用户名: 密码: 验证码:
基于星载D-INSAR技术的地表同震形变及震源特征参数数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究提供了现代空间对地观测技术特别是差分合成孔径雷达干涉测量技术(Differential Interferometry Synthetic Aperture Radar, D-InSAR)结合GIS技术、经典地球物理学位错理论及计算机数值模拟进行强震研究的一个实例。采用国际上先进的空间对地观测技术,获得了昆仑山口西Ms8.1地震D-InSAR干涉同震形变场,结合GIS多源观测信息综合分析和Matlab信息提取,获取了一定的地震几何学及运动学边界条件;依据Okada弹性半空间位错理论,采用多段模型利用“前向模拟”的方法初步模拟了地震地表位移场;顾及昆仑山口西Ms8.1地震的非线性弹性位错特征,改进了算法,探索性地模拟了地震形变场非线性弹性位错特征,获得了对昆仑山地震地表破裂分段特征及震源特性进一步认识;在此基础上,应用地球物理学边界元数值模拟算法,模拟了震区地表及地下20公里范围内的同震位移分布特征,通过对D-InSAR、弹性位错理论及数值模拟结果的对比分析,获得了大量与昆仑山地震前期研究不同的认识,提出了一套迄今最为完整的昆仑山口西Ms8.1地震发震断层的几何学特征参数和同震位错的运动学特征参数。在吸收和借鉴前人工作成果的基础上,本论文的主要贡献在于取得了如下的结果和认识:
    ①采用D-InSAR技术获取了昆仑山口西Ms8.1地震同震形变场.
    选取了20对SAR+外部DEM数据对,历时六个月,处理并获取了包括干涉位移场、相干性图像和强度图像等200多G产品。D-InSAR揭示出昆仑山口西Ms8.1地震形成一个长近430km的宏大地震地表破裂带,规模之大,为世所罕见。在空间展布上地表破裂带分为两个不相连续段落:一个为布喀达坂峰至昆仑山口段,全长约350 km,总体走向N92-105°E,断面近直立,沿破裂形成的干涉热噪区宽数百米至数千米不等,D-InSAR视线向最大左旋水平位错7.4 m,该段结构单一,为此次地震的主体破裂带,地表破裂带重叠在古地震形变带上,是一次沿老断层的重新破裂;D-InSAR干涉纹图上新发现了太阳湖-库水浣破裂段,该段全长近30 km,走向N92°E,最大视线向位移3.0 m,为新生地震破裂。东、西两段地表破裂带即太阳湖与布喀达坂峰之间存在约50 km的微量形变阶区,该区未见地表破裂。D-InSAR干涉形变场确定了库赛湖东-玉西峰段(93.08oE-93.64oE)为本次地震宏观震中区,宏观震区最大同震视线向位错7.4m(93.60oE)。D-InSAR干涉形变场还显示出破裂带南北两盘以走滑为主的左旋运动特征,从整个破裂带的位错分布来看,破裂带有多次增强和起伏,有明显分段特征。
    ②进行了主破裂带D-InSAR视线向变化量的分解.
    D-InSAR获得的是地震地表视线向变化量,视线向变化量的分解一直是形变场干涉测量的一个难点。本文利用现场GPS定位的实测值,采用符合破裂带形态的线性插值函数,参照实测数据对相应点上的视线向形变量进行了合理分解,首次获得主破裂带上连续变化的水平及垂直位错同震曲线,为弹性位错分析及地球物理学数值模拟提供更准确的、沿主破裂带连续的走滑、倾滑和张滑位移三分量信息。将分解值与实测值进行对比,水平位错值偏差中误差为±0.27m,垂直位错值偏差中误差为±0.05m,分解结果尤其是垂直位错分解值与实测吻合较好。
In this thesis, by means of modern space geodetic techniques in particular D-InSAR(Differential Interferometry Synthetic Aperture Radar) combined with GIS (Geomatic InformationSystem), the geophysical elastic half-space dislocation theory and the computer numericalmodeling method, a study example on strong earthquakes is presented. Using the D-InSAR, aninternational advanced space geodetic technique, combined with GIS synthesis analysis techniqueand MATLAB development kit, a series of seismological geometry and kinematical boundaryconditions are extracted and the D-InSAR interferometry deformation field associated with theKUNLUN Ms8.1 earthquake is achieved. According to the Okada elastic half-space dislocationtheory and the multi-fault segment model, using the forward modeling method, the earthquakedeformation field in the direction parallel to the radar LOS (Line Of Sight) is simulated. Moreover, considering characteristics of the earthquake nonlinear elastic dislocation, the arithmetic ofthe dislocation is improved and an exploratory simulating method of the characteristics is doneand some further cognitions to the earthquake segmentation of surface ruptures and epicentercharacteristics are acquired. Based on them, applying the geophysical boundary element method(BEM), the co-seismic deformation distribution characteristics of the shock region ranging fromthe surface to the depth 20km is simulated. By analyzing these results of D-InSAR, the elastichalf-space dislocation theory and numerical modeling, many of acquaintances distinct fromprevious research results are got, and a suite of the most comprehensive available epicenterparameters (including geometrical and kinematical ones) of the earthquake are presented. Throughthis work, the following conclusions have been obtained:
    ①Using D-InSAR technology, the co-seismic deformation in the near field of the KUNLUN
    Ms8.1 earthquake is obtained.With 20 pairs data of SAR images and external DEM, it takes a period of six months toprocess and obtain 200 G bytes productions including deformation field interferograms, coherenceimages and magnitude images. The D-InSAR LOS interferogram shows that a magnificentearthquake surface rupture zone of length 430 km was produced by the KUNLUN Ms8.1earthquake. The destruction was extremely great in scale that was seldom found in the world. Thespatial distribution of the rupture zone can be divided into two discontinuious segments: theBucadaban Peak-Kunlun mountain was the eastern segment with a length of 350km, strike ofN92-105°E, nearly vertical fault plane and width of the interferometry thermal noise area (viz. theserious surface deformation zone) ranging form several hundred meters to several thousand metersin width. The segment was the main rupture zone of the earthquake which was a simple geologicalstructure with the D-InSAR LOS maximum left-lateral dislocation of 7.4 m. The surface rupturezone was overprinted on the paleo-earthquake relics. It belongs to re-rupture along an existingactive fault. Seeing from the D-InSAR interferogram the Taiyang Lake-Kushuihuan Lake was anewly found rupture segment with a length of roughly 30km, a strike of N92°E, a LOS maximumdeformation 3.0 m, belonging to a new earthquake rupture. Between the east and west segments,there was a 50km long stepover in left-step on which the surface rupture was not found. The D-InSAR interfergram confirms the Kusaihu lake east-Yuxi Peak segment (93.08oE-93.64oE)was the macro-epicenter of the earthquake with maximum LOS dislocation 7.4m(93.60oE).Also the D-InSAR interferogram shows that the two sides of the main rupture have the left-lateral
