacial chronology for some alluvial valleys in Wyoming: U.S. Geological Survey Water-SUPPLY Paper 1261, 90.
    Lettis, W.R., Hanson, K.L.. 1991. Crustal strain partitioning: Implications for seismic-hazard assement in the western California. Geology, 19: 559-562.
    Liiu, X., McNally, K.C., Shen, Z.-K.. 1995. evidence for a role of the downgoing slab in earthquake slip partitioning at oblique subduction zones. Journal of Geological Research, 100: 15351-15372.
    Lister G S, Williams P F. 1983. The partitioning of deformation in flowing rock masses. Tectonophysics, 92(1-3): 1-33.
    Lister G S.. 1983. Williams P F. The partitioning of deformation in flowing rock masses. Tectonophysics, 92(1-3): 1-33.
    Mann P, Hemptom M R, Brundley D C, et al. 1983. Development of pull-appart basin. Journal of Geology, 91: 529-554.
    Mazzotti, S., Henry, P., Pichon, X.L., Sagiya, T.. 1999. Strain partitioning in the zone of transition from Nankai subduction to Izu-Bonin collision (Central Japan):implications for an extensional tear within the subducting slab. Earth and Planetary Science Letters, 172: 1-10.
    McCaffrey R., Zwick P.C., Bock Y, et al.. 2000. Stain partitioning during oblique plate convergence in the northern Sumatra: Geodetic and seismologic constraints and numerical modeling. Journal of Geophysical Research, 105(B12): 28, 363-28, 376.
    McCaffrey, R.. 1992. Oblique plate convergence, slip vectors, and forearc deformation. Journal of Geological Research, 97: 8905-8915.
    McCoss, A. M.. 1988. Restoration of transpression/transtension by generating the three-dimensional segmented helical loci of deformed lines across structure contour maps. Journal of Structural Geology,10(1): 109-120
    Merritts D J, Vincent K R., Wohl E E. 1994. Long river profiles, tectonism, and eustasy: a guide to interpreting fluvial terraces. J. Geophys. Res. 99: 14031~14050.
    Meyer, B., Armijo, R., Massonnet, D., et al.. 1996. The 1995 Grevena (northern Greece) earthquake: Fault model constrained with tectonic observation and SAR interferometry. Geophysic Research Letters, 23(19): 2677-2680.
    Mohajje, M.and Fergusson, C.L.. 2000. Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan Zone, western Iran. Journal of Structural Geology, 22(8): 1125-1139.
    Mohajjel, M., Fergusson, C.L.. 2000. Dextral transpression in late Cretaceous continental collision, Sanandaj-Sirjan zone, Western Iran. Journal of Structural Geology, 22(6): 1125-1139.
    Mohanty, S., Ramsay, J.G.. 1994. Strain partitioning in ductile shear zones: an example from a Lower Pennine nappe of Switzerland. Journal of Structural Geology,16(5): 663-676.
    Molnar P., Tapponnier, P.. 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189: 419-426.
    Molnar, P., Tapponnier, P.. 1978. Active tectomics of Tibet. Journal of Geophysical Research, 83(B): 5361-5375.
    Molnar, P., Burchfiel B.C., Ling K., et al. 1987. Geomophic evidence for active faulting and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia. Geology, 15: 249-253.
    Molnar P., England P. 1990.Temperatures, heat flux, and frictional stress near major thrust faults. Journal of Geophysical Research, 95: 4833-4856.
    Molnar P, England P, Martinod J . 1993. Mantle dynamics, uplift of the Tibet plateau , and the Indian monsoon. Rev Geophys, 31:357-396.
    Nemcok, M., Houghton, J.J., Coward, M.P.. 1998. Strain partitioning along the western margin of the Carpathians. Tectonophysics, 292: 119-143.
    Norris R J, Cooper A F. 2001. Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand, Journal of Structural Geology, 23( 2-3): 507-520.
    Onasch, C.M., Sheng-Tu, B.M., Couzens-Schultz, B.A.. 1998. Strain partitioning and factorization in a quartz arenite. Journal of Structural Geology,20(8): 1065-1074.
    Ouchi S, 1985. Response of alluvial river to slow active tectonic movement. Geol. Soc. Am. Bull. 96, 504-515.
