用户名: 密码: 验证码:
大地测量联合反演的模式及算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大地测量反演问题是大地测量学科深入地学研究领域的核心问题之一,是利用地球表面观测到的形变资料推测地球内部介质物理状态的空间变化及演化的一个分支,它与地震学、地球物理学等学科的结合,在研究地球动力学和地球物理的深部结构细节、地球内部动力过程和物性特征等方面不仅具有理论意义,而且具有实用价值,已受到国内外学者的高度重视。特别是由大地测量所得的地壳形变与地震之间存在着某种形式的必然联系,利用震间和震前的形变测量,了解孕震过程,研究孕震模式,进而预测预报地震的发生,是大地测量反演的一个主要内容。位错理论就是研究震源机制的一个常用模式。
     论文系统地讨论了大地测量反演的位错理论,研究了基于位错模式的多类数据的联合反演问题,进行了多种常用反演算法的比较分析,着重研究了区间算法,采用区间模拟退火法,进行了近震定位试验,并利用重力和GPS数据联合反演了川西地区的断层参数。
     论文的具体研究工作和主要创新点包括以下几个部分:
     1.位错模型的研究
     论文系统总结了由于断层运动产生的位移、应变、应斜、重力的变化,以及地壳内部形变,并改正了文献中原有位错模型的偏导数中的不正确部分,为最小二乘等以求导为手段的反演研究做出了贡献,完善了位错理论。
     2.联合反演模式的研究
     多类数据的联合反演是本文研究的核心内容之一。广泛进行的地壳运动和变形的监测,可获得丰富的高质量的地表形变信息数据,包括GPS、水准测量、重力测量以及合成孔径雷达干涉测量(InSAR)的监测数据。实际上,地壳运动和地形变监测数据是地球内部动力过程地表力学响应的输出信号,这种响应是由地下介质的物理特性激发的。虽然各种响应互不相同,但由这些响应推断的地下介质是相同的。因此,联合反演是大地测量数据进行地球物理解释的理想工具。
     论文提出采用附有相对权比确定的多类数据的联合反演。在位错模式下,通过模拟的GPS、水准和重力数据,研究了附有相对权比确定的采用GPS和水准、GPS和重力、水准和重力以及这三类数据共同参与的三维位错模式的联合反演问题。在反演区域或局部水平速度场方面,给出了兼顾权比确定的大地测量、地震和地质(第四纪断层滑动速率)三种数据的联合反演模式。
     3.反演算法的研究
     联合反演算法的研究是本文的另一个核心内容。反演最终归结为求目标函数的最小值,从数学角度上看是一个优化问题,传统的方法如最小二乘法和附有先验信息的贝叶斯法等,需要计算模型的偏导数,但通常来说,大地测量和地球物理模型是强烈非线性的,参数的偏导数非常复杂,甚至一些参数的偏导数很难得到。因此,近年来,无需计算模型偏导数的优化方法得到了广泛的运用。
     在反演算法优缺点方面,论文比较了蒙特卡罗法、遗传算法、模拟退火法、随机耗费法和
Geodetic inversion is geodetic core that studies geoscience and also a branch that speculates on spatial change and evolution of physical state of interior medium in earth by deformation data measured. It is significant in theory and valuable in application to combine geodetic inversion with seismology and geophysics to study on geodynamics, deep-seated structural details of earth, the dynamical process of interior earth and material characteristics. Geodetic inversion is regarded by homely and abroad highly. Especially, crust deformation is natural related with earthquake. So it is a key task of geodetic inversion to research on the process and mode of warning signs of an earthquake, even to forecast an earthquake with interseismic and preseismic deformation measurement. Dislocation is a usual mode to study warning signs of an earthquake.The dislocation theory is researched systemically in the dissertation. The joint inversions with kinds of data based on dislocation are researched. Some usual algorithms are analyzed contrastively. Interval algorithm is discussed mainly. The interval Simulated Annealing algorithm is used to locate a local earthquake and jointly invert fault parameters with GPS and gravimetry in the west of Sichuan.The main research contents and new calculation methods in the dissertation are following:1. Research on dislocation modelThe changes of displacement, strain, tilt, gravity and crustal internal deformation due to dislocation are summarized systemically in the dissertation. Wrong Partial derivatives formulae of dislocation model in some papers are corrected in the dissertation. It is a contribution to researchers who use some methods based on partial derivatives of parameters, such as, the Least-Squared method. The correction perfect the dislocation theory2. Research on Joint Inversion modeJoint inversion with kinds of data is one of the keys of the dissertation. Some top-quality deformation data, such as GPS, leveling, gravimetry and InSar, are obtained by monitoring crustal movement. In fact, those data are output signals of responding to geodynamic process of the interior of earth. The responds to movements are different, but the medium is the same. So, joint inversion is a potential tool to analyze geophysical data.A kind of joint inversion that will invert the weight in the object function is proposed in the dissertation. Based on dislocation mode, the kind of joint inversion with simulated GPS, leveling and gravimetry data is used by twos or whole to invert the parameters of three-dimension fault model. In addition, this kind of joint inversion is also used to invert regional or local horizontal velocity with geodetic data, seismic data and geologic data, such as the Quaternary fault slip.3. Research on Inversion Algorithms
    Researches on joint inversion algorithms are another key of the dissertation. Inversion aims to get the minimum of the object function. This is an optimal question in mathematics. The classical methods, such as the Least-Squared method and Bayesian method with a prior information of parameter, need partial derivatives of parameters. In general, geodetic or geophysical model is very nonlinear, the derivatives are very complicated and even it is difficult to express them in formulae. So, recent years, some methods without partial derivatives are used widely.Some algorithms, such as Monte Carlo, genetic algorithm, Simulated Annealing algorithm, random cost method and interval algorithm, are compared in the dissertation. Thereinto, Monte Carlo, genetic algorithm, Simulated Annealing algorithm and random cost method are based on stochastic search. They can sometimes jump over local optimum and converge to global one, but they can't be successful every time because of their inherent stochastic nature. They have the same chance to converge to local and global optimum. So they can't be called whole global optimizations, but a global optimization oriented. Especially, interval algorithm is regarded as a