    movement characteristic with strike slip mainly. Because of enhancing and undulation for manytimes, dislocation distribution exhibits a distinct segmentation behavior.②Along the main rupture zone, the D-InSAR LOS change was decomposed.It has been a difficult problem to decompose the D-InSAR LOS change of the surface inInSAR. Using GPS pointed field investigation data, making use of linear interpolation functionfitting rupture feature, referring to observation data, the LOS deformation is decomposed intohorizontal and vertical dislocations for the first time. Along the main rupture zone it representsprecisely three components of strike, dip and tense for elastic dislocation analysis and geophysicalnumerical modeling. Compared the results with real measurements, the horizontal dislocationerror is ±0.27m and the vertical dislocation error is ±0.05m. It shows that the decomposedresults, in particular the vertical value fits better with the observation.③A suite of elastic dislocation and numerical modeling constraint conditions have been obtained,and forward modeling try-and-error scheme has been optimized.Making use of GIS synthetic analysis to geodetic leveling survey data, GPS data, fieldgeological investigation, multi-resolution remote sensing images(TM,ETM,SPOT,IKONOS),SRTM DEM, 1:25,000 digital map and 1:400,000 activity tectonic map etc., by means of theMATLAB numerical calculate program kit, a series of information are extracted, and a fivesegment model is optimized. Appling the analysis method presented by this thesis, seven in tenparameters of calculating Okada elastic half-space dislocation analysis such as geographicalcoordinates(E,N) of the end for each fault segment, the length of segments, strike and thethree components of average dislocation are obtained. The try-and-error method adjusts only threeparameters including the depth of hypocenter, the width of the rupture zone and the dip angle ofthe fault plane. So the method creates a better calculation condition for the forward modeling.④By analyzing the displacement of multi-profile of D-InSAR interferogram, the nonlinear elasticcharacteristics of the co-seismic dislocation is found.Laboratory experiments and in situ measurements in boreholes have shown that many crustalrocks exhibit a nonlinear elastic behavior in compression and tension with a dependence of theYoung's modulus on the minimum principle stress (Peltzer, 1999). The effects of nonlinear elasticproperties of crustal rocks have never been observed in geodetic data because of the low samplingdensity of techniques that make use of ground–based instrument arrays. The radar interferometricmap reveals asymmetric displacement on the two sides of the surface rupture, a pattern that cannotbe explained with the linear elastic theory. By analyzing the co-seismic strain map drawn with D-InSAR and field investigation data, it is found that the two side of the main rupture zone sufferrespectively tensional and compressional action. It was found that the surface deformationpresents dislocation distribution of local linear elastic characteristic and the whole nonlinearfeature that was a new discovery in this work using D-InSAR technique.⑤The general model of the Okada elastic half-space dislocation theory was improved. A linearmodel with multiple-hypocentral, heterogenous dislocation, and multi-rupture segmentsuperposition is preposed.Aiming at the nonlinear elastics characteristics of the Kunlun earthquake, the general modelof Okada elastic half-space dislocation theory is improved. Using the linear model of multi-sources, no n-homogeneous dislocation, and multi-rupture segment superposition, a 34 segmentmodel is designed and the nonlinear elastic characteristics are simulated approximately.Comparing the simulation interfrogram with InSAR's one, whether distribution and trend of thedeformation field, the abundant degree of source parameters and relevant rupture details presented,or the fitting degree to the real investigation result, the 34 segment model has the precisionadvantage over the initial five segment model. Having a better effect upon simulating asymmetry,great dislocation, macro rupture field, non-homogeneity of dislocation than the traditional model,the multi-segment method is a progress of this work.⑥ The BEM(Boundary Element Method)is introduced into geophysics in this thesis. Thenumerical modeling recurs 3D kinematics vision of the earthquake displacement field under thesurface.
