用户名: 密码: 验证码:
钢管自应力免振混凝土轴压柱设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土结构能充分发挥钢管和混凝土两种材料的作用,具有优越的力学性能。混凝土是否充满整个钢管,均匀,密实,都将影响钢管混凝土的力学性能,进而影响到整个结构的安全使用。如何保证核心混凝土的施工质量是施工中的难题,由于核心混凝土施工质量不好而出现的事故时有发生。普通混凝土在硬化过程中产生收缩,使钢管的约束作用降低。另外,在持续荷载作用下,混凝土的徐变会使钢管应力逐渐增加,应力大到一定程度就会引起钢管局部破坏。本文将自应力混凝土和自密实混凝土技术应用于钢管混凝土中,利用自密实混凝土高流动性且不离析的特性,保证了核心混凝土的均匀和密实,克服了拱和长柱施工的困难。自应力混凝土在硬化过程中产生体积膨胀,在钢管的约束下核心混凝土加载前就处于三向受压状态 加载过程中钢管侧向约束作用得到充分发挥,使得钢管自应力混凝土的力学性能较普通钢管混凝土有所提高。已有的研究表明,自应力混凝土产生的膨胀变形以及自应力可以长期保持稳定,这就意味着在钢管中浇筑自应力混凝土可以完全避免普通混凝土因收缩产生的约束效应降低问题;同时,在使用荷载下自应力混凝土的徐变明显小于普通混凝土的徐变,从而获得钢管和自应力核心混凝土长期应变协调性,确保钢管自应力混凝土承载力长期稳定。本文通过试验和理论分析,主要研究了钢管自应力免振混凝土柱的变形和受力性能,主要有以下几个方面:
     1、通过试验,研究了自应力混凝土的早期力学性能和膨胀变形的时变性规律。试验表明:使用硫铝酸盐自应力水泥,通过调整自应力混凝土的配合比,可以配制出具有自密实性的自应力混凝土。硫铝酸盐自应力混凝土早期强度发展非常快,1天的抗压强度就可以达到28天的50%以上,弹性模量达到28天的80%以上。在钢管的约束下,自应力混凝土的侧向初始应力能达到3~6MPa。计算分析中发现徐变变形和弹性变形大约能占有效自由膨胀变形的2/3,这两部分变形在计算中不容忽视;本文建立了徐变模式下的有效自由膨胀变形随龄期变化的计算公式。在此基础上通过回归分析得到了不同含钢率条件下限制膨胀变形与有效自由膨胀变形的关系,计算结果与试验结果符合较好。根据本文推导的限制膨胀变形计算公式可以计算出各个龄期时各种含钢率下的限制膨胀变形,根据内力平衡条件就可以得到初始自应力值。
     2、通过钢管自应力混凝土轴心受压短柱试验,研究了初始自应力对其力学性能的影响。讨论了混凝土强度等级、含钢率,自应力水平等因素对极限承载力的影响。试验
The function of concrete and steel tube can be fully exerted in concrete-filled steel tube (CFT) structure, CFT shows excellent mechanical performance. Whether concrete is fully, uniformly and compactly filled the whole steel tube will influence the mechanical performance of concrete-filled steel tube distinctly, and then influence the safety of the whole structure. However, it is difficult to guarantee the construction quality of concrete core while constructing, so that the accident happens frequently. In addition the creep and shrinkage deformation of concrete core will increase under sustained load, it can cause stress redistribution of concrete and steel tube, sometimes a local failure of steel tube occurs when the stress increases to a high level. The technology of self-stressing concrete and self-compacting concrete is applied to CFT in this paper. Self-compacting concrete with high flow ability and segregation resistance can guarantee concrete core uniform and compact, and overcome the shortcoming of arch and long column construction difficulty. Self-stressing concrete core produces volume expansion while hydrating. Concrete core restrained by steel tube is compressed in three directions. The lateral confinement of steel tube is fully utilized. Compared with conversional CFT, the mechanical performance of self-stressing concrete-filled steel tube is improved. Existing research indicates that expansion and self-stress produced by self-stressing concrete can remain stable for a long time, so the confinement degradation caused by creep and shrinkage in conversional CFT can be prevented using self-stressing concrete in CFT; Meanwhile, the creep deformation of self-stressing concrete core under accepted load is smaller than plain concrete, so the deformation of steel tube will keep together with self-stressing concrete in a long-term, the carrying capacity of self-stressing concrete filled steel tube will be stable in a long-term too. The mechanical performance of self-stressing concrete filled steel tube under axial load is researched through test and theoretical analysis. The major results are summarized as follows:1. The early age mechanical performance and expansive performance of self-stressing concrete is researched through test. The result of the test shows: self-stressing concrete with self-compacting ability can be obtained through adjusting mixture proportions. The strength of self-stressing concrete made with sulphoaluminate expansive cement develops very fast in early age. Compressive strength at 1 day can be up to more than 50% of compressive strength at 28 days; elastic modulus at 1 day can be up to more than 80% of elastic modulus at 28 days. The
    self-stress of concrete restrained by steel tube can reach to 3~6MPa. It is found that the creep and elastic deformation can occupy about 2/3 of effective expansive deformation; these two parts of deformation can't be ignored in calculating. The calculating formula for effective expansive deformation varied with time is proposed in this paper, creep deformation is considered in the formula. On this basis of test results, the relationship of effective expansive deformation to restrained expansive deformation in different steel area to concrete area ratio is obtained through regression analysis. The results of calculation accord with the results of the test better. The calculating formula for restrained expansive deformation proposed in the paper can calculate restrained expansive deformation in different age. The initial self-stress can be obtained through internal force equilibrium condition.2^ The effect of initial stress on the mechanical performance of self-stressing concrete filled steel tube short column is researched through test. The factors that have effect on