    Passchier, C.W., Urai, J.L. 1988. Vorticity and strain analysis using Mohr diagrams. Journal of Structural Geology,10: 755-763.
    Pathier, E., Fruneau, B., Deffontaines B., Angelier, J., et al.. 2003. Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data. Earth and Planetary Science Letters, 212 : 73-88.
    Pedersen, R., Jonsson, S., Arnadottir, T., et al.. 2003. Fault slip distribution of two June 2000 MW6.5 earthquakes in South Iceland estimated from joint inversion of InSAR and GPS measurements. Earth and Planetary Science Letters, 213 : 487-502.
    Peltzer G, Tapponier P, Armijio R. 1989. Magnitude of late Quaternary left-lateral displacements along the northern edge of Tibet. Science, 246: 1285-1289.
    Peltzer G, Tapponnier P. 1988. ,Formation and evolution of strike-slip faults, rifts, and basins during India-Asia collision:An experiment approach. J Geophys Res , 93: 15085-15117.
    Peltzer G., Tapponnier P.. 1988. Formation and evoluation of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach. Journal of Geophysical Research, 93(12): 1508-15117.
    Peltzer, G., Rosen, P., Rogez, F., et al.. 1996. Postseimic rebound in fault step-overs caused by pore fluid flow. Science, 273: 1202-1204.
    Platt J P.. 1993. Mechanics of oblique convergence. Journal of Geophysical Research, 98 (B9): 16239-16256.
    Porter S C, An Z S, Zheng H. 1992. Cyclic Quaternary alluviation and terracing in a nonglaciated drainage basin on the north flank of Qilingshan, Central China[J]. Quaternary Research, 38:157-169.
    Ramsay J G, Huber M I. 1983.The Techniques of Modern Structural Geology, Volume 1: Strain Analysis. Academic Press, 113-117.
    Replumaz A , Tapponnier P. 2003. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. J Geophys Res, 108 (B6 ): 2285.
    Richard P., Cobbold P. 1989. Structures en fleur positives et decrochements crustaux: modelisation analogique et interpretation mecanique. C.r. Acad. Sci., Paris Ser, Ⅱ, 308: 553-560.
    Robin, P.Y., Cruden, A.R.. 1994. Strain and vorticity patterns in ideally ductile transpression zones. Journal of Structural Geology, 16(4): 447-466.
    Rumelhart P. E., Yin, A., Cowgill, E, Butler, R., Zhang, Q, Wang, X.F.. 1999. Cenozoic vertical rotation of the Altyn tagh fault system. Geology, 27 (9) : 819-822.
    Sanderson D.J., Marchini W.R.D.. 1984. Transpression. Journal of Structural Geology, 6(5): 449-458.
    Schwerdtner, W.M.. 1989. The solid-body tilt of deformed paleohorizontal planes: application to an Archean transpression zone, southern Canadian Shield. Journal of Structural Geology, 11(8):1021-1027.
    Shen, Z. K., Wang, M., Li, Y.X., Jackson, D.D., Yin, A., Dong, D. N., Fang, P.. 2001. Crustal deformation associated with the Altyn Tagh fault system , Western China , from GPS. J Geophys Res, 106 :30607-30621.
    Sobel E. R., Arnaud N. 1999. A possible middle Paleozoic suture in the Altyn Tagh, NW China. Tectonics, 18(1): 64-74.
    Solar, G. S., Brown, M.. 2001. Deformation partitioning during transpression in response to Early Devonian oblique convergence, northern Appalachian orogen, USA. Journal of Structural Geology, 23(6-7): 1043-1065.
    Soper,N. J. 1986. Geometry of transecting, anastomosing solution cleavage in transpression zones. Journal of Structural Geology, 8(8): 937-940.
    Stewart I.S., Hancook P.L 1990. Episodes, 13(4): 256-263.
    Summerfield M A. 1986. Tectonic geomorphology: macroscale perspectives. Progress in Phys Geogra,10: 227-238.
    Susan,M.,Cashman, H.M., Kelsey, C.F., et al.. 1992. Strain partitioning between structural domains in the forearc of the Hikurangi subduction zone New Zealand. Tectonics, 11(2): 242-257.
    Tapponnier P. , P. Molnar. 1976. Slip-line field theory and large-scale continental tectonics. Nature, 264: 319-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700