    Based on the range change acquired by D-InSAR interferogram and geometry parametersacquired by the Okada dislocation theory in a closed analytic form, a new 8 segment model isconstructed. Applying the geophysical boundary element method (BEM), 3D distributioncharacteristic of the co-seismic deformation over the shock surface 80,000 km2 and itsunderground 20km depth range is simulated. The 3D displacement field shows that the maximumstrike displacement Ux occurs 15km below the surface of on the two sides of the Kusaiho lakeeast-Yuxi peak segment with maximum dislocation 6.424m, and that maximum dip displacementUy is located 10km below the surface of on the two sides of the Kusaiho lake east-Yuxi peaksegment with maximum dislocation 2.067m, and that maximum dip displacement Uz is located10km below the surface of on the two sides of the Kusaiho lake east-Yuxi peak segment withmaximum dislocation 3.701m. The simulation displacement vectors show that being bounded bythe almost vertical main rupture plane the south wall under thrusts northward with subsidence andthe north wall moves up, and that horizontal offset dominates over vertical displacement so theearthquake was a strike-slip dominant type, and that the south wall moves from west to east whilethe north wall does from east to west so the earthquake was of a left-lateral dominant type. Inconclusion, the KUNLUN Ms8.1 earthquake was produced by a set of steep dip, left-lateral andstrike-slip reverse faults.
引文
1. A.G.Bos, S.Usai and W.Spakman, 2004.A joint analysis of GPS motions and InSAR to infer the co-seismic surface deformation of the Izmit, Turkey earthquake. Geophys.J.Int. [J].158.849~863
    2. Achache J., Fruneau B., Delacourt C., 1995. Applicability of SAR interferometry for operational monitoring of landslides. [A]. In: Proceedings of the Second ERS Applications Workshop[C]. London.165~168.
    3. Aiming Lin, Bihong Fu, Jianming Guo, et al., 2002. Co-Seismic Strike-Slip and Rupture Length Produced by the 2001 Ms 8.1 Central Kunlun Earthquake. [J]. Science. Vol 296, Issue 5575, 2015~2017
    4. Aki, K., Richards, P. G., 1980. Quantitative Seismology, [m]. W. H. Freeman, San Francisco, 932 pp.
    5. Alexis Rigo, Jean~Bernard de Chabalier, Bertrand Meyeret al. 2004. The 1995 Kozani~Grevena (northern Greece) earthquake revisited: an improved faulting model from synthetic aperture radar interferometry. Geophysical J. Int. 157(2): 727
    6. Allison Jacobs, David Sandwell, Yuri Fialko, et al., 2002.The 1999 (Mw 7.1) Hector Mine, California, Earthquake: Near~Field Post seismic Deformation from ERS Interferometry. [J].Bulletin of the Seismological Society of America, 92(4):1433~1442
    7. Clark, T. A., Ma, C., Sauber, J. M., Ryan, J. W., Gordon, D., Shaffer, D. B., Chaprette, D. S., Vandenberg, N. R., 1990. Geodetic measurement of deformation in the Loma Prieta, California earthquake with very long baseline interferometry, [J].Geophys. Res. Lett., 17, (8):1215~1218.
    8. Comninou, M. A. and Dundurs, J., 1975, The angular dislocation in a half-space: Journal of Elasticity. V.5, p.203-216.
    9. D. T. Sandwell, L. Sichoix, Duncan Agnew,et al. 2000. Near real~time radar interferometry of the Mw 7.1 Hector Mine Earthquake. GEOPHYSICAL RESEARCH LETTERS, 124(4): 78~85
    10. Dupré, E., 1995.Application de l'interférométrie radar aux phénomènes géophysiques, [M]. D.E.A., Univ. P. Sabatier, Toulouse, France, 39 pp.
    11. Feigl, K. L. and others, 1993. Space geodetic measurement of crustal deformation in central and southern California, 1984–1992, [J]. J. Geophys. Res., 98(21): 677–21,712.
    12. Fruneau, B., J. Achache and C. Delacourt, 1996. Observation and modeling of the Saint-Etienne de Tinee landslide using SAR interferometry. [J].Tectonophysics, 265(3~4):181~190
    13. Gabriel A K, Goldstein R M and Zebker H A., 1989. Mapping small elevation changes over large areas: Differential radar interferometry. [J]. Geophys. Res., 94(B7): 9183~9191
    14. Gabriel, A. K. and R. M. Goldstein, 1988. Crossed orbit interferometry: Theory and experimental results from SIR-B, [J].Int. J. Remote Sensing, 9(8): 857~872.
