用户名: 密码: 验证码:
堤防振动沉模防渗墙材料与受力变形特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病险堤坝的处治工程中,形成了一些比较成熟的治理技术,积累了丰富的经验。垂直防渗技术已广泛用于堤坝的除险加固,是病险堤坝工程的主要防渗加固措施。工程中,常用的垂直防渗技术有:灌浆法、防渗墙法、高压喷射注浆法、深层搅拌法和垂直铺塑等。
     堤坝的垂直防渗是一个系统工程,垂直防渗方案的选择主要涉及到筑堤料、堤基土和防渗料的性状。然而,每项垂直防渗技术都有一定的针对性和局限性,各种堤坝病害的产生机理、出现部位和破坏程度也不尽相同。为确保病险堤坝的防渗处治效果,必须加强防渗技术的研究,选择科学、经济、合理的综合治理方案。
     垂直防渗技术的发展,也促进了防渗料的不断更新。本文在回顾和总结国内外垂直防渗技术的研究成果及其应用现状的基础上,针对振动沉模防渗墙技术,侧重研究了堤防振动沉模防渗料的性状及其防渗墙的受力变形特性。
     为了保证振动沉模防渗料的和易性、可泵性、流动性、离析性、泌水性和防渗性,保证振动沉模防渗墙体的纵向均匀性,使墙体与堤防填料协调变形,加大振动沉模防渗墙的处理深度,需降低墙体防渗料的分层性及其刚度。通过振动沉模混合砂浆防渗料的室内配比试验,研究了混合砂浆防渗料的优化配比设计及其分层性状,揭示了混合防渗料的固化增强及其破坏机理。根据室内和现场试验,分析了防渗料各组分不同掺量对其性状的影响程度及其影响规律,揭示了防渗料各组分对强度的影响规律。混合砂浆防渗料的破坏特性及其判别准则是评价振动沉模防渗墙体安全性的关键问题,根据混合砂浆防渗料的破坏特性,提出了混合砂浆防渗料以及防渗墙的破坏判别指标。结合振动沉模防渗墙技术的工程应用,论述了墙体施工质量的控制措施,对振动沉模防渗墙工程的各种特殊情况提出相应的处理方案。针对堤防工程中垂直防渗除险加固技术存在的问题,本文工作内容主要包括:
     1、总结分析了国内、外病险堤坝的失事原因、堤坝失事与渗透破坏的关系、堤坝的渗透破坏型式、各种垂直防渗加固技术的研究成果和应用现状、防渗料的研究成果及其应用现状等;同时,结合长江中下游地区堤防工程的特点,分析了堤防防渗加固工程中存在的问题。
     2、根据混合砂浆各组分原材料的性状,结合振动沉模防渗墙的设计和施工技术要求,采用水泥、粉煤灰、砂、土和外加剂等原材料,应用均匀设计理论,通过混合砂浆防渗料试件的室内配比试验,研究了混合砂浆防渗料的优化配比设计和混合砂浆防渗料各配比材料用量。
     3、混合砂浆防渗料中,水泥和粉煤灰主要起固化料的作用,土料主要起充填作用,
At present, a number of matured vertical cutoff techniques have been widely used in levee project,many rich experiences have been accumulated in the treatment of diseased levee project. The vertical cutoff technique has been widely used in levee project,such as grouting,preventing seepage wall,high pressure jetting,deep mixing cement pile,vertical spreading plastic technique,and so on.The vertical cutoff technique in levee project is a synthetic system engineering,the selection of vertical cutoff scheme is mainly concerned with behavior of embankment filling,dike subsoil,preventing seepage mixture and so on. Although a large number of research achievements on vertical cutoff techniques have been obtained, each has a certain suitability.But,the mechanism has not been understood thoroughly,the design theory and the project application are quite immature. At the same time,the mechanism,the site and the degree of destroy of each disease are different. Most of the existing construction ways are relatively backward,which hinders the further development of vertical cutoff technique. So,the selection of a scientific,economical and rational synthesize scheme is a key in the treatment of diseased levee project.The preventing seepage material is also accompanied by the development of vertical cutoff technique. Based on the research results of vertical cutoff techniques and their application and test results in levee project,the composite mortar of vibratory sink mold wall is mainly studied in this paper. According to the application of vibration sinking mould wall in Huai River entering sea channel,the mechanism of vibration sinking mould wall is first discussed. Based on the test results,the seepage,the pump,the fluidity,the segregability,the bleeding and the imperviousness of composite mortar of different mixing ratio are discussed. The mechanics characteristics of composite mortar and cutoff wall and their influencing factors are then analyzed,especially,the influence of the aging and the components are very notable. At the same time,the construction points of vertical cutoff techniques is also discussed. The main works is introduced in the following:(1) The cause of crash,the relation between the crash,the filtration failure and the kind of filtration failure in levee and dam project are summarized. The research results show that a large number of research achievements on vertical cutoff techniques and impervious materials and their application are conservative and relatively backward according to the seepage failure kinds in levee and dam project. At the same time,the problem of levee project in lower reaches of the Yangtze River is also analyzed.