whole global optimization in the dissertation. It is superior to other optimization methods in reliability and appraisal of results. And it is a method to find all global minimizers of a constrained nonlinear function with several variables. It is impossible to converge to a local minimizer for interval algorithm. It is concluded that interval algorithm is a reliable and efficient global optimization method.These methods are compared by inverting fault parameters with simulated gravimetry data base on dislocation mode. Several tests are made with every method. To the stochastic method, the different tests bring different results. If the true value of parameter is unknown, it can not be concluded which answer should be selected as inversion result. Simulated annealing method is better among the all stochastic methods. Interval algorithm can always converge to an interval including global optimum and the upper of approaching error is computed easily.To accelerate the speed of computation of interval algorithm, it is combined with simulated annealing method for the first time. And the new method is called interval simulated annealing method in the dissertation. The combination accelerates the computation speed and makes algorithm reliable and exact. This is a hybrid of stochastic search and exhaustive search.An improvement of interval Newton method is given in the dissertation. It corrects the unreliable part of prototype algorithm and makes the method more reliable and stable. Some examples show the application of it in solving nonlinear equations and global optimization.4. Research on Location of Near EarthquakeSeismic location is to decide the location of hypocenter and the time of earthquake occurrence. It is a basic question of seismology. The location result can disclose some important information about earthquake activities and the earthquake circumstance, thus, the earthquake mechanism and cause of occurrence will be known more. With the more development of digital observation technology, the more accurate location of hypocenter is needed. This is helpful to study hypocenter
    the crustal structure and the crustal velocity model.The methods and principles of seismic location with IA-SA and classical Geiger method are introduced in case of homogeneous crust. The focus parameters of Shacheng earthquake in 1976 are inverted by the two methods respectively. The result of IA-SA is superior to the one of Geiger method according to some quantitative compares.5. Research on Geodetic Inversion of the Faults of the West of Sichuan Province Sichuan locates the southeastern of Qinghai-Tibet Plateau. There were many earthquakes historically. The intensity of seismic activities is the fifth in our country. Sichuan province is an important part of South-North Seismic belt. Xianshuihe fault locates the western Sichuan province. It is famous home and abroad and characteristic on intensive structural activities. In addition, Litang-Dewu fault locates the southwestern of Xianshuihe fault. They are researched in detail in the dissertation.Multipurpose researches were done in Xianshuihe fault broadly. According to its character of activity, Xianshuihe fault is divided into northwestern segment, Qianning-Kangding segment, Zheduotang segment and Moxi segment. The data used in the dissertation include relative gravimetry between 1996 and 2001 and GPS velocities between 1991 and 2000.Firstly, the two kinds of data is inverted individually by SA and IA-SA so as to compare their results.There are two projects to invert GPS. The one inverted all parameters of four segments if Xianshuihe Fault. Through the map of velocities, there are obvious differences on some points. Considering the big velocity of some points on southwestern of Xianshuihe fault, the second project is brought forward to invert Litang-Dewu fault synchronously. 7 parameters of every fault segment will be inverted, that is, the location of fault and strike are given some fixed values. According to value of object function, the results of IA-SA is superior to the ones SA. Therefore, the results of IA-SA are regarded as the inversion results with GPS data. The velocity measured is consistent with the one inverted.According to the maps of annual gravity changes isolines between 1996 and 2001, Xianshuihe fault is the boundary of plus isolines and negative isolines. This says the intensive activities of both sides of fault. So it is necessary to consider the action of fault activity to gravity changes. The inversion with gravimetry data resembles the second project of GPS inversion, that is, there are 7 parameters of every fault segment inverted. Still, the results of IA-SA is superior to the ones SA.At the end of the dissertation, a joint inversion with GPS and gravimetry data is done. Two projects are also given with the relatively weight ratio fixed to 0.5 or inverted. The all ten parameters of every fault are inverted by IA-SA during the two projects. The relatively weight ratio of gravimetry inverted is 0.314. The value of object function with the relatively weight ratio inverted is small than the one of another project. The results show that the project with weight ratio inverted is better and match the different kinds of data more rational.
