用户名: 密码: 验证码:
顾及地球结构的大地测量反演模式与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大地测量反演,以大地测量观测信号为基础,结合地质、地震和地球物理资料,利用地球物理学建立的先验地球动力学模型,反推动力学模型参数,修正和提出新的地球动力学模型;也可以根据地表观测结果反演研究活动断层、活动块体的运动情况,探讨地壳运动与地震关系,进行地震、地质灾害的预测预报。
     本文将大地测量学与活动块体、地震断层位错模型结合起来,建立了分块体多断层联合反演模式;研究了不同地球结构模型之间的变形差异,建立了顾及地球结构的同震变形反演模式,震后变形反演模式;开发了相关应用软件,并与实际观测数据相结合,进行了具体的反演研究。主要工作如下:
     系统总结了弹性半空间位错模型、球体分层位错模型的发展历史,比较两类模型差异,为建立反演模式提供理论基础;指出随着现代大地测量技术的发展,观测精度的大大提高,观测信息完全可以分辨出模型误差带来的变形差异;相对于更真实的球体分层模型,半空间均匀弹性模型对地球实际模型的假设必然会带来模型误差,需要在实际应用中加以考虑。
     基于中国地壳运动观测网络提供的大量GPS观测数据,根据半空间均匀弹性位错理论和块体欧拉参数理论,研究和发展了分块体多断层联合反演模式,该模式能同时从大尺度范围分析块体运动和小尺度范围分析断层的活动特性;并联合利用Bootstrap方法以及统计方法对反演参数进行评价,给出解的置信区间;对华北地区和川滇地区分别进行了块体和断层的联合反演,分析了两区域的块体运动状况,活动断层运动量,孕震能力等,反演结果显示活动断层蕴含了5~6级的潜在地震活动能力,需要加强对活动断层的变形监测。
     顾及地球结构的非均匀性、分层和球体特性,系统研究了球体分层模型,球体均匀模型,半空间均匀模型分别作用地震断层(走滑断层,倾滑断层)产生的地表同震变形差异。在大尺度(断层长度>100km,影响半径超过100km)、小尺度范围内(断层长度<100km,影响半径<100km),分别讨论了地壳分层特性以及地球曲率的影响。结果显示:在小尺度范围内走滑断层由于地球结构的影响带来的水平、垂直变形差异大约都为10%左右,但垂直变形数值较小,可忽略不计;而大尺度范围内研究的走滑断层由于地球结构的影响带来的水平变形差异大约在20%左右,垂直变形差异远大于20%,且垂直变形数值较大。在小尺度范围内研究的倾滑断层由于地球结构的影响带来的水平变形差异大约为10%左右,垂直变形差异很小;而在大尺度范围内研究的倾滑断层由于地球结构的影响带来的水平变形差异大约在10%左右,垂直变形差异约为10%。小尺度范围内研究的结果表明,变形差异主要源于地球分层的影响;大尺度范围内研究的变形差异结果则更明显的体现了地球分层影响,同时又凸现了地球曲率的影响。分析了不同模型对地表变形的影响异同,定量研究了三类模型之间的地表变形差异;计算结果显示,相对实际地球模型,利用半空间均匀位错模型计算的同震变形差异最大,数值大大超出现有高精度测量值的精度。发展了顾及地壳分层结构的地震断层同震位错模型的反演模式,建立了非线性反演方程,分别对走滑断层、倾滑断层、张裂断层进行了模拟反演分析;反演结果显示,该反演模式可很好地将断层位错参数反演出来,利用该模式可较好地解决实际地震断层同震变形的反演问题。
     基于球体粘弹性地球模型,系统研究了走滑断层,倾滑断层,张裂断层顾及不同地壳分层结构的震后变形,定量分析了实际地壳分层模型与模拟均匀模型的地表变形差异。计算结果显示:走滑断层位错因地壳分层对地表震后变形的影响主要集中在水平方向,分别计算10、15年的分层和非分层震后变形差异,结果在水平方向相差分别达到12.2mm、14.1mm;
Based on the geodetic observation signal with combining the geological, seismic and geophysical data, the aim of geodesy inversion mainly focus on inverting kinematics and geodynamics model parameters, modifying and proposing new geodynamics model using the priori geodynamics model from the geophysical research. It also could be used to invert the movement of active faults and blocks from the surface observation data, discuss the relationship between the crust motion and earthquake and make the prediction and forecast on seismic and geological disaster.In this paper, the split-block and multi-faults joint inversion mode has been firstly constructed by combining the geodesy with active block and seismic fault dislocation model. The co-seismic deformation inversion mode and post-seismic deformation inversion mode considering the earth structure also have been given out after studying the deformation difference due to different earth structure model. The related inversion program has also been developed out and used to study the China strong earthquake areas with GPS observation and make the specific inversion analysis. All the work has been done as below:Generalizing the historic development of the dislocation model in elastic, homogeneous and half space medium and spherical stratified dislocation model in system and comparing the difference between the two types model provide the theory foundation to make inversion formulation. Pointing out that the deformation difference due to the different models could be detected out by observed information with the highly improved precise observation along with the modern geodetic technology development. Relative to the truly spherical layered model, the dislocation model in elastic, homogeneous and half space medium must have taken the model errors because of the hypothesis to the true earth model, which must be considered into the practical use.We developed the split-block and multi-fault joint inversion mode based on the half space, homogeneous and elastic dislocation theory and active block Euler parameters theory considering the rich GPS observation data from the China crust movement-monitoring net. This inversion mode could simultaneously study the block motion in large scale and the fault characteristic in small scale. Jointly using the bootstrap method and statistical model to evaluate the inverted parameters and give the confidence internal. The inversion work had been done to the North China area and Sichuan-Yunnan area respectively to study the active characteristic of blocks and faults and analyze the block movement, fault slip and seismogenic power etc. The inversion results show that each fault has the ability of 5 to 6 equivalent magnitude of potentially earthquake, which suggests us to reinforce the deformation monitoring to the relative active fault.Considering the inhomogeneous, stratified and spherical characteristic of earth structure, the co-seismic deformation deference due to strike slip fault and dip slip fault among spherical earth layering model, spherical homogeneous model and half-space homogeneous model has also been studied in this paper. The affection of the crust layered and earth curve is also discussed in large and little scale region. It could be easily got that the horizontal and vertical deformation difference due to strike slip fault considering the earth structure both are near 10 percent, but the numerical value of vertical deformation is little to ignore in the little scale region, while the horizontal deformation difference is about 20% and vertical deformation difference is more than 20% in large