ultimate strength of short column, such as compressive strength of concrete, the area of steel tube to concrete core ratio, self-stress level, is discussed here. The result of the test shows: because of the effect of initial self-stress, the elastic working range of short column is extended to 90% of ultimate strength; the ultimate strength has improvement too. The concept of self-stress level is introduced in this paper, self-stress level is defined as initial self-stress to concrete strength ratio, how the self-stress level has effect on the ultimate strength is analyzed .The result of calculation indicates: the relationship of ultimate strength increment to self-stress level can be expressed by quadratic parabola. The summit of curve is optimal self-stress level, namely, the ultimate strength can be improved to the maximum extent when self-stress level reach to the optimal self-stress level. Based on the test result, the optimal self-stress level can be calculated, which is 0.116. With the deformation compatibility conditions and equilibrium conditions, the numerical analysis model is established using integral method. Load-deformation curves of self-stressing concrete filled steel tube short column is simulated; it is help to understand the working mechanism of self-stressing concrete filled steel tube short column.3. The effect of initial stress on the mechanical performance long column is researched through test. The factors that have effect on ultimate strength of long column, such as slenderness ratio, self-stress level, are disgussed. The result of the test shows: Because long column failed in different form, so initial stress has different influence on the mechanical performance of long column. The long column that happened stability disruption is still in elastic working range before failure. The function of initial stress is not fully exerted; initial stress has little influence on the mechanical performance of long column. The long column happened strength disruption, it is because concrete core is squish and the confinement of steel
    tube is lost, the function of initial stress is fully exerted. Compared with conventional CFT, the carrying capacity of self-stressing concrete filled steel tube can be improved about 31%. Slendemess ratio is still the main factor that influences the mechanical performance of self-stressing concrete filled steel tube. Based on test results, the relation of carrying capacity increment to slendemess ratio is obtained through regression analysis. The carting capacity of self-stressing concrete filled steel tube can be obtained on that.4.. Test on the long-term mechanical performance of self-stressing concrete filled steel tube under axial load is carried on. The effect of initial stress on the mechanical performance in long term is researched. The result of the test shows: Though the initial lateral stress can restrain the development of axial creep deformation, compare with conventional concrete core that bears the same load, the axial initial stress will increase stress ratio, the creep deformation of self-stressing concrete core will greater than conventional concrete core, but it is smaller than plain concrete. The ACI creep model and BP-KX creep model is applied in this paper. With deformation compatibility conditions and equilibrium conditions, the numerical model is established using age-adjusted effective modulus method, the calculating results agree with test results well. How self-stress level has effect on the mechanical performance of self-stressing concrete filled steel tube is analyzed on the basis of numerical model, so with concrete compressive strength and the area of steel tube to concrete core ratio. The coefficient of stress redistribution is deduced in the paper, the change of load that steel tube carried can be calculated through it, so the long-term carrying capacity can be calculated on the basis of the confficient. The formula reflects the factors that have effect on the long-term carrying capacity of self-stressing concrete filled steel tube.A new approach that self-stressing concrete can be applied is put forward in this paper. The expansive energy of expansive cement is fully utilized. The calculating theory of self-stressing concrete restrained by steel tube is solved. It makes a good foundation for self-stressing concrete applied in concrete-filled steel tube. The confinement degradation of steel tube cause by creep of concrete core is solved too, at the same time, the carrying capacity degradation of steel tube concrete in long-term is solved effectively too. Self-compacting concrete can guarantee the construction quality of concrete core, the difficult problem in construction can be easily solved. Test and theoretical analysis on this kind of CFT is carried on, it provides useful data for this new kind of CFT applied in actual proj ect.