    It can be summarized that Xianshuihe fault is mainly a left lateral fault. The northwestern segment has the most intensive activity with a strike slip 13mm/a. The strike slip velocity in middle segment is 4.9~6.9mm/a. But the strike slip velocity in southeastern, the Moxi segment, arrives at 8.28mm/a. Three dislocation components of Litang-Dewu fault is close to each other, and it has the maximum tensile components, 5.12mm/a, among all 5 fault segments.
引文
[1] Aki, K., and P. G. Richards. Quantitative seismology, theory and methods, 1&2. W. H. Freeman, New York, 1980
    [2] Backus, G., Gilbert F. Numerical application of a formalism for geophysical inverse problems. Geophys. J. Roy. Astron. Soc, 1976, 13, 247-276
    [3] Backus, G.., Gilbert F. The resolving power of gross earth data. Geophys. J. Roy. Astron. Soc, 1968, 16 169—205
    [4] Backus, G.., Gilbert F. Uniqueness in the inversion of inaccurate gross earth data. Phil Trans. R. Soc. London Ser. 1970, A226,123-192
    [5] Basu, A., L. N. Frazer. Rapid determination of the critical temperature in simulated annealing inversion. Science, 1990, 249, 1409-1412
    [6] Braitenberg, C, M. Zadro, J. Fang, Y. Wang, H. T. Hsu, Gravity Inversion in Qinghai-Tibet Plateau, Phys. Chem. Earth(A), Vol.25, No.4, 381-386, 2000-12-15
    [7] Cao D X, Shen Z H. Interval algorithms for a class of nonsmooth optimization problems[J]. Numerical Mathematics. A Journal of Chinese Universities, 1998, 1:23-33
    [8] Cervelli, P., M. H. Murray, P. Segall, Y. Aoki, and T. Kato, Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan. J. Geophys. Res., 106, 11217-11237,2001.
    [9] Chen Z, Burchfiel B C, Liu Y, et al. Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation[J]. J. Geophys. Res., 2000, 105: 16215-16227.
    [10] Crosson, R. S. Crustal structure modeling of earthquake data: Part 1. Simultaneous least squares estimation of hypocenter and velocity parameters. J.G. R.,1976, 81, 17:3036-3046
    [11] Crosson, R. S. Crustal structure modeling of earthquake data: Part2. Velocity structure of Puget Sound region, Washington. J. G R., 1976, 81, 17: 3047-3054
    [12] England, P., and P. Molnar. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophys. J. Int., 1997, 130, 551-582
    [13] Esposito, W.R., Christodoulos A. Floudas. Deterministic global optimization in nonlinear optimal control problems. Journal of Global Optimization. 2000, 17:97-126.
    [14] Freymueller Jeff. Kinematics of the Pacific-North America plate boundary zone, northern California. J. G. R. 1999, Vol. 104, B4: 7419-7441.
    [15] Gao Ximin and E.Groten, Inversion of Geodetic Observation to Determine Earthquake Fault Parameters Using Bayesian Approach in the Presence of Geoidal Deformation, Earthquake Research in China, 1993, 7(3)
    [16] Geiger, L. Herdbestimming bei Erdbeben aus den Ankunftszeiten, K.Ges.Wiss.Gwott., 1910, 4: 331-349
    [17] Geiger, L. Probability method for the determination of earthquake epicenters from arrival time only[J]. Bull.St.Louis.Univ., 1912, 8: 60-71
    [18] Gilbert, F.. Excitation of the normal model of the earthquake sources. Geophy. J. R. Astrom. Soc, 1970, 22: 223-226
    [19] Haines, A. J., Calculating velocity fields across plate boundary from observed shear rates. Geophy. J. R. Astron. Soc, 1982, 68: 203-209
    [20] Haines, A. J., W. E. Holt. A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data.J. G. R., 98(B7): 12057-12082, 1993
    [21] Haines, A. J., J. A. Jackson, W. E. Holt, and D. C. Agnew, Representing distributed deformation by continuous velocity fields, Sci. Rep. 98/5, 100pp., Inst. Of Geol. And Nucl. Sci., Lower Hurt, New Zealnad, 1998
    [ 22 ] Holt, W.E., A. J. Haines. Velocity fields in deformation Asia from the inversion of earthquake-released strains[J]. Tectonics, 1993.2, Vol. 12, No. 1: 1-20.
    [ 23 ] Holt, W.E., A. J. Haines. The kinematics of northern South Island, New Zealand, determined from geologic strain rates[J]. J. Geophys Res., 1995, Vol.100, No. B9: 17991-18010.