    15. Ganas, Stavrakakis, G., Lagios,et al.2001.Investigation of the seismic fault that ruptured during the 7/9/99 Athens.[J].RSPS2001 Proceedings Natural Hazards:1~11
    16. Gkoufa,et.al., 1998. Use of SAR interferometry to derive additional information on surface roughness and DEM, [A]. Final report.Jan. 1~17
    17. Goldstein R. M., 1988.Satellite radar interferometry: Two-dimensional phase unwrapping. [J]. Radio Sci., 23, 713~720
    18. Goldstein R.M., Engehardt H., Kamb B.et al., 1993.Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic stream. [J]. Science, 262(1): 525~ 1 530
    19. Graham L. C., 1974.Synthetic interferometric radar for topographic mapping. [M]. IEEE Proc. 62,763~768
    20. H. Kanamori. 1997. the energy release in great earthquakes. J. Geophys. Res., 82:2981~2987
    21. Hartl P., Thiel K.~H., Wu X., Daake C. et al.,1994.Application of SAR interferometric SAR results from mountainous and glacial terrain. [A]. In Proc. IGRASS'94. Pasadena.CA
    22. Hoonyol Lee,Jianguo Liu, 2001. Analysis of topographic decorrelation in SAR interferometry using ratio coherence imagery. [J].IEEE,tran. And remote seneing.39(2): 223~232
    23. Hudnut, K. W. and others, 1994. Coseismic displacements of the 1992 Landers earthquake sequence, [J].Bull. Seism. Soc. Amer., 84, (3), 625–645.
    24. Iwasaki, T and R. Sato. 1979. Strain field in a semi-infinite medium due to an inclined rectangular fault, J. Phys. Earth 27, 285~314
    25. Jerome Van Der Woerd, Paul Tapponnier, Frederick J. Ryerson, et al., 2002. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet). from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. [J]. Geophysical Journal International. 148 ( 3): 356
    26. K. Abe. 1995. Moments and magnitudes of earthquakes. In: Ahrens, J. (Ed), Global Earthquake earth Physics: A handbook of Physical Conatanta, 1:206~213, American geophysical Union. Washington. DC
    27. K. Ren,G. Wu,X.Q.Shi et al., 2000. Simulator of interferogram for spaceborne sar system [J].
    28. K.L.Feigl, E.Dupre. 1999.RNGCHN: a program to calculate displacement components from dislocation in an elastic half-space application for modeling geodetic measurements of crustal deformation, [J]. Computers and Geosciences, 25:695~704
    29. Kazuyo HIROSE,Yuichi MARUYAMA,2001.Dodid MURDOHARDONO,et al., Land subsidence detection using JERS~1 SAR Interferometry, Paper presented at the 22nd Asian Conference on Remote sensing,5~9,Singapore
    30. Kwok R. and Fahnestock M.A.1996.Ice sheet motion and topography from radar interferometry. [J]. IEEE Trans. Geosci. Remote Sens., 34,189~200
    31. Liang L.S.,Wang C.T.,Chen K.S. et al., 2001.Deformation of 921 Earthquake by Satellite Radar Interferometry: Co-seismic and Post~seismic Estimation. [A]. Paper presented at the 22nd Asian Conference on Remote sensing,7~9,Singapore
    32. Lin AM, Fu BH, GUO JM, et al. 2002. Co~Seismic Strike~Slip and Rupture Length Produced by the 2001 Ms 8.1 Central Kunlun Earthquake. [J] Science, 296(14): 2015~2017
    33. Lin lin G, Shao wei H, Chris R. 2000. The double interpolation and double predication (DIDP) approach for InSAR and GPS integration.[A]. EOS, 81 (22): 20
    34. Lin, J., Stein, R. S., 1989. Co-seismic folding, earthquake recurrence, and the 1987 source mechanism at Whittier Narrows, Los Angeles basin, California, [J].J. Geophys. Res., 94, (B7), 9614~9632.
    35. LIU G.X., CHEN Y.Q., DING X.L., et al., 2002. Monitoring Ground Settlement in HongKong with Satellite SAR Interferometry, [A]. FIG XXII International Congress, Washington,D.C,USA, 19~26
    36. Lu Z., Fatland R., Wyss M., et al., 1997. Deformation of New~Triden volcano measured by ERS~1 SAR interferometry. Katmai~National~Park, Alsaka, [J].Geophys. Res. Lett, 24(6): 695~698
    37. Lu Z., Fremueller J.T., 1998.Synthetic aperture radar interferometry coherence analysis over Katmai volcano group.Alaska. [J].Geophys.Res, 103,29 887~29 894
    38. M. E. Pritchard, M. Simons, P. A. Rosen, et al.2002. Co~seismic slip from the 1995 July 30 Mw =8.1 Antofagasta, Chile,earthquake as constrained by InSAR and GPS observations. Geophys. J. Int. 150, 362~376
    39. Marco Van der Kooij, Van Halsema, Groenewoud D.,et al., 1995. Satellite radar measurements for land subsidence detection Proceedings of Land Subsidence, [A]. Barends and Schroder, Balkema, Rotterdam, ISBN 9054105895
    40. Maria Comninou, J. Dundurs, The angular dislocation in a half space, Journal of Elasticity (Historical Archive), Volume 5, Issue 3 -4, Nov 1975, Pages 203 -216
    41. Massonet, D. et al, 1993.The displacement field of the Landers earthquake Mapped by Radar Interferometry, [J]. Nature, 364,138~142
    42. Massonnet, D., Briol P., et al, 1995. Deflation of Mount Etna Monitored by space borne radar interferometry, [J]. Nature, 375:567~570
    43. Massonnet, D., Feigl, K. L., 1995. Satellite radar interferometric map of the co-seismic deformation field of the M = 6.1 Eureka Valley, Calfornia earthquake of May 17, 1993, [J].Geophys. Res. Lett., 22 (12):1541~1544.