引文
[1] 蔡绍怀.我国钢管混凝土结构技术的最新进展.土木工程学报.1999年04期,第32卷第4期:16~26.
    [2] Lin-Hai Han, Guo-Huang Yao. Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Structures. 2004: 1357-1377.
    [3] 钟善桐.钢管混凝土结构.北京:清华大学出版社,2003年8月:1~464.
    [4] H. El Chabib, M. Nehdi. Behavior of SCC confined in short GFRP tubes. Cement & Concrete Composites. 2005, 27: 55-64.
    [5] Okamura, H. Self-Compacting High-Performance Concrete. Concrete International., July 1997, V.19, No.7: 50~54.
    [6] 王湛,宋兵.钢管高强混凝土自收缩规律的研究.建筑结构学报.2002年6月,第23卷第3期:32~36.
    [7] 陈明宪,彭建新等.钢管混凝土拱桥收缩徐变问题综述.长沙交通学院学报.2004年6月,第20卷第2期:19~24.
    [8] 谢肖礼,秦荣.钢管混凝土劲性骨架拱桥收缩徐变影响理论研究.中国工程科学.2001年3月,第3卷第3期:80~84.
    [9] Paul Acker, Franz-Josef Ulm. Creep and shrinkage of concrete: physical origins and practical measurements. Nuclear Engineering and Design. 203 (2001): 143—158.
    [10] Basile T. Tamtsia. The early age short-term creep of hardening cement paste: load-induced hydration effects. Cement & Concrete Composites. 26 (2004): 481-489.
    [11] Wassim Nagnib. Creep modeling for concrete-filled steel tubes. Journal of Constructional Steel Research. 59 (2003): 1327-1344.
    [12] C. M. L. Tavares, M. C. S. Ribeiro. Creep behaviour of FRP-reinforced polymer concrete. Composite Structures. 57 (2002): 47-51.
    [13] Bertil Persson. Correlating laboratory and field tests of creep in high-performance concrete. Cement and Concrete Research. 31 (2001): 389~395.
    [14] 李国平,张哲元.钢—混凝土组合桥混凝土徐变收缩分析.结构工程师.1999(1):12~17.
    [15] 蒋家奋,汤关祚.三向应力混凝土.北京:中国铁道出版社,1988年:1~106.
    [16] 姜峰,黄承逵,戴建国.自应力混凝土结构限制膨胀过程有限元法分析.大连理工大学学报.2001年第5期,第41卷第5期:607~611.
    [17] 戴建国,黄承逵.钢纤维自应力混凝土力学性能试验研究.建筑材料学报.2001年第1期,第4卷第1期:70~74.
    [18] 秦娟.钢纤维自应力混凝土变形性能及复合管道有限元分析(硕士学位论文).大连:大连理工大学,2003年7月.
    [19] 何化南,黄承逵.钢纤维自应力混凝土压力管道自应力计算方法.水利学报.2003年第7期:124~128.
    [20] 王栋民,陈华辉等.高强流态膨胀混凝土力学性能和膨胀行为.硅酸盐学报.2004年4月,第32卷第4期:454~459.
    [21] 丁庆军,李悦等.免振高强膨胀混凝土的研究.武汉理工大学学报.2000年12月,第22卷第6期:1~4.