    [24] Holt, W.E., N. Chamot-Rooke, X. Le Pichon, A. J. Haines, B. Shen-Tu, and J. Ren. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J. G R., 2000, 105 (B8): 19185-19209
    [25] Jackson, D. D. Interpretation of inaccurate, insufficient and inconsistent data. J. G. R., astr. Soc, 1972, 28:97-110
    [26] Jackson, D.D. The use of a priori data to resolve non-uniqueness in linear inversion[J]. J.Geophys. Res. astr Soc, 1979, 57: 137-157.
    [27] Jackson, D. D". and M. Matsu'ura. A Bayesian approach to nonlinear inversion, J.G.R., 1985, Vol.90, No.B 1:581-591
    [28] Jackson, J.A., McKenzie D.P. The relationship between plate motions and seismic moment tensors, and the rates of active deformation in Mediterranean and Middle East. Geophy. J. R. Astron. Soc, 1988, 93: 45-73
    [29] Kirkpatrick, S., C. D. Gelatt, Jr., M. P. Vecchi, Optimization by Simulated Annealing, Science, 1983, Vol.220:671-680
    [30] Kostrov, V. V.. Seismic moment, energy of earthquakes, and the seismic flow of rock. Izv. Acad. Sci. USSR Phys. Solid Earth. Ehgl. Transl, 1974, 10: 23-44
    [31 ] Larson, K. M., R. Burgmann, R. Bilham et al. Kinematics of the India-Eurasia collision zone from GPS measurements, J. G R., 1999, Vol.104, No.B1: 1077-1093
    [32] Li Shuang, Xu Caijun, Wang Xinzhou. Algorithms for estimating source parameters. Oral report. The ninth GNSS workshop 2002 International Symposium on GPS /GNSS. 2002
    [ 33 ] Li Shuang, Xu Caijun, and Wang Xinzhou. An improvement and application of interval Newton method in solving nonlinear equations and global optimization. Geo-Spatial Information Science. 2003, (1)
    [34] Lisowski, M., W.H. Prescott, J.C. Savage, and M.J. Johmston. Geodetic estimate of coseismic slip during the 1989 Loma Prieta, California, earthquake[J]. Geophys. Res. Lett. 1990, 17: 1437-1440.
    [35] King R W, Shen F., Burchfiel B C, et al. Geodetic measurement of crustal motioin in southwest China[J]. Geology, 1997,26: 179-182
    [36] Matsu'ura, M., Inversion of geodetic data. Part I. Mathematical formulation, J. Phys. Earth, 1977, 25:69-90
    [37] Marsu'ura, M., Inversion of geodetic data. Part II. Optimal model of conjugate fault system for the 1927 Tango earthquake, J. Phys. Earth, 1977, 25:233-255
    [38] Molnar, P., Inversion of profiles of uplift rates for the geometry of dip-slip faults at depth, with examples from the Alps and the Himalaya, Annales Geophysicae, 1987, 5B, (6):663-670
    [39] Murray, Mark H., Grant A. Marshall, Michael Lisowski, and Ross S. Stein. The 1992 M=7 Cape Mendocino, California, earthquake: coseismic deformation at the south end of the Cascadia megathrust[J]. J. Geophys. Res., 1996, Vol. 101, B8: 17707-17725.
    [40] Nath, S. K., S. Chakraborty, S. K. Singh and N. Ganguly. Velocity inversion in cross-hole seismic tomography by counter-propagation neural network, genetic algorithm and evolutionary programming techniques, Geophys. J. Int., 1999, 138:108-124
    [41] Okada,Y. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 1985, vol.75: 1135-1154
    [ 42 ] Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 1992, vol.82: 1018-1040
    [43] Okubo, S., Y. Hirata, M.Sawada et al. Gravity change caused by the 1989 earthquake swarm and submarine eruption off Ito, Japan—Test on the magma intrusion hypothesis. J. Phys.Earth, 1991, 39: 219-230
    [44] Okubo, S. Gravity and potential changes due to shear and tensile faults in a half-space[J]. J. Geophys. Res., 1992, Vol.97,No.B5: 7137-7144.
    [ 45 ] Prugger A. F., Gendzwill D.J. Microearthquake location: A nonlinear approach that makes use of a simplex stepping procedure[J]. Bull. Seism. Soc. Am., 1988, 78(2):799-815
    [46] Ratschek, H., and J. Rokne. New computer methods for global optimization. Ellis Honvood Ltd., Chichester, 1988
    [47] Rothmann, D.H. Nonlinear inversion, statistical mechanics, and residual statics estimation. Geophysics, 1985, 50: 2784-2796.