    44. Massonnet, D., Feigl, K. L., 1998. Radar interferometry and its application to changes in the Earth's surface, Rev. [J].Geophys., 36 (4), 4XX~5XX.
    45. Massonnet, D., Feigl, K. L., Rossi, M., Adragna, F., 1994. , Radar interferometric mapping of deformation in the year after the Landers earthquake, [J]. Nature, 369: 227~230.
    46. Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K., Rabaute, T., 1993. The displacement field of the Landers earthquake mapped by radar interferometry, [J]. Nature, 364, 138~142.
    47. Massonnet, D.,Feigl K.,Vadon H.,et al., 1996. Co-seismic deformation field of the M=6.7 Northridge. California earthquake of Jan. 17. 1993.[J].Geophys. Res. Lett. 23(9):969~972
    48. Meyer B., Armijo R., Massonnet D., et al., 1996. The 1995 Grevena(northern Greece)earthquake-fault model constrained with toctonic observations and SAR interferometry. [J]. Geophys. Res. Lett. 23(19):2 677~2 680
    49. Mouginis P.J., Rowland S.K., Garbeil H., 1996. Slopes of western Galapagos volcanoes from airborne interferometric radar. [J]. Geophys. Res. Lett, 23,3 767~3 770
    50. Nakagawa.H, Murakami M., Fujiwara S., et al., 2000.Land subsidence of the Northern Kanto Plains caused by ground water extraction detected by JERS~1 SAR interferometry.[A]. Proceeding of IGARSS'2000
    51. Okada, 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the seismological society of America, 1985.5,75(4): 1135~1154
    52. Olga V. Pavlenko and Kojiro Irikura, Identification of the non-linear behavior of liquefied and non-liquefied soils during the 1995 Kobe earthquake. [J]. Geophys. J. Int. (2005) 160, 539~553
    53. Ozawa S., Murakami M., Fujiwara S.,et al.,1997.Synthetic aperture radar interferometry of the 1995 Kobe earthquake and its geodetic inversion. [J]. Geophys. Res. Lett. 24(18):2 327~2 330
    54. Paris W. Vachon & A. Laurence Gray, 1991. Repeat~Pass Interferometry and RADARSAT,Prec. [J].IEEE, 79(6): 839~849
    55. Peltzer G, Crampe F, King G. 1999. Evidence of nonlinear elasticity of the crust from the Mw7.6 Mani(Tibet)earthquake. [J]. Science, 286:272~276
    56. Peltzer G.,and Rosen.1995.Surface displacement of the 17 May 1993 Eureka Valley. California. Earthquake observed by SAR interferometry.[J].Science,268:1 333~1 336
    57. Perski.Z, 1998.Applicability of ERS~1 and ERS-2 InSAR for Land Subsidence Monitoring in the Silesian Coal mining region, [A]. Poland, International Archives of Photogrametry and Remote Sensing, 32(7):555~558
    58. Perski.Z, 2000.ERS InSAR data for Geological Interpretation of Mining Subsidence in Upper Silesian Coal Basin in Poland, University of Silersia, Faculty of Earth Sciences, Bedzinska 60,41~200 Sosnowiec, Poland
    59. Perski.Z, and Jura D., 1999. ERS SAR Interferometry for Land Subsidence Detection in Coal Mining Areas. [J]. Earth Observation Quarterly
    60. Petlzer G., Frederic crampe, Geoffrey King, 1999. Evidence of nonlinear elasticity of the crust from the Mw7.6 manyi (Tibet) earthquake, [J]Science,Vol. 286:272~276
    61. Press F. 1965. Displacements, strains and tilts at tele-seismic distances, [J].L. Geophys. Res. 70, 2395~2412
    62. R. Wang, Y. Xia, H. Grosser, et al., and 2004.The 2003 Bam(SE Iran)earthquake: precise source parameters from satellite radar interferometry. [J].Geophys.J.Int. 159,917~922
    63. Rogers E. E. and Ingalls R. P., 1969.Venus: Mapping the surface reflectivity by radar interferometry. [J]. Science, 165, 797~799
    64. Rongved, L. and J. T. Frasier, 1958. Displacement discontinuity in the elastic half-space,[ M[. Appl. Mech. 25, 125~128
    65. Rosen P.A., Henseley S.,Zebker H.A., et al., 1996. Surface deformation and coherence measurements if Kilauean Volcano. Hawaii. from SIR~C radar interferometry. [J].Geophys. Res. 101,23 109~23 125
    66. Rowland S.K., 1996. Slopes, lava flow volumes and vent distributions on volcano Fernandina. Galapagos Islands. [J].Geophys. Res,91(B5):27 657~27 672