    scale region. When to the dip fault, it could easily get that the horizontal deformation difference due to strike slip fault considering the earth structure both is near 10 percent and the vertical deformation is very small to consider in the little scale region, while the horizontal and vertical deformation difference are both about 10% in large scale region. The research to the little scale region shows that the deformation difference is mostly affected by the crust stratified, while the research to the large scale region is mainly affected by the crust stratified too, but obviously reflecting the affection of earth curve. The quantitative deformation difference have also been studied and compared due to the three types model to analyze the affection by each earth model. The calculation results show that the surface co-seismic defonnation difference is so large that exceeding the accuracy of high precise observation technology if not considering the actually earth structure when just taking the earth as half-space homogeneous medium. Finally the co-seismic deformation inversion mode due to seismic fault has been set up considering the earth-stratified structure. Using the nonlinear inversion formulation to make the simulated calculation and inversion analysis to strike slip fault, dip slip fault and tensile fault separately. The inverted results show that the inversion mode could well invert out the fault dislocation parameters and could be better settle down the inversion work to the practical seismic fault co-seismic inversion problem.Post-seismic deformations are investigated on strike-slip, thrust and tensile faulting considering different crustal layering structures in a spherical elastic-viscoelastic earth model. Differences in surface deformation calculated between a homogeneous earth model and stratified earth models are quantitatively compared and discussed in detail. The results show that strike-slip dislocation fault due to the crust medium impact is mainly concentrate on the surface horizontal deformation, when calculating the defonnation difference accumulated after 10 and 15 years', it is up to 10.7mm and 12.4mm in x direction and up to 5.8mm and 6.8mm in y direction respectively. The dip-slip dislocation fault due to the crust medium impact is mainly concentrate on vertical deformation and the vertical defonnation difference is up to 6.7mm and 9.4mm, respectively between homogeneous and layering models after 10 and 15 years' accumulated. The tensile dislocation fault due to the crust medium impact is mainly concentrate on both horizontal and vertical deformation that the horizontal deformation difference in y direction is up to 16.3mm and 20. 3mm separately while vertical deformation difference is up to 6.7mm and 8.9mm respectively between homogeneous and layering models after 10 and 15 years' accumulated. Post-seismic deformation accumulated 28 years after the 1976 Tangshan earthquake have been estimated with the realistic crustal structure from seismic investigation. The horizontal deformation is about 10cm while the vertical defonnation reaches about 7cm. The results show that the maximum difference in horizontal deformation is about 20mm for different crustal models used, while the difference in vertical deformation is about 10mm. These results demonstrate that the distortion in surface deformation caused by ignoring layering properties of crustal structures greatly exceeds the current accuracy of GPS survey (2 mm) and therefore can not be ignored. When using the actual observation data to make inversion analysis, the affection by the crust layered structure must be taken account of in use.Considering the spherical visco-elastic structure, the post-seismic deformation inversion mode had been constructed based on the visco-elastic earth model. We developed the inversion mode and inversion software package based on the post-seismic fault dislocation model considering the crust-stratified structure. Using the genetic algorithm to invert the different fault