    [48] Savage, J.C. Local gravity anomalies produced by dislocation sources. J. Geophys. Res. 1984, Vol. 89,No.B3: 1945-1952
    [49] Shen, Peiping, Shouzhi, Yang. An Interval Algorithm for Finding all Global Minimizers of a Nonsmooth Function of Several Variable. MATHEMATICA APPLICATA. 2001,14(l):15-21
    [50] Shen-Tu, B., W.E. Holt, and A. J. Haines. Intraplate deformation in the Japanese Islands: A kinematic study of intraplate deformation at a convergent plate margin[J]. J. Geophys. Res. 1995, Vol.100, No.B 12: 24275-24293.
    [51 ] Shen-Tu, B., W. E. Holt, And A. J. Haines, The Contemporary Kinematics Of The Western United States Determined From Earthquakes Moment Tensors, VLBI And GPS Observations, J. Geophys. Res., 103, 18,087-18,118, 1998.
    [52] Shen Z, Zhu Y. An interval version of Shubert's iterative method for the localization of the global maximum[J]. Computing, 1987, 38: 275-280
    [53] Steketee, J. A., On Volterra's dislocations in a semi-infinite elastic medium, Can. J. Phys. 1958, Vol.36: 192-205
    [54] Steketee, J. A., Some geophysical applications of the elasticity theory of dislocations, Can. J. Phys. 1958, Vol.36: 1168-1196
    [55] Stoffa, P. L. and M. K. Sen, Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane-wave seismograms, Geophysics, 1991, 56(ll):1794-1810
    [56] Tarantola, A. and B. Valette. Generalized nonlinear inverse problems solved using the least squares criterion[J]. Reviews of Geophysics and Space Physics. 1982, Vol.20, No.2: 219-232.
    [57] Tarvainen, M, Timo Tiira and Eystein S. Husebye, Locating regional seismic events with global optimization based on interval arithmetic, Geophys. J.Int, 1999, 138:879-885
    [58] Tinnon, M.J., W.E. Holt, and A.J. Haines. Velocity gradients in the northern Indian Ocean inferred form earthquake moment tensors and relative plate velocities[J]. J. Geophys. Res. 1995, Vol. 100, No. B12: 24315-24329.
    [59] Walsh, J.B., J.R. Rice. Local changes in gravity resulting from deformation. J. Geophys. Res. 1979, 84(B1): 165-170
    [60] Williams, C.R., T. Arnadottir and P. Segall. Coseismic deformation and Dislocation Models of the 1989 Loma Prieta earthquake derived from global positioning system measurements [J]. J. Geophys. Res. 1993, 98(B3): 4567-4578.
    [61] Wu, J. C., Inverse analysis of crust deformation measurements. Ph.D, The Hong Kong Polytechnic University, 1998
    [62] Wu, J.C., Xu C.J. Research on an intraplate movement model by inversion of GPS data in NorthChina[J]. J. Geodesy. 2001, 31: 507-518.
    [63] Xu Caijun, Liu Jingnan, Li Zhicai, and Donglixiang. Research on the deformations in Qinghai-Tibet plateau and its margins by inverting seismic moment tensors and GPS velocities. Geo-spatial Information Science, 2000, 3 (4): 54-60
    [ 64 ] Xu Caijun, Wang Hua, Liu Jingnan. Present-Day Crustal Deformation Field In China Continent Inverted From GPS Obsertvations, Earthquake Moment Tensor And Quaternary Fault Slip Rates. Wuhan University Journal of Natural Sciences. 2003, 8(2b): 736-744
    [65] Xu Caijun, Wang Qi and Liu Jingnan. Recent crustal deformation and strain accumulations in continental China inferred from GPS and seismicity data. In: Adam and Schwarz(Eds.), Vistas for Geodesy in the New Millennium. International Associate of Geodesy Symposia. Berlin: Springer. 2002, 512-517
    [ 66 ] Xu Peiliang. A hybrid global optimization method: the one-dimensional case. Journal of Computational and Applied Mathematics. 2002(147): 301-314
    [67] Xu Peiliang. Numerical solution for bounding feasible point sets. Journal of Computational and Applied Mathematics. 2003,(156): 201-219
    [68] Xu Peiliang. A hybrid global optimization method: The multi-dimensional case. Journal of Computational and Applied Mathematics. 2003 (155): 423-446
    [69] Xu Peiliang. Determination of regional stress tensors from fault-slip data. Geophys. J. Int. 2004, 157, 1316-1330
    [70] Yoshida, S., Gaku Seta, Shhei Okubo et al. Absolute gravity change associated with the March 1997 earthquake swarm in the Izu Peninsula, Japan. Earth Planets Space, 1999, 51: 3-12
    [71] Zhao Shaorong, Chao Dingbo and Xu Jusheng. Determination of current active segments at the Red River fault zone by inversion of GPS baseline changes. J. Geodynamics, 1993, 17(3): 145-154
    [72] Zhao S R, Chao D. B., Lai X., et al. The 1996 M_L=7.0 Lijiang Earthquake, Yunnan, China: An anticipated event[J]. J. Geodynamics, 1999(27): 529-546.