    (2) According to the behavior of raw material,the optimal mix ratio of composite mortar is determined. At the same time,the amount of every raw material to be used is also determined by the mix ratio test of composite mortar.(3) The cement and the flying ash are mainly used as concretion agent in the composite mortar,the soil is mainly imbued with gap around the sand,the sand is mainly used as aggregate,and the additional dose is chiefly used as water-reducing and reinforcement. The behavior of the composite mortar is mainly concerned with the mix ratio,the water cement ratio,the cement sand ratio,the cement grade,the size of sand,the aging,the additional amount of cement and flying ash,the gradation of mixture,and so on.(4) Layering compression strength and layering degree of composite mortar is studied according to the layering model test. The layering properties and the effect regular to the compression strength of composite mortar are promulgated. The layering compression strength formula of the wall is then put forward.(5) According to the strength test results of composite mortar,the mechanical characteristics,the influence of the additional amount and the aging are analyzed. The behavior of impervious,pump,fluidity and bleeding of different composite ratio are discussed by the test results,the effects on the composite mortar behavior of different content of admixture are analyzed. The rational mixture ratio is then put forward. At the same time,the behavior of composite mortar is comparative analyzed with the flexible concrete and the plastic concrete.(6) The damage model,the microstructure,the solidification and the strength increasing mechanism of composite mortar are proclaimed by the result of the scanning electron microscope(SEM).(7) The failure characteristics of composite mortar are revealed from the tests. A new point of view of the critical stress state of tensile and shear for composite mortar is presented,and the failure criterion of cutoff wall is also presented. According to the failure criterion and mechanical analysis,the composite mortar wall would perform a good behavior,it has been verified by the cutoff wall in levee project.(8) The mechanical behavior of mortar vertical cutoff wall is analyzed by nonlinear elastoplastic FEM using Biot consideration theory. The effect regular of preventing seepage mixture,embankment filling and dike subsoil on the mechanical behavior and the concerted deformation is promulgated. At the same time,the behavior of contact plane of soil and vibratory sink mold vertical cutoff wall is analyzed by contact plane test.(9) The different particular treatment schemes is successfully proposed in the project application,such as the construction of conglomerate layer,change axial line joint seam,and so on. The result of field tests is used to certificate the impervious property and effect of vibratory
    sink mold vertical cutoff wall with the help of project application. The depth of the vibratory sink mold vertical cutoff wall is successfully realized to overtake 20m in the use of HuaiHo River Waterway to sea embankment project.(10) According to the mortar vertical cutoff wall of levee project,the problem,which need to further study and resolve,is put forward.