    67. Savage, J. C., 1983. Strain Accumulation in Western United States, [J]. Ann. Rev. Earth Planet Sci., 11, 11~43.
    68. Shan X. J., Li J. H. Ma C. et al., 2005. Analysis of remote sensing images of ground ruptures resulting from the Kunlun mountain pass earthquake in 2001, [J].ACTA GEOLOGICA SINACA (English Edition), 79(1): 43~52
    69. Shan X. J., Liu J. H. Ma C. 2004. Preliminary analysis on characteristics of co-seismic deformation associated with Ms=8.1 western Kunlunshan pass earthquake on 2001, [J]. ACTA SEISMOLOGICA SINACA (English Edition), 17(5): 526~533
    70. Shan X.J., Ma J., Wang C.L., et al., 2002. Extracting co-seimic deformation of the 1997 Mani earthquake with differential interferometric SAR, [J]. ACTA Seismologica Sinica, 15(4): 431~438
    71. Shen, Z., Jackson, D., Feng, Y., Kim, M., Cline, M., 1994. Post-seismic deformation following the 1992 Landers earthquake, [J]. Bull. Seism. Soc. Amer., 84, 780~791.
    72. Singhroy,H.,Kenny,F.M.,et al.,1989. Radar Imagery for Quatemary Geological Mapping in Glaciated Terrains, The seventh Thematic Conference on Remote Sensing for Exploration Geology, [J].Calgary Alberta, Canada. 591~600
    73. Steketee, J. A. 1958. On Volterra's dislocation in a semi-infinite elastic medium, [J]. Can. J. Phys. 36, 192~205
    74. Thomas, A. L., 1993. poly3D: A three-dimensional, Polygonal element, Displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the earth's crust: M.S. Thesis, Stanford University, Stanford, CA.
    75. Van Der Woerd J, Ryerson F J, Tapponnier P et al. 2002. Uniform slip-rate along the KUNLUN fault: Implication for seismic behavior and large~scale tectonics [J] Geophysical research letters,,27(16): 2353~2356
    76. Van Der Woerd J, Ryerson F J,Tapponnier P et al. 1998. Holocece left-slip rate determined by co-smogenic surface dating on the XIDATAN segment of the KUNLUN fault (Qinghai,China) [J]. Geology, 26(8):695~698
    77. Van Der Woerd J, Tapponnier P, Ryerson F J et al. 2002. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. [J]. Geophysical Journal International. 148(3): 356
    78. Velasco A. A. 2000. Broadband source modeling of the November 8,1997,Tibet (Mw=7.5) earthquake and its tectonic implications. [J].Journal of Geophysical Research, 105 (B12) : 28 065~28 080
    79. Xia Y., Kaumann H., Guo X.F., 2002. Landslide Monitoring in the Three Gorges Area Using D-InSAR and Corner Reflectors. [A]. Advanced Workshop on InSAR for Measuring Topography and Deformation of the Earth Surface, Hong Kong
    80. Xu W.and Cumming B., 1997, “Simulator for repeat~pass satellite InSAR studies,”[A]. IEEE Proc. IGARSS'97, Singapore, pp.1704–1706
    81. Xu X, Chen W, Ma W et al. 2002. Surface rupture of the Kunlun earthquake (Ms8.1), North Tibet an Plateau, China. [J]. Seismological Research letter, 73(6): 884~892
    82. Yosuke ITO,et. al., 2000. Extraction of damaged regions using SAR data and neural networks, ISPRS,Vol. XXXIII,Amsterdam
    83. Zebker H A,Madsen S N. 1992. The TOPSTAR interferometric radar topographic mapping instrument. [J].IEEE Trans. On Geosicence and Remote Sensing, 30(5):933~940
    84. Zebker H. A., Goldstein R. M., 1986. Topographic mapping from interferometric synthetic aperture radar observations. [J]. Geophys Res, 91(B5): 4 993~4 999
    85. Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., Werner, C. L., 1994, On the derivation of co-seismic displacement fields using differential radar interferometry: the Landers earthquake, [J]. J. Geophys. Res., 99, 19,617~19,634
    86. Zisk S.H., 1972. A new Earth~based radar technique for the measurement of lunar topography. [J]. Moon, 4, 296~300
    87. Ziyadin C., Jean~Benard de Chabalier, Rolando Armijo, et al.2003. Co seismic and early post~seismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations. Geophys. J. Int. 155,93~110
    88. 陈兵,江在森, 2003. 玛尼 7.9 级地震对昆仑山口西 8.1 级地震的触发作用及动力背景初探, 中国地震局第二监测中心, [J].中国地震. 19(3):108~111
    89. 陈杰,陈宇坤,丁国瑜等. 2003. 2001 年昆仑山口西 8.1 级地震地表破裂带. [J].第四纪研究. 23(6):629~639
    90. 陈杰,陈宇坤,丁国瑜等.2004. 2001 年昆仑山口西 8.1 级地震地表同震位移分布特征. [J]. 26(3): 378~392
    91. 谌华,单新建,陈国浒等,2005. 地震监测雷达卫星系统参数的设计. [J]. 大地测量与地球动力学. 25(2):98~102
    92. 单新建, 李建华, 马超, 2005. SPOT 和 IKONOS 影像在昆仑山口西 8.1 级地震中的应用研究, [J].地震地质, 27(1):145~154
    93. 单新建, 李建华, 马超, 2005. 昆仑山口西 Ms8.1 地震地表破裂带高分辨率卫星影像特征研究, [J].地球物理学报, 48(2): 321~326
    94. 单新建,李建华,马超等,2005. 2001 年昆仑山口西 Ms8.1 级地震地表破裂带遥感影像特征分析, [J].地质学报(英), 2.79(1):
    95. 单新建,柳稼航,马超, 2004. 2001 年昆仑山口西 Ms8.1 级地震同震形变场特征的初步分析. [J].地震学报, 26(5): 474~480
    96. 单新建,马瑾,宋晓宇等,2002. 利用星载 D-InSAR 技术获取的地表形变场研究张北~尚义地震震源破裂特征. [J].中国地震.18(2):119~126
    97. 单新建,马瑾,王长林等,2002.利用星载D-InSAR技术获取的地表形变场提取玛尼地震震源断层参数. [J].中国科学(D), 32(10):838~844
    98. 单新建,叶洪, 1998. 干涉测量合成孔径雷达技术原理及其在测量地震形变场中的应用. [J].地震学报. 20(6):647~655
    99. 单新建.博士后出站报告.干涉合成孔径雷达测量技术及其应用,中国地震局地质研究所,2001
    100. 地震形变观测技术,国家地震局科技监测司,1995,[M]地震出版社,5~9
    101. 傅淑芳,刘宝诚.地震学教程.地震出版社,1991,北京
    102. 郭华东. 2000. 雷达对地观测理论与应用. [M].北京:科学出版社.