    [73] Zhao Shaorong. Detection of the active segment at the Red River fault zone by inversion of observed gravity. J. Geodynamics, 1995a, 20(1): 41-62
    [74] Zhao S R. Joint inversion of observed gravity and GPS baseline changes for the detection of active fault segment at the Red River fault zone[J]. Geophys. J. Int. 1995b, 122: 70-88
    [75] Zhao Shaorong and Shuzo Takemoto. Aseismic fault movement before the 1995 Kobe earthquake detected by a GPS survey: implication for preseismic stress localization? [J]. Geophys. J. Int. 1998, 135:595-606
    [76] Nolet,G.地震层析成象及应用.学术书刊出版社.1989
    [77] 艾伯特·塔栏托拉著.反演理论——数据拟合和模型参数估算方法.学术书刊出版社,1989
    [78] 安美建,石耀霖.动态遗传算法及其在P波初动震源机制解中的应用.中国地震,1996,12(4):394~402
    [79] 安美建,石耀霖,李方全.用遗传有限单元反演法研究东亚部分地区现今构造应力场的力源和影响因素.地震学报,1998,20(3):225-231
    [80] 晁定波,许才军,刘大杰.四维整体大地测量的有限单元法.测绘学报,1997,26(1)
    [81] 陈兵,江在森,王双绪,张希.利用非连续变型数值方法研究块体运动及其应力场初探.地壳形变与地震,2000,Vol.20,No.1:38-42
    [82] 陈棋福,石耀霖,马丽.遗传算法及其在地震预报中的应用.见:中国地 球物理学会(编),地球物理学会年刊.1992,北京:地震出版社.27
    [83] 陈运泰,黄立人,林邦慧等.用大地测量资料反演的1976年唐山地震的位错模式.地球物理学报,1979,Vol.22,No.3:201-217
    [84] 陈运泰,顾鼎浩,卢造勋.1975年海城地震与1976年唐山地震前后的重力场变化.地震学报,1980,2(1):21—30
    [85] 党亚民.基于反演理论的大地测量形变分析与解释的理论和方法:[博士学位论文].武汉测绘科技大学,1998
    [86] 独知行.基于力学模式的大地测量反演理论及应用:[博士学位论文].中科院测量与地球物理所,2001
    [87] 高名修,唐荣昌.鲜水河断裂带地震地裂缝的初步研究.鲜水河断裂带地震学术讨论会文集(四川地震局主编),1985,北京:地震出版社,25-32.
    [88] 高锡铭,王威中,钟晓雄.地面垂直位移和重力变化引起的大地水准面形变.地球物理学报,32:686-694
    [89] 国家地震局.中国岩石圈动力学地图集.中国地图出版社.1989
    [90] 郭俊义.地球物理学基础.测绘出版社.2001
    [91] 洪汉净,汪一鹏,沈军,李传友.我国大陆地壳块体运动的平均图像及其动力学意义.活动断裂研究理论与应用.1998(6):17-29
    [92] 胡明城,鲁福.现代大地测量学(上、下),测绘出版社,1993
    [93] 黄建梁,李辉,李瑞浩.点源位错引起的重力、位势及其梯度变化.地震学报,1995,17(1):72-80
    [94] 黄立人,马清.构造块体在球面上的运动及参数的确定.地壳形变与地震,1998,18(3)
    [95] 康立山等著.非数值并行算法(第一册),科学出版社,1997
    [96] 李清林,秦建增.大同5.6级地震前后的重力场变化和深部动力学过程.地壳形变与地震,2001,Vol.21(4):43-51
    [97] 李庆扬,莫孜中,祁力群,非线性方程组的数值解法,科学出版社,1999
    [98] 李瑞浩,黄建梁,李辉等.唐山地震前后区域重力场变化机制.地震学报,1997,19(4):399-407
    [99] 李爽,许才军,王新洲.位错模式反演的算法研究.大地测量与地球动力学,2003a,23(1):53-57
    [100] 李爽,许才军,王新洲.一种求解约束条件下多变量非线性函数所有全局最优解的区间算法.武汉大学学报(理学版),2003b,Vol.49(5):556-560
    [101] 李爽,许才军,王新洲.论多种数据联合反演的模式及算法.大地测量与地球动力学.2002a,22(3):78-82
    [102] 李爽.对位错模型偏导数的改正.武汉大学学报(信息科学版),2002b,27 卷增刊:188-190
    [103] 李天祒,游泽李,杜其方等.鲜水河断裂带的地质特征及其运动方式.鲜水河断裂带地震学术讨论会文集(四川地震局主编),1985,北京:地震出版社,1-8.
    [104] 李天祒等.鲜水河断裂带炉霍段的水平运动及地震的重负性研究.地震地质,1989,11(4).
    [105] 李天祒.鲜水河断裂带北西段的枢纽运动与强震的发生.四川地震,1996,4:62-70.