    dislocation parameters due to strike slip fault, dip slip fault and tensile fault respectively and comparing to the result inverted from the homogenous dislocation model, the result shows that the inversion algorithm used here could invert the dislocation parameters from the large region using the genetic algorithm and the inversion result is better to use. The inversion mode proposed here could better invert the seismic source parameters to different types fault. There is also a important find to suggest us that we could not use the minimum of VTPV as the only rule to judge the inversion result whether good or not when the model mode is not obvious. We should find other ways to make a supplement judge.Using the co-seismic deformation inversion mode and post-seismic deformation inversion mode considering the earth structure, the practical inversion application had been done to the Jiashi strong earthquake area during the year 1997 to 1998. The seismic deformation has been studied using the observation data get by about 40 GPS monitoring station in Jiashi and adjacent area from 1994 to 2001, especially focused on co-seismic and post-seismic deformation. Using the proposed inversion mode we have successfully inverted out the seismic fault dislocation parameters, which had broken out on 27th, August 1998. The inversion parameters show that the upper depth fault is about 12.15km and the lower depth of the fault is about 39.89km. The length of fault is about 37.85km and has a slip about 1.09m. The dip angle of the fault is about 52.86 in degree while the strike of the fault is about NE144 in degree. The inversion results present that the fault is a blind fault with a strike direction from North to West and it has crossed from the upper crust to lower crust. The characteristic of the fault is mainly in right strike slip and has a little normal attribute. The inversion result is mainly agreement with the seismic data analysis result by Shan Jianxin in 2002. Based on the geological crust structure data, we also have inverted the visco-elastic characteristic of crust structure in Jiashi area. The inversion result manifests thatvisco medium of lower crust is about 1.8xlO19Pads while that of the upper mantle is about(0.3~3.0)xl018Pali, which shows that the deep mass structure is a strong lower crust overlapping a weak upper mantle that is agreement with the research of Vergnolle in 2003.
引文
1. A. To, R. Burgmann, and F. F. Pollitz Postseismic deformation and stress changes following the 1819 Rann of Kachchh, India earthquake: Was the 2001 Bhuj earthquake a triggered event? J. Geophys. Res., 31, doi:10.1029/2004GL020220,2004.
    2. Allen, C. R. Lia Z. Qian H. etal. Fields study of a highly active fault zone: The Xianshuihe fault of Southwestern China. Geological Society of America Bulletin, 1991, 103, 1178-1199.
    3. Ben-Menahem A, Gillon A. Crustal deformation by earthquakes and explosions. Bull. Seism. Soc. Am., 1970, 60, 193-215.
    4. Berg B. A., Locating global minima in optimization problems by a random-cost approach, nature, 1993, 361, 708-710
    5. Bonafede M, B Parenti and E Rivalta. On strike slip faulting in layered media. Geophys. J Int., 2002, 149, 698-723
    6. Cervelli, P., M. Murray, P. Segall, Y. Aoki. et al. Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan, J. Geophys. Res., 2001. 106, 11, 217-11, 237.
    7. Cesca S, Vermeersen L and Sabadini R. Influence of lithospheric and mantle stratification on co-and post-seismic deformation due to finite faults. Geophys. J. Int., 2000, 143, 575-581.
    8. David D. Jackson and M. Matsu'ura, A Bayesian approach to nonlinear to inversion, J. Geophys. Res., vol. 90, B1, 581-591, 1985
    9. David M. Manaker, Roland B., William H., et al., Distribution of interseismic slip rates and the potential for significant earthquakes on the Calaveras fault, central California, J. Geophys. Res., 2003, 108, B6, 2287, doi: 10.1029/2002JB001749
    10. Elizabeth H. Hearn, Bradford H. Hager, and Robert E. Reilinger, Viesoelastic deformation from North Anatolian Fault Zone earthquake and the eastern Mediterranean GPS velocity field, Geophys. Res. Lett., 29(0), 2002, 10.1029/2002GL014889
    11. Feigl* K. L. and E. Dupre, RNGCHN: a program to calculate displacement components from dislocation in an elastic half-space with applications for modeling geodetic measurements of crustal deformation, Computer & Geosciences, 1999, 25, 695-704.
    12. Fernandez J, Yu T T & Rundle J B. Horizontal viscoelastic-gravitational displace-ment due to a rectangular dipping thrust fault in a layered earth model, J. geophys. Res., 1996, 101, 13581-13594.