    [22] Shamim A. sheikh, Yan Fu. Expansive Cement Concrete for Drilled Shaft. ACI Materials Journal. V91, No. 3 1993: 237~245.
    [23] 刘江宁.不同限制条件下膨胀混凝土变形行为力学特性及微细观结构研究.中国建筑材料科学研究院(博士学位论文).北京:1991年:115~116.
    [24] 李帼昌,刘之洋.自应力钢管轻骨料混凝土结构.沈阳:东北大学出版社,2001年12月:67~71.
    [25] 蔡健,谢晓峰等.核心高强钢管核心混凝土柱轴压性能的试验研究.华南理工大学学报(自然科学版).2002年06期,第30卷第6期:81~85.
    [26] 幸坤涛,赵国藩,岳清瑞.高强钢管混凝土核心柱轴压短柱的承载力研究.钢结构.2002年01期,第17卷第57期:18~21.
    [27] 陈周熠,赵国藩,林立岩.钢管混凝土增强高强混凝土柱的正截面强度计算.建筑结构.2001年07期:7~11.
    [28] Zhang, Weizi, Shahrooz, Bahrain M. Comparison between ACI and AISC for concretefilled tubular columns. Journal of Structural Engineering. v 125, Nov, 1999: 1213-1223.
    [29] 韩林海.钢管混凝土结构—理论与实践.北京:科学出版社,2004年3月:5~8.
    [30] Susantha, K. A. S., Ge, H.; Usami, T. Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes. Engineering Structures. v 23, n 10, October, 2001: 1331-1347.
    [31] Schneider, Stephen P. Axially loaded concrete-filled steel tubes. Journal of Structural Engineering. v 124, n 10, Oct, 1998: 1124-1138.
    [32] 中国工程建设标准化协会标准.钢管混凝土结构设计与施工规程(CECS 28:89).北京:中国计划出版社,1992年.
    [33] 国家建筑材料工业局标准.钢管混凝土结构设计与施工规程(JCJ01-89).上海:同济大学出版社,1989年.
    [34] 蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社,2003年4月,43~52.
    [35] 唐崇钊.混凝土的徐变力学与试验技术.北京:水利水电出版社,1982年,43~55.
    [36] 韩冰,王元丰.钢管混凝土受弯构件徐变分析.铁道标准设计.1999年5期:19~20.
    [37] 余勇,吕西林,Tanak Kiyoshi等.轴心受压方钢管混凝土短柱的性能研究Ⅱ分析.建筑结构.2000(2):43-46.
    [38] 韩林海,陶忠,刘威.长期荷载作用下方钢管混凝土轴心受压柱的变形特性.中国公路学报.2001年02期,第14卷第2期:52~57.
    [39] 韩林海,陶忠,刘威.长期荷载作用对方钢管混凝土柱承载力的影响.中国公路学报.2001年03期,第14卷第3期:61~66.
    [40] 顾建中,刘西拉.轴向载荷作用下钢管混凝土的徐变.中国公路学报.2001年10月,第14卷第4期:59~61.
    [41] 王元丰,韩冰.钢管混凝土轴心受压构件的徐变分析.中国公路学报.2000年4月,第13卷第2期:57~60.
    [42] 韩冰,王元丰.钢管混凝土轴心受压短柱的徐变分析.铁道学报.1999年12月,第21卷第6期:87~90.
    [43] 王元丰,韩冰.徐变对钢管混凝土轴心受压短柱紧箍应力影响分析.铁道学报.2000年5月,第22卷增刊:92~94.
    [44] 韩冰,王元丰,金红光.长期荷载作用下钢管混凝土轴心受压构件初始应力分析.北方交通大学学报.2002年8月,第24卷第1期:15~18.
    [45] 韩冰,王元丰,明亮.徐变对钢管混凝土偏心受压构件挠度的影响分析.北方交通大学学报.2000年01期,第26卷第4期:7~11.
    [46] 周俐俐,张志强.钢管混凝土结构的现存问题和应用前景.西南工学院学报.2002年6月,第17卷第2期:60~62.
    [47] 韩林海.我国钢管混凝土结构应用与研究的部分新进展.工业建筑.1995年第1期,第25卷第1期:3~6.