    [106] 李天祒.鲜水河活动断裂带地震地质研究的新进展.国际地震动态,1996,7:16-18
    [107] 李天祒等著.鲜水河断裂带及强震危险性评估[M].1997,成都:成都地图出版社,15—195
    [108] 李铁明,吕弋培,廖华.根据形变资料讨论鲜水河断裂活动的分段性与地震危险性.地震危险性预测研究(1997年度,国家地震局地质研究所编).北京:地震出版社,56-66.
    [109] 李学政,雷军.近震爆炸地震优化定位方法研究.地震学报,2001,Vol.23(3):328-333
    [110] 刘崇兵,宁津生,张禹慎.利用地震面波和重力资料联合反演地壳—上地幔三维密度结构的方法探讨[J].测绘学报,1999,28(2)
    [111] 刘勇等著.非数值并行算法(第二册),科学出版社,1997
    [112] 吕江宁,沈正康,王敏.川滇地区现代地壳运动速度场和活动块体模型研究.地震地质,2003,25(4)
    [113] 吕弋培,廖华,苏琴等.川滇菱形块体边界的现今地壳形变.中国地震,2002,Vol.18(1):28-37
    [114] 吕弋培,李铁明,廖华.鲜水河断裂带跨断层形变测量及其地震学意义.地震地质,1997,18(4):333-340.
    [115] 马宗晋,张家声,汪一鹏.青藏高原三维变形运动学的时段划分和新构造分区.地质学报,1998,72(3):211-227
    [116] 牛安福,王琪,乔学军.断层活动的最优化定量方法研究,地壳形变与地震,2000,Vol.20,No.2:30-37
    [117] 钱洪,艾伦C.R.,罗灼礼等.全新世以来鲜水河断裂的活动特征.中国地震,1988,4(2):9-17.
    [118] 钱洪.鲜水河断裂带的断错地貌及其地震学意义.地震地质,1989,11(4).
    [119] 钱洪.四川活动断裂对强震的控制作用.四川地震,1995,1:10-17:
    [120] 申重阳,黄金水,甘家思.滇西实验场区地壳密度时变特征与强震机理研 究.测绘学报,2000,29(增刊):64-69
    [121] 申重阳,李辉,付广裕.丽江7.0级地震重力前兆模式研究.地震学报,2003,Vol.25(2):163-171
    [122] 申重阳,李辉,王琪等.滇西重力断层运动时间分布特征的初步研究.大地测量与地球动力学.2002a,22(2):68-74
    [123] 申重阳,王琪,吴云等.川滇菱形块体主要边界运动模型的GPS数据反演分析.地球物理学报,2002b,Vol.45(3):352-361
    [124] 石耀霖.遗传算法及其在地球物理中的一些应用.地球物理学报,1992,35(3):367~371
    [125] 石耀霖.巴西构造应力场的遗传有限单元法反演.地球物理学报.2000.2
    [126] 石耀霖,金文.面波频散反演地球内部构造的遗传算法.地球物理学报,1995,38(2):189~198
    [127] 孙建中,施顺英,周硕愚,张爱华.利用地震矩张量反演鲜水河断裂带现今运动学特征.地壳形变与地震,1994,14(4)
    [128] 孙少安,贾民育,项爱民.鲜水河断裂带的重力场变化特征.地壳形变与地震,2001,Vol.21(1):72-78
    [129] 唐荣昌,韩谓滨.四川活动断裂与地震.1993.北京:地震出版社.229-272.