    13. Fialko Y., Evidence of fluid-filled upper crust from observations of postseismic deformation due to the 1992 Mw7.3 Landers earthquak, J. Geophys. Res., 2004, 109, B08401, doi:10.1029/2004JB002985
    14. Fred F Pollitz. Postseismic relaxation theory on the spherical earth. Bull. seism. Soc. Am., 1992, 82, 422-453.
    15. Fred F Pollitz and I Selwyn Sacks. Viscosity structure beneath northeast Iceland. J. Geophys. Res., 1996, 101 17771-17793.
    16. Fred F Pollitz. Coseismic deformation from earthquake faulting on a layered spherical earth. Geophys. J. Int., 1996, 125, 1-14
    17. Fred F Pollitz. Gravitational viscoelastic postseismic relaxation on a layered spherical Earth. J. Geophys. Res., 1997, 102, 17921-17941.
    18. Fred F Pollitz, R Burgmann, and P Segall. Joint estimation of afterslip rate and postseismic relaxation following the 1989 Loma Prieta earthquake. J. Geophys. Res., 1998, 103, 26, 975-26, 992
    19. Fred E Pollitz and I. S. Sacks. Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers earthquake, Bull. Seismol. Soc. Am., 92, 1487-1496, 2002.
    20. Fred F Pollitz. Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model. Geophys. J. Int., 2003, 155, 57-78.
    21. Fred F. Pollitz, M. Vergnolle, and E. Calais. Fault interaction and stress triggering of 2th century Oearthquakes in Mongolia, J. Geophys. Res., 108, 2503, doi:10.1029/2002JB002375,2003.
    22. Freymuller Jeff, Murray M. H., Segall P, et al. Kinematics of the Pacific-North America plate boundary zone, northern California, J. Geophys. Res., 1999, vol. 104, B4, 7419-7441.
    23. Guangyu Fu and Wenke Sun, Effects of spatial distribution of fault slip on calculating co-seismic displacement: Case studies of the Chi-Chi earthquake (Mw7.6) and the Kunlun earthquake (Mw7.6), Geophys. Res. Lett., 2004, 31, L21601, doi:10..1029/2004GL020841
    24. Gupta A, Scholz C H. Utility of elastic models inpredicting fault displacement fields, J. geophys. Res., 1998, 103, 823-834.
    25. Harris R. A. and Paul Segall, Detection of a locked zone at depth on the parkfield, California, Segment of the San Andras fault, J. Geophys. Res., 1987, vol. 92,7945-7962.
    26. Hashimoto M, Jackson D D. Plate tectonics and crustal deformation around the Japanese islands. J. geophys. Res., 1993, 98, 16149-16166.
    27. Hetland E. A. and Hager B. H., Postseismic relaxation across the Central Nevada Seismic Belt, J. Geophys. Res., 2003, 108, B8, 2394, doi:10.1029/2002JB002257
    28. Hideki U., Masakazu O. and H. Sata, Postseismic crustal deformation following Hokkaido Nanseioki earthquake, northern Japan: Evidence for a low-viscosity zone in the uppermost mantle, J. Geophys. Res., 2003, 108, B3, 2151, doi:10.1029/2002JB002067
    29. http://www-stat.stanford.edu/~susan/courses/s208/
    30. http://www-aig.jpl.nasa.gov/public/dus/gem/
    31. Hudnut K W, Z. Shen. M. Murrays et al. Co-seismic displacements for the 1994 Northridge, California, Earthquake. Bull. seism. Soc. Am., 1996, 86, S19-S36.
    32. Johnson K. M. and Segall P., Viscoelastic earthquake cycle models with deep stress-driven creep along the San Andreas fault system, J. Geophys. Res., 2004, 109, B10403, doi:10.1029/2004JB003096
    33. Khazaradze G. and J. Klotz, Short-and long-term effects of GPS measured crustal deformation rates along the south central Andes, J. Geophys. Res., 2003, 108, B6, 2289, doi: 10.1029/2002JB001879
    34. Larson K, M. R. Burgmann, R. Bilham, et al. Kinematics of the India-Eurasia collision zone from GPS measurements, J. Geophys. Res., 1999, v101, 1077-1093.
    35. Laura M, Colleen S., Ele S., et al., GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone, J. Geophys. Res., 2004,109, B05404, doi: 10.1029/2003JB002481
    36. Mashinha, L. and D.E. Smylie. The displacement fields of inclined faults, Bull, seism. Soc. Am., 1971,61,1433-1440.
    37. Masterlark T., Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions, J. Geophys. Res., 2003, 108, B11 2540, doi: 10.1029/2002JB002296
    38. Mitsuhiro.M, Inversion of geodetic data (a,b),J. P. E, 1977, Vol25, 69-90, 235-255.
    39. Miyazaki S, Heki K. Crustal velocity field of southwest Japan: Subduction and arc-arc collision. J. geophys. Res., 2001,106,4305-4326.