引文
[1] Justin J. D. Earth Dam Projects. John Wiley & Sone. Inc. New York. 1931
    [2] Creager W. P., Justin J. D. & Hinds J. Engineering for Dams. 1944
    [3] Middlebrooks T. A. Progress in Earth Dam Design and Construction in the United States[J]. Civil Engineering. 1952, 118~126
    [4] Gruner E. Dam Disasters. Inst. of Civil Engineers. Proc. Vol 24. 1963, 47~60
    [5] 日本发电水力协会.最新工石坝工学.1972年和1983年修补版
    [6] Londe P. Lessons From Earth Dam Failure[C]. Symposium on Problems and Practice of Dam Engineering. Bangkok. 1980, 19~28
    [7] Serafin J. L. Safety of Dams Judged From Failure[J]. Water Power and Dam Construction. 1981
    [8] Howard T. R. Statistical Analysis of Embankment Dam Failure[C]. 9th Conf. on Geological and Earth Engineering. 1982
    [9] Blind H. The Safety of Dams[J]. Water Power and Dam Construction. 1983
    [10] 孙申登译.混凝土坝岩基的安全性[J].水利水电快报.1984(6)
    [11] Alain Lebreton. Les raptures et accidents graveo de barrage de 1964 a 1983. La Houille Blanche. 1983, 529~535
    [12] Perlea V. Lessons From Embankment Dam Accidents. Bucharest. Romania. 1985
    [13] ICOLD. Lessons From Dam Accidents. Reduced Edition. Paris. 1973
    [14] ICOLD. Deterioration of Dams and Reservoirs. Paris. 1983
    [15] ICOLD. Statistical Analysis of Dam Failures. Bulletin99. Paris. 1995
    [16] USCOLD. Lessons From Dam Accidents[J]. USA. ASCE. New York. 1975
    [17] USCOLD. Lessons From Dam Accidents[J]. USA-Ⅱ ASCE. New York. 1988
    [18] 张秀玲,文明宣.我国水库失事的统计分析及安全对策探讨.水电工程管理论文集.第三册
    [19] 李君纯.我国水库大坝安全的状况及前景.《水库大坝安全》科技研讨班讲义.国家科委上海培训中心印.1996
    [20] 董哲仁.堤防除险加固实用技术[M].北京:中国水利水电出版社.1998
    [21] 白永年等著.中国堤坝防渗加固新技术[M].北京:中国水利水电出版社.2001
    [22] 牛运光.河北省63.8洪水和垮坝事故的回顾[J].土石坝工程.1997,4:27~35
    [23] 洪乃华.河南省板桥水库垮坝经过及原因初探[J].水利管理技术.1996,4:10~15
    [24] 王国安.对淮河“75.8”洪水垮坝主要原因及其引出问题的认识和建议[J].河南水利(专刊).1985,49~56
    [25] I. K. Hunter. Failure of Panshet Dam and Khadakwasla Dam in India. Bambay[J]. Water Power. 1964, 6: 251~252
    [26] G. Wastemann. The breaching of Oros Earth Dam in State of Ceara[J]. Water and Water Engineering. 1960, 8: 351~355
    [27] E. A. Sherma. Earth and Rockfill Dam. Case Studies of Some Resent Failure of Earth Dams(Chapter 15). 525~537
    [28] P. Londe. Lessons From Earth Dam Failures[C]. Symposium on Problems and Practice of Dam Engineering. 1980, 12: 19~28
    [29] J. L. Serafim. Failure of Dams Due to Overtopping[C]. Proceedings of the International Conference on Safety of Dams. 1984, 4: 3~8
    [30] R. B. Jansen. Dam and Public Safety[M]. A Water Resources Technical Publication. USBR. 1983