    [48] 陈宝春.钢管混凝土拱桥发展综述.桥梁建设.1997年第2期:8~13.
    [49] 廉慧珍,张青,张耀凯.国内外自密实高性能混凝土研究与应用现状.施工技术.1999年5月,第28卷第5期:1~4.
    [50] 吴中伟,廉慧珍.高性能混凝土.北京:中国铁道出版社,1999年:20~51.
    [51] 翁有法,吕家良.自密实混凝土研究现状及其发展方向.中国港湾建设.2002年4月:16~19.
    [52] 赵国藩,仲伟秋.高性能材料在结构工程中发展与应用.大连理工大学学报.2003年5月:257~261.
    [53] 刘数华,王晓燕.自密实混凝土综述.建筑技术开发.2004年7月:118~120.
    [54] 陈志健,朱守东.自密实混凝土的配制与应用.2001年9月:39~40.
    [55] 张青,廉慧珍,王蓟昌.自密实高性能混凝土配合比研究与设计.1999年01期:19~21.
    [56] 姜德民,高振林.高性能自密实混凝土的配比设计.北方工业大学学报.2001年9月,第13卷第3期:92~96.
    [57] Saak, Aaron W, Jennings, Hamlin M. New methodology for designing self-compacting concrete. ACI Materials Journal. v 98, n 6, November/December, 2001: 429-439
    [58] 郑建岚,黄鹏飞.自密实高性能混凝土配合比试验.福州大学学报(自然科学版).2001年5月:72~76.
    [59] 蒋家奋.免振自密实混凝土的机制与配制.混凝土与水泥制品.2001年12月:3~5.
    [60] V. K. Buia, D. Montgomeryb, I. Turnerc. Rapid testing method for segregation resistance of self-compacting concrete. Cement and Concrete Research. 32 (2002): 1489-1496.
    [61] 范志宏,苏达根,王胜年.自密实混凝土配合比设计方法研究.水运工程.2004年2月:11~15.
    [62] N. kasemsamram, S. T angtermsirkul. A design approach for self-compacting concrete based on deformability, segregation resistance and passing ability models. 1st International Symposium on Design, performance and Use of Self-Consolidating Concrete. Changsha, China, 2005.
    [63] Su, N, Hsu, Chai, H.-W. A simple mix design method for self-compacting concrete. Cement and Concrete Research. v 31, n 12, December, 2001: 1799-1807.
    [64] Soo-Duck Hwang, Kamal H. Khayat, Olivier Bonneau. Transport properties of selfconsolidating concrete of different mix design approaches. 1st International Symposium on Design, performance and Use of Self-Consolidating Concrete. Changsha, China, 2005.
    [65] Akira Yoshino, Shinao Nishibayashi, Shoichilnoue. A Study on Rheological Properities on Self-compaeting Concrete.山东建材学院学报.1998年6月:32~36.
    [66] A. Yahiaa, M. Tanimurab, Y. Shimoyama。Rheological properties of highly fiowable mortar containing limestone filler-effect of powder content and W/C ratio. Cement and Concrete Research. 35 (2005)532-539.
    [67] Chiara Ferraris. Concrete Rheology: What is it and why do we need it?. 1st International Symposium on Design, performance and Use of Self-Consolidating Concrete. Changsha, China, 2005.
    [68] A. Yahia, M. Tanimura, K. H.Khayat. Experiment design to evaluate the effect of mixture parameters on rheological properties of self-consolidating concrete equivalent mortar. 1st International Symposium on Design, performance and Use of Self-Consolidating Concrete. Changsha, China, 2005.
    [69] EFNARC. Specification and Guidelines for Self-Compacting Concrete. EFNARC. February 2002.
    [70] Japanese Ready-Mixed Concrete Association. Manual of porducing high fluidity (selfcompacting) concrete. Tokyo: Japanese Ready-Mixed Concrete Association, 1998.
    [71] Japanese Ready-Mixed Concrete Association. Specification of manual of porducing high fluidity (self-compacting) concrete. Tokyo: Japanese Ready-Mixed Concrete Association, [s]. 1998.
    [72] A. Skarendahl. TESING-SCC: Towards new European Standards for fresh SCC. 1st International Symposium on Design, performance and Use of Self-Consolidating Concrete. Changsha, China, 2005.