    40. Murray M. H., G Marshall, M. Lisowski, et al. The 1992 M=7 Cape Mendocino California,earthquake:Coseismic deformationathe south end of the Cascadia megathrust, J. Geophys. Res., 1996, vlOl, 17707-17725.
    41. Okada Y. Internal deformation due to shear and tensile faults in a half space, Bull. Seism. Soc. Am., 1992,82,1018-1040.
    42. Okada Y. Surface deformation due to shear and tensile faults in a half space, Bull. Seism. Soc. Am., 1985, 75,1135-1154.
    43. Okubo S. Gravity and potential changes due to shear and tensile faults in a half-space. J. Geophys. Res. 1992. Vol 97,7137-7144.
    44. Okubo S. Potential and gravity changes raised by point dislocations. Geophy. J. Int. 1991,105,573-586.
    45. Paul. F, 3-D dislocation model for great earthquakes of the Cascadia subduction zone, A diploma thesis, 1996.
    46. Rivalta E, W Mangiavillamo and M Bonafede. The edge dislocation problem in a layered elastic medium. Geophys. J Int., 2002,149,508-523
    47. Roth F. Deformations in a layered crust due to a system of cracks: Modeling the effect of dike injections or dilatancy. J. Geophys. Res., 1993,98, 4543-4551.
    48. Rybicki K, Dislocations and their geophysical application in Continuum Theories in Solid Earth Physics. 1986, pp. 18-175, ed. Teisseyre, R., PWH-Polish Scientific Publishers, Warsaw.
    49. Rybicki K. The elastic residual field of a very long strike slip fault in the presence of a discontinuity. Bull, seism. Soc. Am., 1971,61,79-92.
    50. Sagiya T, Thatcher W. Coseismic slip resolution along a plate boundary megathrust: the Nankait rough, southwest Japan. J. geophys. Res., 1999,104,1111-1129.
    51. Sato R, Matsu'ura M. Static deformation due to the fault spreading over several layers in a multi-layered medium, Part I: Displacement. J. Phys. Earth, 1973.21,227-249.
    52. Sato R, Matsu'ura M. Static deformation due to the fault spreading over several layers in a multi-layered medium, Part II: Dip-slip fault. 1975. J. Phys. Earth, 23,113-125.
    53. Sato R. Crustal deformation due to dislocation in a multi-layered medium. J. Phys. Earth, 1971, 19, 29-46.
    54. Savage J C, Lisowski M, Svarc J L. Postseismic deformation following the 1989 (M=7.1) Loma Prieta, California, earthquake. J. geophys. Res., 1994, 99, 13757-13765.
    55. Savage J C, Svarc J L, Prescott W H. Geodetic estimates of fault slip rates in the SanFrancisco Bay area. J. geophys. Res., 1999,104,4995-5002.
    56. Savage J C. Displacement field for an edge dislocation in a layered half-space. J. geophys. Res., 1998,103, 2439-2446.
    57. Savage J. C, Svarc J. L., and Presott W. H., Near-field postseismic deformation associated with the 1992 Landers and 1999 Hector Mine, California, earthquake, J. Geophys. Res., 2003,108, B9, 2432, doi: 10.1029/2002JB002330
    58. Savage J.C. and L.M. Hastie. Surface deformation associated with dip-faulting, J. Geophys. Res., 1966, 71, 4897-7904.
    59. Savage J.C, A dislocation model of strain accumulation and release at a subduction zone,J. GEOPHYS. RES., 1983, vol. 88, B6,4984-4996.
    60. Savage J.C, Deformation across the rupture zone of the 1964 Alaska earthquake 1993-1997, J. Geophys. Res., 1998,103, 21275-21283,1998.
    61. Savage J.C.and R.O. Burford .Geodetic determination of relative plate motion in central California, J. GEOPHYS. RES.,1973, vol. 78, 832-845.
    62. Steketee, J. A., Some geophysical applications of the elasticity theory of dislocations, Can. J. Phys., 1954, 36,1168-1198.
    63. Steven C. C. and Darby D. J., Tectonic plate coupling and elastic thickness derived from the inversion of a steady viscoelastic model using geodetic data: Application to southern North Island, New Zealand, J. Geophys. Res., 2003, 108, B3, 2164, doi:10.1029/2002JB001687
    64. Sun W and Okubo S. Coseismic deformation detected by satellite gravity missions: A case study of Alaska (1964, 2002) and Hokkaido (2003) Earthquakes in the spectral domain,J. Geophys. Res., 2004,109,26,975-26,992
    65. Sun W. and Okubo S. Surface potential and gravity changes due to internal dislocation in a spherical Earth, I. Theory for a point dislocation, Geophys. J. Int., 1993, 114, 569-592.