    [31] 牛运光.几座土石坝渗漏事故的经验教训[J].土石坝工程.1984,3:12~39
    [32] 刘杰.土的渗透稳定与渗流控制[M].北京:水利电力出版社.1992
    [33] 牛运光.土坝渗透变形控制措施及其进展[J].人民长江.1993,8:40~44
    [34] 林鸿斌.高喷液浆在澄碧河水库封堵混凝土心墙缺口中的应用[J].水利管理技术.1995,5:1~8
    [35] U. S. Department of the Interior Teton Dam Failure Review Group. Failure of Teton Dam. A Report of Finding. U. S. Govt. Printing Office. Washington, D. C. 1977
    [36] Murray B. C., Browning S. E. Unique Monitoring of Possible Recurring Foundation Problems of Fontenelle Dam. Safety of Dams. Edited by J. L. Serafim. 1984, 227~234
    [37] 韩知杉.汤河水库大坝坝坡加固处理.辽宁省水利水电勘测设计院.1986
    [38] 王清友.密云水库白河主坝1976地震滑坡再探讨.清华大学水利系.1986
    [39] 杨锡章.河北陡河左坝0+167坝段地震滑坡原因分析与抗震加固措施[J].河北水利.1990,3:38~52
    [40] 汝乃华,牛运光.大坝事坝与安全·土石坝[M].北京:中国水利水电出版社.2001
    [41] M. M. O' Shaughnessy. Sheffield and Gem Lake Dam Failure[J]. Engineering News-Record. 1925, 5: 7~23
    [42] T. A. Middlebrooks. Fort Peck Slide[J]. Proc. of ASCE. 1940
    [43] H. B. Seed, et al. The Slide in the San Fernando Dams During the Earthquake of Feb. 9[J], 1971. ASCE Vol. 101, 1975
    [44] 李君纯.青海沟后水库溃坝原因分析[J].岩土工程学报.1994,6:1~14
    [45] 粱宏军,何萍.夹河子水库大坝渗漏原因分析与处理措施[J].土石坝工程.1997,3:40~43
    [46] 张景秀著.坝基防渗与灌浆技术[M](第二版).北京:中国水利水电出版社.2002
    [47] 钱家欢,殷宗泽主编.土工原理与计算[M](第二版).北京:中国水利水电出版社.1992
    [48] 刘杰.土的渗透稳定与渗流控制[M].北京:水利电力出版社.1992
    [49] 毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社.1990
    [50] 曹宏德.垂直防渗技术进展探讨[J].人民珠江.2001,1:42~44
    [51] 马建华.适用于长江中下游干流堤防堤基垂直防渗的新技术[J].水利水电技术.2001,3:58~60
    [52] 刘川顺,刘祖德,王长德.冲积地基堤防垂直防渗方案研究[J].岩石力学与工程学报.2002,9 3:434~438
    [53] 张家发,李思慎,王文新.长江重要堤防垂直防渗工程[J].人民长江.2002,8:37~39
    [54] 李小牛.水利工程软基垂直防渗技术的应用与发展[J].山西水利科技.2002,3:48~50
    [55] 吴晓彬等.鄱阳湖二期防洪工程和赣抚大堤整治工程常用的垂直防渗措施.江西水利科技.2000,1:35~42
    [56] 曾国良,方振端.几种防渗处理技术在惠州大堤加固工程中的应用[J].防渗技术.2002,3:27~29
    [57] 李思慎.长江重要堤防隐蔽工程建设中的防渗处理[J].长江科学院院报(增).2001
    [58] 杨晓东,丁留谦.堤防地基防渗技术[J].防渗技术.1999,1~5
    [59] 刘川顺,彭幼平,李莫.长江堤防地基类型与防渗方案[J].水文地质与工程地质.2001,6:20~22
    [60] 田伟等.长江干流堤防堤基切槽成墙加固防渗施工[J].东北水利水电.2000
    [61] 滕显华.坝基防渗技术的新发展[J].东北水利水电.2001,1:28~29
    [62] 雷毕芳译.灌浆方法的发明与发展.水利水电科学研究院编地基灌浆译丛.1964(4)
    [63] 《现代灌浆技术译文集编译组》.现代灌浆技术译文集[M].北京:中国水利电力出版社.1990
    [64] 张作瑂.国外坝基灌浆近况及发展趋势.水利水电科学研究院.岩土.1983(2)
    [65] Fujita, K., Kusakabe, O., Miyazaki Y. Geotechnical Aspects of Underground Construction in Soft Ground[C]. Proceedings of the International Symposium, 1999
    [66] Yonekura, R., Terashi, M., Shibazaki, M. Grouting and Deep Mixing[C]. Proceedings of the Second International Conference on Ground Improvement Geosystems. 1996, p1062.