    [73] Luping Tang. Evaluation of methods for testing fresh self-compacting concrete. 1st International Symposium on Design, performance and Use of Self-Consolidating Concrete. Changsha, China, 2005.
    [74] M. Sonebi, M. Rooney, P. J. M. Bartos. Evaluation of the segregation resistance of fresh selfcompacting concrete using different test methods. 1st International Symposium on Design, performance and Use of Self-Consolidating Concrete. Changsha, China, 2005.
    [75] 罗素蓉,郑建岚,王国杰.自密实高性能混凝土力学性能的研究与应用.工程力学.2005年2月,第22卷第1期:164~169.
    [76] 王国杰,郑建岚.自密实混凝土与钢筋的粘结锚固性能试验研究.福州大学学报(自然科学版).2004年6月,第32卷第3期:334~338.
    [77] Wenzhong Zhu, Peter J. M, Bartos. Permeation properties of self-compacting concrete. Cement and Concrete Research. 33 (2003): 921-926.
    [78] Nehdi, Moncef, El Chabib, Hassan, El Naggar, M. Hesham. Predicting performance of self-compacting concrete mixtures using artificial neural networks. ACI Materials Journal. v 98, n 5, September/October, 2001: 394-401.
    [79] Pengfei Huang. Performance evaluation method of self-consolidating concrete. 1st International Symposium on Design, performance and Use of Self-Consolidating Concrete. Changsha, China, 2005.
    [80] R. Hela. Durability of self-compacting concrete(SCC). 1st International Symposium on Design, performance and Use of Self-Consolidating Concrete. Changsha, China, 2005.
    [81] 王丽君.自密实防腐蚀混凝土的试验研究.铁道标准设计.2001年1月:18~19.
    [82] 柳献,袁勇,Ahmed.Loukili.自密实混凝土塑性收缩性能研究.混凝土与水泥制品.2002年第5期:6~11.
    [83] 罗素蓉,郑建岚,王国杰等.自密实高性能混凝土结构的研究与应用.土木工程学报.2005年4月,第38卷第4期:47~52.
    [84] 王雪芳,郑建岚.自密实高强混凝土框架结构的抗震性能研究.福州大学学报(自然科学版).2004年4月,第32卷第2期:173~177.
    [85] 罗素蓉,胡晓凌,黄晶.自密实高性能混凝土受弯构件受力性能试验研究.福州大学学报(自然科学版).2004年6月,第32卷第3期:339~343.
    [86] 吴中伟,张鸿直.膨胀混凝土.北京:中国铁道出版社,1990年.
    [87] 翁祥.间接控制硅酸盐自应力混凝土有效膨胀能的研究与应用.混凝土与水泥制品.1994年02期:25~31.
    [88] 隋艳革,杜朋.膨胀混凝土机理及若干问题的探讨.低温建筑技术.1998年01期:10~11.
    [89] 李悦,胡曙光,丁庆军.钢管膨胀混凝土的研究及其应用.山东建材学院学报.2000年9月:189~192.
    [90] 李悦,丁庆军,胡曙光,马立军,胡小庄,陈光新.钢管膨胀混凝土力学性能及其膨胀模式的研究.武汉工业大学学报.2000年12月:25~28.
    [91] 王方立,汪嘉铨等.自应力钢管混凝土研究.北京工业大学学报.1998年6月:64~70
    [92] Hu, Shuguang, Li, Yue, Research on the hydration, hardening mechanism, and microstructure of high performance expansive concrete. Cement and Concrete Research. v 29, n 7, Jul, 1999: 1013~1017.
    [93] 王湛.钢管膨胀混凝土的徐变.哈尔滨建筑工程学院学报.1994年6月:14~17.
    [94] 姜绍飞,刘之洋.自应力钢管轻骨料混凝土轴压短柱的性能分析.工业建筑.1997年第9期:1~5.
    [95] 何化南.钢衬钢纤维自应力混凝土新型复合管道性能和计算理论研究(博士学位论文).大连:大连理工大学,2002年.
    [96] Zhou, F. P., Lydon, F. D., Barr, B. I. G.. Effect of coarse aggregate on elastic modulus and compressive strength of high performance concrete. Cement and Concrete Research Volume 25, January, 1995: 177~186.