    103. 郝平,田勤俭. 2004. 2000 年 1 月 15 日姚安 6.5 级地震较强余震的应力触发,中国地震局分析预报中心, [J]. 地震研究. 27(2):223~231
    104. 胡建国,常晓涛,丁继新. 2001. 2000 年西太平洋地球物理会议综述. [J].测绘通报,46(4):13~15
    105. 胡庆东,毛士艺,洪文. 1999. 干涉合成孔径雷达系统的最优基线. [J].电子学报. 27(5)
    106. 荆燕,王建军. 2004. D-InSAR 技术在地震同震形变研究中的应用,中国地震局地壳应力研究所, [J].测绘科学
    107. 李世愚,尹祥础.岩石断裂力学,中国科学院研究生院讲义,2004
    108. 李震等, 1997. 山区地形星载 SAR 影像的几何纠正, [J].遥感技术与应用, 12(4):1~6
    109. 刘光勋,1996。东昆仑活动断裂带及其强震活动,中国地震,12(2):119~126
    110. 刘桂萍, 傅征祥. 2000. 1976 年 7 月 28 日唐山 7.8 级地震触发的区域地震活动和静应力场变化,中国地震局分析预报中心, [J]. 地震学报. 22(312~331):
    111. 柳稼航,单新建等, 2004. 基于 1:25 万地形的两通差分干涉处理与三通差分干涉处理对比分析[J]..遥感技术与应用. 19(4):45-51.
    112. 陆仲家,黄培华. 1991. 地震地质学简明教程. 北京.[M]地震出版社.246~256
    113. 路旭等. 2002. 用 InSAR 作地面沉降监测的试验研究. [J].大地测量与地球动力学. 22(4): 66~70
    114. 罗焕炎,李洪吉. 1975~1976. 有限单元法在地质和地震工作中的应用(一)、(二)、(三), [J]. 国外地质, 1975(9),1976(3),1976(8)
    115. 罗焕炎. 1974. 有限单元法在地质力学中的应用, [J]. 地质科学,1,81~100,1974
    116. 马超, 单新建. 2005. 基于弹性半空间位错理论和 InSAR 形变场约束条件的昆仑山 Ms8.1 地震多断层震源参数模拟研究. (地球物理学报),2005, (已采用)
    117. 马超,单新建, , 2004. 星载合成孔径雷达差分干涉测量技术在形变监测中的应用概述,中国地震,20(4):410~418
    118. 马超,单新建. 2005.高原昆仑山口西 Ms8.1 地震 InSAR 斜距向同震位错分解.[J]. 地震研究.28(3)244~247
    119. 马超,单新建.2005 基于实测值分段线性内插模型的 InSAR 视线向同震位错分解. 地震学报,2005, (修改复审)
    120. 马得保,邓依群. InSAR 干涉图的相位关系分析. [J].信息工程大学学报. 2(4): 38~41
    121. 乔学军, 王琪, 杜瑞林等. 2002. 昆仑山口西 Ms8. 1 地震的地壳变形特征,[J].大地测量与地球动力学. 22(4): 6~11
    122. 乔学军,王琪,杜瑞林等. 2002. 昆仑山口西 Ms8. 1 地震的地壳变形特征,[J].大地测量与地球动力学. 22(4): 6~11
    123. 青海省地震局,中国地震局地壳应力研究所. 东昆仑活动断裂带北京:[M].地震出版社,1999,1~186
    124. 任金卫,汪一鹏,吴章明等. 1999. 青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率。见:中国地震局地质研究所编,活动断裂研究(7),北京,[M].地震出版社. 47~163
    125. 申重阳,李辉. 2003. 丽江 7.0 级地震重力前兆模式研究, 中国地震局地震研究所, [J].地震学报. 23(2):201~207
    126. 沈正康,万永革,甘卫军等.2003. 东昆仑活动断裂带大地震之间的黏弹性应力触发研究, [J].地球物理学报. 46(6):786~795
    127. 舒宁. 1997. 雷达遥感原理. [M].北京:测绘出版社
    128. 谭凯, 王琪, 申重阳. 2004. 用大地测量数据反演 2001 年昆仑山地震,[J].大地测量与地球动力学, 24(3):47~50
    129. 滕吉文,张中杰,杨顶辉等 .1996. 青藏高原地体划分的地球物理标志研究. [J].地球物理学报.39(5):629~641
    130. 田韬 , 卢永,2004. 昆仑山口西 M_S8.1 地震前远场应变异常研究,中国地震局兰州地震研究所, [J].内陆地震 17(4):321~330