    66. Sun W. and Okubo S., Effects of earth's spherical curvature and radial heterogeneity in dislocation studies-for a point dislocation, 2002, Geophys. Res. Lett., 29(12), 1605, doi:10.1029/2001GL014407
    67. Sun W. and S. Okubo. Surface potential and gravity changes due to internal dislocation in a spherical Earth, II. Application to a finite fault, Geophys. J. Int., 1998,132, 79-88.
    68. Thatcher W, Rundle J B. A viscoelastic coupling model for the cyclic deformation due to periodically repeated earthquakes at subduction zones. J. geophys. Res., 1984, 89, 7631-7640.
    69. Thora A., H. Geirsson and P. Einarsson, Coseismic stress changes and crustal deformation on the Reykjanes Peninsula due to triggered earthquakes on 17 June 2000, J. Geophys. Res., 2004,109, B09307, doi: 10.1029/2004JB003130
    70. Vergnolle M., Pollitz F. and Calais E., Constraints on the viscosity of the continental crust and mantle from GPS measurements and postseismic deformation models in west Mongolia, J. Geophys. Res., 2003, 108, B10, 2502, doi:10.1029/2002JB002374
    71. Wang C. Y., Chan W. W. and Mooney W. D., Three-dimensional velocity structure of crust and mantle in southwestern China and its tectonic implications, J. Geophys. Res., 2003, 108, B9, 2442, doi:10.1029/2002JB001973
    72. Wang H. 1999. Surface vertical displacements, potential perturbations and gravity changes of a viscoelastic Earth model induced by internal point dislocations, Geophys. J. Int., 137, 429-440.
    73. Wang K., Wells R., Mazzotti S., et al., A revised dislocation model of interseismic deformation of the Cascadia subduction zone, J. Geophys. Res., 2003, 108, B1, 2026, doi:10.1029/2001JB001227
    74. Wu J. C., Inverse analysis of crust deformation measurements, PH. D thesis, 1999, Hongkong: The Hangkong Polytechinic university
    75. Wu J. C. and Xu C. J., Research on a intraplate movement model by inversion of GPS data in Northchina, J. Geodesy, 2001, 31, 507-518.
    76. Wu J. C., H. W. Tang, Y. Q. Chen, et al., Inversion of GPS measurements for a layer of negative dislocation distribution in north China, J. Geophys. Res., 2003, 108 (B10), 2481, doi:10.1029/2002JB002171
    77. Xu Caijun, Li Zhicai, Wang Qi, Prospect on present-day crustal kinematics and dynamics research in Sichuan-Yunnan area with geodetic data, Geo-Spacial Information Science, 2005, 8(1), 1-7
    78. Yosuke Aoki and C. H. Scholz, Interseismic deformation at the Nankai subduction zone and the Median Tectonic Line, southwest Japan, J. Geophys. Res., 2003, 108, B10, 2470, doi:10.1029/2002JB002441
    79. Yu S. B., Hsu Y., Kuo L. et al., GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 2003, 108, B11 2250, doi:10.1029/2002JB002396
    80. Zhao S., Muller R. D., Takahashi Y. et al. 3-D finite-element modeling of deformation and stress associated with faulting: effect of inhomogeneous crustal structures. Geophys. J. Int., 2004, 157, 629-644.
    81. Zhao Shaorong, Chao Dingbo and Xu Jusheng, Determination of current active segments at the Red River Fault Zone by inversion of GPS baseline changes, J. Geodynamics, 1993, 17(3): 145-154
    82. Zhao Shaorong. Detection of the active segment at the Red River Fault Zone by inversion of observed gravity changes, J. Geodynamics, 1995, 20(1): 41-62
    83. Zhao Shaorong. Joint inversion of observed gravity and GPS baseline changes for the detection of the active fault segment at the Red River fault zone. Geophys. J. Int, 1995, 122, 70-88.
    84.陈红,吴汇川,bootstrap方法及其应用,青岛大学学报,1997,112(3):78-83.
    85.陈运泰,黄立人,林邦慧等.利用大地测量资料反演的1976年唐山地震的位错模式.地球物理学报,1979,3:201-217
    86.陈智梁,张选阳等,中国西南地区地壳运动的GPS监测.科学通报,1999,44(8):851-854,
    87.陈祖安,白武明,林邦慧等,1966年以来华北地区一系列七级大震破裂过程的数值模拟.地球物理学报,2003,46(3):373-381
    88.邓起东,张培震,冉勇等,中国活动构造基本特征,中国科学(D辑),2002,32(12):1020~1030
    89.丁国瑜,卢演俦,对我国现今板内运动状态的初步探讨.科学通报,1986,31(18),1412-1415.