    [97] 唐伟.泵送自密实钢管混凝土的配制及施工.四川建筑科学研究.2001年12月,第27卷第4期:71~72.
    [98] 王元丰,梁亚平.高性能混凝土的弹性模量与泊松比.北方交通大学学报.2004年2月,第28卷第1期:13~16.
    [99] P. K. Mehta, P. J. M. Monteiro. Effect of Aggregate, Cement and Mineral Admixtures on the Microstructure of the Transition Zone. Material Research Society Symposium Proceedings. Boston: 1987.
    [100] Min-Hong Zhang, odd. E. G. iorv. Micro Structure of the Interracial Zone Between Light Weight Aggregate and Cement Paste. Cement and Concrete Research, v 20, n 4, Jul, 1990: 610-618.
    [101] 戴建国.配筋钢纤维自应力混凝土的变形及自应力计算.大连理工大学博士学位论文.大连:2000年9月.
    [102] 吴胜兴,周氐.混凝土徐变度及应力松弛系数的估算方法综述与建议.水利学报.1991年第10期:65~69.
    [103] 中华人民共和国经济贸易委员会.钢—混凝土组合结构设计规程(DL/T5085-1999).北京:中国电力出版社,1999年.
    [104] 钟善桐.钢管混凝土设计新方法.建筑技术.1995年02期:85~87.
    [105] 潘有光,钟善桐.钢管混凝土的本构关系(上).建筑结构学报.1990年2月,11(1):10~20.
    [106] 张月弦,薛元德.FRP约束混凝土的基本力学性能.玻璃钢/复合材料.1999年6期:21~23.
    [107] T. Rabczuk, J. Akkermann, J. Eibl. A numerical model for reinforced concrete structures. International Journal of Solids and Structures. 42 (2005): 1327-1354.
    [108] 陈洪涛,钟善桐,张素梅.钢管混凝土中混凝土的三向本构关系.哈尔滨建筑大学学报.2000年6月,33(6):13~16.
    [109] 江见鲸.钢筋混凝土结构学.北京:中国建筑工业出版社,1998年11月:133~140.
    [110] Wassim Naguib, Amir Mirmiran. Creep modeling for concrete-filled steel tubes. Journal of Constructional Steel Research. 59 (2003): 1327-1344.
    [111] Z. P. Bazant, F. H. Wittmann. Creep and Shrinkage in Concrete Structures. New York: John Wiley & Sons Ltd, 1982: 163~259.
    [112] 周履,陈永春.收缩 徐变.北京:中国铁道出版社,1994年,33~110.
    [113] A. M. Neville, W. H. Dilger, J. J. Brooks. Creep of plain and structural concrete. USA: Construction Press. 1983: 1~191.
    [114] Peiyu Yan, Xiao Qin. The effect of expansive agent and possibility of delayed ettringite formation in shrinkage-compensating massive concrete. Cement and Concrete Research. 31 (2001): 335~337.
    [115] Neville AM. Creep of concrete: Plain, reinforced and prestressed. Amsterdam: North-Holland Publishing Company, 1970: 21~95.
    [116] ZDENEK P. BAZANT, JOONG-KOO KIM. Improved prediction model for timedependent deformations of concrete: Part 1-Shinkage. Materials and Structures. 1991, 24: 327~345.
    [117] ZDENEK P. BAZANT, JOONG-KOO KIM. Improved prediction model for timedependent deformations of concrete: Part 3-Creep at drying. Materials and Structures. 1992, 25: 21~28.
    [118] ZDENEK P. BAZANT, JOONG-KOO KIM. Improved prediction model for timedependent deformations of concrete: Part 4-Tempreature effects. Materials and Structures. 1992, 25: 84~94.
    [119] ZDENEK P. BAZANT, JOONG-KOO KIM. Improved prediction model for timedependent deformations of concrete: Part 6-Simplified code-type formulation. Materials and Structures. 1992, 25: 219~223.
    [120] ZDENEK P. BAZANT. JOONG-KOO KIM. Improved prediction model for timedependent deformations of concrete: Part7-Short form of BP-KX model, statistics and extrapolation of short-time data. Materials and Structures. 1993, 26: 567~574.