    [130] 唐荣昌,黄祖智,马声浩等.四川活动断裂带的基本特征.地震地质,1995a,17(4):390-396
    [131] 唐荣昌,黄祖智,周荣军等.四川活断层分段与强震危险性概率预测.中国地震,1995b,11(3):272-282
    [132] 唐兴国.用计算机确定地震参数的一个通用方法[J].地震学报,1979,1(2):186-196
    [133] 田玥,陈晓非.地震定位研究综述.地球物理学进展,2002,Vol.17(1):147~155
    [134] 万永革,李鸿吉.遗传算法在确定震源位置中的应用.地震地磁观测与研究,1996a,16(6):1~7
    [135] 万永革,李鸿吉.京津唐地区速度结构和震源位置联合反演的遗传算法.地震地磁观测与研究,1996b,17(3):57~66
    [136] 万永革,李清河,李鸿吉等.用遗传算法确定三维横向不均匀介质中的近震震源位置.西北地震学报,1997a,19(2)
    [137] 万永革,刘瑞风,李鸿吉.用遗传算法反演京津唐张地区的三维地壳结构和震源位置.地震学报,1997b,19(6):623—633
    [138] 汪素云,许忠淮,俞言祥等.北京西北地区现代微震重新定位[J].地震学报,1994,16(1):24-31
    [139] 汪素云,高阿甲,许忠淮等.青藏高原东北地区地震重新定位及其活动特征[J].地震学报,2000,22(3):241-248
    [140] 王德人等编著.非线性方程的区间算法,上海科学技术出版社,1987
    [141] 王海军,林邦慧,陈诗安,林奕山.用遗传算法反演1994年台湾海峡地震的震源过程及其相关研究.地震学报,1998,Vol.20,No.2:118-127
    [142] 王琪,赖锡安,游新兆等.红河断裂的GPS监测与现代构造应力场[J].地壳形变与地震,1998,18(2):49-56
    [143] 王新洲.非线型模型参数估计理论与应用.2002年6月第一版,武汉大学出版社
    [144] 闻学泽.四川西部主要走滑断裂带各段落未来10年地震危险的概率评估.见:中国地震局编.活动断裂研究5.1996,北京:地震出版社,11—26
    [145] 闻学泽,徐锡伟,郑荣章等.甘孜-玉树断裂的平均滑动速率与近代大地震破裂.中国科学(D辑),2003,33卷(增刊)
    [146] 吴云,帅平,施顺英.GPS观测量与地震矩张量联合反演地壳水平运动速度场的方法.地壳形变与地震.1997.11
    [147] 吴云,孙建中,周硕愚.利用地震矩张量反演地壳运动水平速度场的理论和方法.地壳形变与地震,1996,16(3)
    [148] 伍吉仓,陈永奇.一种板块边界断层运动的力学模型.地壳形变与地震,2000,Vol.20,No.2:8-14
    [149] 向文,李辉.活动断层运动的重力场反演.地壳形变与地震,2000,Vol.20(3):11-16
    [150] 徐锡伟,闻学泽,郑荣章等.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学(D辑).2003,33(增刊):151—162
    [151] 许才军.大地测量联合反演理论和方法研究进展.武大学报(信息科学版),2001,No.6:555-561
    [152] 许才军,董立祥,李志才.华北地区地壳形变的GPS及地震矩张量反演分析.武汉测绘科技大学学报,2000a,25(6):471-475
    [153] 许才军,刘经南,晁定波,李延兴.利用GPS复测资料研究华北地块旋转运动.武汉测绘科技大学学报,2000b,25(1):74-78
    [154] 许才军.青藏高原地壳运动模型与构造应力场:[博士学位论文].武汉测绘科技大学,1994
    [155] 严尊国,薛军蓉.长江三峡地区弱震重新定位[J].中国地震,1987,3(1):52-59
    [156] 燕乃玲,李辉,申重阳.丽江地震前后重力场变化的有限矩形位错模型分析.地震学报,2003,Vol.25(2):721-181
    [157] 杨文采.地球物理反演和地震层析成象.地质出版社.1989
    [158] 张超,赵国光.断层活动的重力效应.地震学报,1981,(4)
    [159] 张赤军,刘根友,方剑.断层活动的重力效应.地壳形变与地震.1994,14(3):1-8
    [160] 张存德,向家翠.从形变资料看鲜水河断裂带的活动特征.见:中国活动断裂.北京:地震出版社,1982,262-266
    [161] 张秋文,张培震,王乘等.鲜水河断裂带断层间相互作用的触震与缓震效应.地震学报,2003,Vol.25(2):143-153
    [162] 张少泉编著.地球物理概论.北京:地震出版社,1987,420~423
    [163] 张世民,谢富仁.鲜水河—小江断裂带7级以上强震构造区的划分及其构造地貌特征[J].地震学报,2001,23(1):36—44
    [164] 张希,汪在森,王琪等.川滇地区地壳水平运动特征与强震关系研究.大地测量与地球动力学,2003,Vol.23(3):35-41
    [165] 张永志,张克实.地壳孕震过程中的重力变化研究.地壳形变与地震,2000,20(1)
    [166] 张永志,李辉.孕震过程中重力位、重力、重力梯度变化的数值模拟研究.地震,2002,22(2):35-41
    [167] 张祖胜.应用大地形变测量资料估计我国大陆地区近几十年的地震趋势.见:中国地震大形势预测研究.北京:地震出版社,1990
    [168] 张祖胜,杨元喜,孙汉荣等.地壳形变监测中的水准与重力资料联合解算.地震学报,1998,Vol.20(1):76-85
    [169] 赵改善.求解非线性最优化问题的遗传算法.地球物理学进展,1992,7(1):90~97
    [170] 赵少荣.动态大地测量反演及物理解释的理论与应用:[博士学位论文].武汉测绘科技大学,1991
    [171] 赵珠,丁志峰,易贵喜等.西藏地震定位——一种使用单纯形优化的非线性方法[J].地震学报,1994,16(2):212-219
    [172] 周明,孙树栋.遗传算法原理及应用.国防工业出版社.2001
    [173] 周荣军,何玉林,黄祖智等.鲜水河断裂带乾宁-康定段的滑动速率与强震复发间隔.地震学报,2001,23(3):250-261
    [174] 朱介寿等.地震学中的计算方法.北京:地震出版社.1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700