    90.杜继亮 许才军 李志才,喜马拉雅块体现今运动学特征的地震矩张量反演分析,武汉大学学报信息科学版,2002,27(3):261-264
    91.独知行,基于力学模式的大地测量反演理论与应用,中国科学院测量与地球物理研究所博士论文,2001
    92.傅容珊等,印度与欧亚板块碰撞的数值模拟和现代中国大陆形变,地震学报,2000,22(1),1-7
    93.高占武,徐杰,宋长青,等.张家口-蓬莱断裂带的分段特征.华北地震科学,2001,19(1):35-54.
    94.郭得科,刘尧兴,王惠,等.地震活动性的自助统计分析及其在河南省及邻区地震预报中的应用,2002,22(3),5-11.
    95.郭良迁,薄万举,杨国华.华北地区断裂带的现代形变特征.大地测量与地球动力学,2003,23(2),29-36
    96.国家地震局《一九七六年唐山地震编辑组》,一九七六年唐山地震,地震出版社,1982
    97.虢顺民,向宏发,徐锡伟,等.滇西南龙陵-澜沧断裂带:大陆地壳上一条新生的破裂带.科学通报,1999,44(19),118~2121
    98.虢顺民,徐锡伟,向宏发,周瑞琦,董兴权,张晚霞,龙陵-澜沧新生断裂带地震破裂分段与地震预测研究,地震地质,2002,24(2),33-144
    99.黄立人,肖木,用大地测量资料反演滇酉地震预报实验场断裂带的活动段,地震研究,1994,17(3),263-272
    100.赖院根,刘启元,陈久辉等,新疆伽师强震区的横波分裂与应力场特征,地球物理学报,2002,45(1):83-92
    101.李坪主编,鲜水河-小江断裂带,1993,北京,地震出版社
    102.李松林,张先康,W.D.Mooney,等,伽师地震区地壳细结构及发震断层的初步研究,地球物理学报,2002,45(1):76-82
    103.刘启元,陈九辉,李顺成等,新疆伽师强震群区三维地壳上地幔S波速度结构及其地震成因的讨论,地球物理学报,2000,43(3):356-365
    104.吕弋培,廖华,苏琴,王兰,川滇菱形块体边界的现今地壳形变,中国地震,2002,18(1):28~37
    105.罗福忠,张云峰,吕桂林等,1997年4月6日、11日、16日新疆伽师4次6.3-6.6级地震烈度分布及震害特征,内陆地震,1997,11(4):399-404
    106.马宗晋,陈鑫连,叶叔华,等,中国大陆区现今地壳运动的GPS研究,科学通报,2001,46(13),1118-1120.
    107.牛安福,王琪,江在森等,伽师地震与区域断层活动研究,大地测量与地球动力学,2003,23(1):18-21
    108.乔学军,王琪,杜瑞林等,昆仑山口西Ms8.1地震的地壳变形特征,大地测量与地球动力学,2002,22(4):6-11
    109.乔学军,王琪,王晓强等,新疆伽师地区现今构造运动和地形变GPS监测的初步 研究,地壳形变与地震,2000,20(3):49-57
    110.阮爱国,王椿镛,云南地区上地幔各向异性研究,地震学报,2002,24(3),260-267
    111.申重阳,王琪,吴云,游新兆,甘家思,杨少敏,川滇菱形块体主要边界运动模型的GPS数据反演分析,地球物理学报,2002,45(3):352-361
    112.申重阳,吴云,杨少敏,等.华北地块内部主要断层运动模型的GPS数据反演分析,地壳形变与地震,2001,21(4):33~42.
    113.沈正康,万永革,甘卫军等.东昆仑活动断裂带大地震之间的黏弹性应力触发研究.地球物理学报,2003,46(6):786-795.