    [121] 孙宝俊.混凝土徐变理论的有效模量法.土木工程学报.1993年6月,第26卷第3期:66~68.
    [122] 王勋文,潘家英.按龄期调整有效模量法中老化系数x的取值问题.中国铁道科学.1996年9月,第17卷第3期:12~23.
    [123] Gopalakrishnan KS, Neville AM, Ghali A. A hypothesis on mechanism of creep concrete withreference to multiaxial compression. ACI Journal. 1970, 67(3): 29—35.
    [124] Jordaan IJ, Illston JM. Time-dependent strains in sealed concrete under multiaxial compressive stress. Magazine of Concrete Research 1971; 23(75-76): 79-88..
    [125] 谢肖礼,秦荣,邓志恒.CFST构件考虑长期荷载作用的设计荷载计算公式.广西大学学报(自然科学版).2001年12月,第26卷第4期:246~249.
    [126] 朱伯芳.混凝土的弹性模量、徐变度与应力松弛系数.水利学报.1985年9月,第九期:54~61.
    [127] Sari, M, Prat, E. Labastire, J.-F. High strength self-compacting concrete original solutions associating organic and inorganic admixtures. Cement and Concrete Research. v29, n6, Jun, 1999: 813-818.
    [128] 王湛.约束膨胀混凝土的力学性能分析.哈尔滨建筑大学学报.2000年6月,第33卷第3期:74~77.
    [129] 况成明,黄晓剑,王广健.免振捣自密实混凝土的配置工艺.西部探矿工程.2000年增刊:107~108.
    [130] 尹健,周士琼编译.高性能混凝土与自密实混凝土在国内外桥梁中的应用.国外公路.2000年8月,第20卷第4期:52~54.
    [131] LI Zhao-xia. Effective creep poisson's ratio for damaged concrete. International Journal of Fracture. 1994, 66(2): 189—196.
    [132] 李国平,张哲元.钢—混凝土组合桥混凝土徐变收缩分析.结构工程师.1999年1月:12~17.
    [133] Luigino Dezi, Carlo Ianni. Simplified creep analysis of composite beams with flexible connector. Journal of Structural Engineering. Vol. 119, No. 5, May, 1993: 1484~1497.
    [134] kuang-Han Chu, Dorningo J. Carreira. Time-dependent cyclic deflections in R/C beams. Journal of Structural Engineering. Vol. 112, No. 5, May, 1986: 943~959.
    [135] R. Piltnera, Paulo J. M. Monteirob. Stress analysis of expansive reactions in concrete. Cement and Concrete Research. 30 (2000): 843~848.
    [136] T. Ramlochana, P. Zacariasb, M. D. A. Thomasc. The effect of pozzolans and slag on the expansion of mortars cured at elevated temperature Part Ⅰ: Expansive behaviour. Cement and Concrete Research. 33 (2003): 807~814.
    [137] L. H. Ichinose, E. Watanabe, H. Nakai. An experimental study on creep of concrete filled steel pipes. Journal of Constructional Steel Research. 57 (2001): 453—466.
    [138] Bruno Jurkiewieza, Jean-Franc Destrebecqb, Alain Vergne. Incremental analysis of timedependent effects in composite structures. Computers and Structures. 73(1999): 425~435.
    [139] Zdenek P. Bazant. Prediction of concrete creep and shrinkage: past, present and future. Nuclear Engineering and Design. 203 (2001): 27~38.
    [140] 程晓东,叶贵如,汪劲丰.长期荷载作用下钢管混凝土徐变的理论研究.浙江大学学报(工学版).2004年8月,第38卷第8期:1000~1008.
    [141] Georgios Giakoumelis a, Dennis Lam. Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research. 60 (2000): 1049~1068.
    [142] 徐秉业,刘信声.应用塑性力学.北京:清华大学出版社,42~126.
    [143] 王湛.核心混凝土的徐变及其对钢管高强混凝土轴压构件力学性能的影响(硕士学位论文).汕头:汕头大学,2005年5月.
    [144] 陶忠,韩林海,刘威.长期荷载作用下方钢管混凝土压弯构件承载力简化计算钢结构.2003年第5期,第18卷总第67期:39~41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700