    131. 万永革,王敏,沈正康等. 2004. 利用 GPS 和水准测量资料反演 2001 年昆仑山口西 8.1 级地震的同震滑动分布, 中国地震局地质研究所, [J]. 地震地质. 26(3): 393~404
    132. 万永革,吴忠良,周公威等. 2000.几次复杂地震中不同破裂事件之间的“应力触发”问题. 地震学报.(22) 6:568~576
    133. 王超,刘智,张红,单新建,2000.张北-尚义地震同震形变场雷达差分干涉测量, [J].科学通报,45(23):2550~2554
    134. 王超,张红,刘智,2002. 星载合成孔径雷达干涉测量. [M]科学出版社. 北京
    135. 王超,张红,刘智等,2002,苏州地区地面沉降的星载合成孔径雷达干涉测量监测, [J].自然科学进展,12(6):621~624
    136. 王超等. 2002. 星载合成孔径雷达干涉测量. [M].北京:科学出版社
    137. 王沫然.2001.MATLAB 与科学计算[M].电子工业出版社.
    138. 王庆良,王建华,朱桂芝等,2004. 东昆仑断裂带及昆仑山口西 8.1 级地震垂直形变研究,[J].地震地质, 26(2):273~280
    139. 王仁,有限单元等数值方法在我国地球科学中的应用和发展,地球物理学报,1994, 37(增 1):128~139
    140. 魏钟铨. 2001. 合成孔径雷达卫星. [M].北京:科学出版社
    141. 向茂生,李树楷. 1999.5. 地形坡度对干涉相位残余点发布的影响. [J].测绘学报. 28(2):243~251
    142. 新疆维吾尔自治区地震局,2001 年 11 月 14 日昆仑山口西新疆、青海交界 Ms8.1 级地震科学考察(西分队)总结, 北京,2002 年 7 月
    143. 徐华平等. 2001. 干涉 SAR 中相位图的噪声抵制. [J].北京航空航天大学学报. 27(1):142~150
    144. 徐锡伟, 陈文彬,于贵华等. 2002. 昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征. [J].地震地质. 24(1): 1~13
    145. 徐锡伟. 藏北玛尼地震科学考察. 见: 国地震局编中国地震年鉴 (1999) 北京: [M].地震出版社,2000, 327~325
    146. 燕乃玲,李辉, 2003. 丽江地震前后重力场变化的有限矩形位错模型分析,中国科学院南京地理与湖泊研究所, [J].地震学报
    147. 伊增欣,1986. 边界元法的应用进展(二), [J].海洋预报,1986,3(3):52~58
    148. 伊增欣,1986. 边界元法的应用进展(一), [J].海洋预报,1986,3(2):32~39
    149. 尹光华,沈军,蒋靖祥等. 2002. 2001 年 11 月 14 日东昆仑 8.1 级地震的构造背景. [J].干旱区地理. 25(1):24~29
    150. 袁孝康, 2001. 星载合成孔径雷达回波多普勒频率的计算. [J].上海航天. (3):1~5
    151. 袁孝康, 2003. 星载合成孔径雷达导论. [M].北京:国防工业出版社
    152. 曾琪明, 焦健.1997-1998.合成孔径雷达遥感原理及应用简介(一)、(二)、(三)、(四), 遥感信息,1997(4)-1998(1,2,4)
    153. 张国民,田勤俭,王辉. 2003. 可可西里~东昆仑活动构造带强震活动研究. [J].地学前缘. 10(1):39~46
    154. 张红,王超,单新建等. 2001. 基于 SAR 差分干涉测量的张北~尚义地震震源参数反演, [J]. 科学通报(D). 46(21): 1837~1841
    155. 张红. 2002. D-InSAR 及 POL-inSAR 的方法及应用研究, 中国科学院博士研究生学位论文,北京
    156. 张瑞斌,张晓梅, 王赞军等. 2002. 东昆仑断裂带强震构造条件研究[J].高原地震. 14(1):26~31
    157. 张永红等. 2002. SAR 影响几何校正. [J].测绘学报.31(2):134~138
    158. 赵少荣,陶本藻,于正林,1992.. 论变形测量数据的反演, [J].测绘学报,1992.8,Vol.21(3):161~172
    159. 朱航,2004. 2001 年昆仑山口西 8.1 级地震与 1927 年古浪 8.0 级地震的相似性,四川省地震局, [J].四川地震. 21(4): 114~121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700