    114.宋方敏,汪一鹏,俞维贤等,1998,小江活动断裂带,北京:地震出版社
    115.孙荀英,刘激扬,王仁.1976年唐山地震震时和震后变形的模拟.地球物理学报,1994,37(1):46-55
    116.万永革,王敏,沈正康等,利用GPS和水准资料反演2001年昆仑山口西8.1级地震的同震滑动分布,地震地质,2004,26(3):393-404
    117.王椿镛,W.D.Mooney,王溪莉等,川滇地区地壳上地幔三维速度结构研究,地震学报,2002,24(1):1-16
    118.王敏,沈正康,牛之俊等,现今中国大陆地壳运动与活动块体模型.中国科学(D辑),2003,No.33(增刊):21-32
    119.王琪,丁国瑜,乔学军等,天山现今地壳快所缩短与南北地块的相对运动,科学通报,2000,45(14):1543-1547
    120.王琪,用GPS监测中国大陆现今地壳运动:变形速度场与构造解释,武汉大学博士论文,2004
    121.王琪,张培震,马宗晋.中国大陆现今构造变形GPS观测数据与速度场.地学前缘,2002,9(2):415-429
    122.王卫民,李丽,赵连锋等,2003年2月24日新疆伽师Ms6.5级地震震源破裂过程研究,地球物理学报,2005,48(2):343-348
    123.伍吉仓,陈永奇,估计先验信息的模型参数反演——澜沧-耿马地震位错模型参数的求定,地壳形变与地震,1997,17(2):27-32
    124.伍吉仓,许才军,利用GPS资料反演华北块体运动的负位错模型参数,武汉大学学报,信息科学版,2002,27(4):352-357
    125.高锡铭,伍吉仓,负位错模型与断层运动图象——确定滇西地震预报实验区的潜在震源区,地壳形变与地震,1994,14(4):1-8
    126.向宏发,虢顺民,徐锡伟,张晚霞,川滇南部地区活动地块划分与现今运动特征初析,地震地质,2000,22(3),253~264
    127.向宏发,徐锡伟,虢顺民,张晚霞,李洪武,于贵华,丽江-小金河断裂第四纪以来的左旋逆推运动及其构造地质意义—陆内活动地块横向构造的屏蔽作用,地震地质,2002,24(2),188~198
    128.胥颐,刘福田,刘建华等,天山地震带的地壳结构与强震构造环境,地球物理学报,2000,43(2):184-193
    129.徐杰,牛娈芳,王春华,等.唐山-河间-磁县新生地震构造带.地震地质,1996,18(3):193-198.
    130.徐锡伟,闻学泽,郑章荣等,川滇地区活动块体最新构造变动样式及其动力来源,中国科学(D辑),2003,No.33(增刊):151-162
    131.徐锡伟,吴卫民,张先康等.首都圈地壳结构最新构造活动与地震.科学出版社,2002.
    132.许才军,青藏高原地壳运动模型与构造应力场,测绘出版社,2002
    133.许才军,李志才,华北地区活动块体边界带运动及块体内部变形分析,武汉大学学报信息科学版,2002,27(4):348-351
    134.许才军,李志才,王华,华北地区活动地块运动时空变化特征,大地测量与地球动力学,2002,22(2):33-40
    135.许才军,李志才,轮回搜索-贝叶斯法及其在大地测量反演中的应用,武汉大学学报信息科学版,2003,28(6):658-662
    136.许才军,董立祥,施闯等,华北地区GPS地壳应变能密度变化率场及其构造运动分析,地球物理学报,2002,45(4):497-506
    137.许才军,董立祥,李志才,华北地区地壳形变的GPS及地震矩张量反演分析,武汉测绘科技大学学报,2000,25(6):471-475
    138.杨欣,高国英,1997年伽师强震群序列特震和震源机制的初步研究,地震学报,1998,20(6):573—579
    139.易桂喜,闻学泽,徐锡伟.川滇地区若干活动断裂带整体的强地震复发特征研究.中国地震,2002,18,3,267-276
    140.张国民,张培震,“大陆强震机理与预侧”中期学术进展,中国基础科学,2000,(10):4~10
    141.张培震,王琪,马宗晋,中国大陆现今构造运动的GPS速度场与活动地块,地学前缘,2002,9(2),430-441
    142.张希,江在森,张晓亮,等.华北地区近期地壳水平运动的非震负位错反演.大地测量与地球动力学,2002,22(3),40-45.
    143.张先康,赵金仁,张成科等,帕米尔东北侧地壳结构研究,地球物理学报,2002,45(5):665-671
    144.张之立,李钦祖,谷继成等.唐山地震破裂过程的雁行断裂模式及理论和实验的模拟.地震学报,1989,3:291-301
    145.赵金仁,张先康,张成科,等,伽师-阿图什震区地壳深部结构特征的探测与研究,中国地震,2002,18(4):317—325
    146.赵瑞斌,胡伟华,王朵,1997年伽师地震震害与损失评估,内陆地震,1997,11(4):405-410
    147.赵少荣,动态大地测量反演及物理解释的理论与应用,武汉测绘科技大学博士论文,1991.
    148.赵少荣.利用大地测量资料反演的1976年唐山地震双断层位错模式.测绘学报,1995,24(4):250-258
    149.朱令人,苏乃秦,杨马陵,1997年新疆伽师强震群及二次成功的临震预报,中国地震,1998,14(2):101—115
    150.祝意青,胡斌,李辉等,新疆地区重力变化与伽师6.8级地震,大地测量与地球动力学,2003,23(3):66-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700