    [67] Widmann, R. Grouting in Rock and Concrete[C]. Proceedings of the international conference. Salzburg. Austria. 1993
    [68] Gourc, J. P., Ratel, A., etc. Design of Fabric Retaining Wall[C]. Proc. 3rd International Conference on Geotextiles. 1986, 289~294
    [69] Han Juran, Halls M. Ider and K. Farrag. Strain Compatibility Analysis for Geosythetics Reinforced Soil Wall[J]. GeotechnicaI Engineering. 1990, 312~329
    [70] Giroud, J P. A Revolution in Geotechnical Engineering[C]. Proc. Of 3rd Int. Conf. on GeotextilesVienna. 1986, 1~18
    [71] W. Jill Harrison and Charles M. Gerrard. Elastic Theory Applied to Reinforced Earth-I[J]. Soil Mechanics and Foundation. 1972, 1325~1345
    [72] Karl, M., Romstad, Leonard, R. Herrmann, Chih-Kang shen. Integrated Study of Reinforced Earth-I[J]. Geotechnical Engineering. 1976, 457~471
    [73] Petros. P. Xanthakos. Slurry Walls as Structure Systems[M]. Second Edition. New York. 1994
    [74] 平冈成明.地中连续壁的安定液.1991
    [75] 日本土质工学会编.连续地下壁工法.1988
    [76] 内滕祯二.最近的地中连续壁.土与基础.1994.3
    [77] 许溶烈.中国深基础工程技术的发展与成就[M].1992.10
    [78] 丛蔼森编著.地下连续墙的设计施工与应用[M].北京:中国水利水电出版社.2001
    [79] 周和清,欧阳崇云.葛洲坝基础灌浆和排水设计关键问题及评价[J].人民长江.2002,2:12~13
    [80] 殷跃平,于文贞,陈宝荪,毛兴明.三峡移民安置区松散堆积体灌浆加固试验研究[J].土木工程学报.2000,4:101~104
    [81] 李存喜,李焰.三峡一期土石围堰防渗工程施工[J].中国三峡建设.1998,3:10~11
    [82] 查振衡,向玉荣.高喷灌浆技术在三峡围堰防渗工程的应用[J].山东水利科技.1996,1:15~17
    [83] 束一鸣,顾淦臣,向大润,肖玉明.长江三峡二期围堰土工膜防渗结构前期研究[J].河海大学学报.1997,5:71~77
    [84] 彭启友.三峡工程二期土石围堰防渗工程[J].水力发电.1998,1:42~45
    [85] 黄家权.三峡二期围堰防渗工程主要施工技术[J].人民长江.1999,5:1~3
    [86] 戴会超.三峡二期上游围堰防渗工程若干问题的研究[J].中国三峡建设.1996,10:14~15
    [87] George, M. Filz, Diane Y. Baxter, David J. Bentler, Richard R. Davidson. Ground Deformations Adjacent to a Soil-Bentonite Cutoff Wall
    [88] 许传桂.先进的超薄板防渗墙技术[J].大坝与安全.2001,1:40~46
    [89] 王克.混凝土防渗墙技术在务坪水库中的应用[J].水利水电工程设计.2000,3:19~20
    [90] 李伟,李秀敏,刘焕秋.浇筑式沥青混凝土心墙施工质量控制[J].东北水利水电.2003,6:15~16
    [91] 蒋振中.薄型抓斗防渗墙施工技术[J].人民长江.2002,8:42~44
    [92] 李洪飞,刘绍宝,屈永强等.塑性混凝土薄墙在病险水库处理中的应用[J].东北水利水电.2003,6:17~19
    [93] 张平,刘美华.射水法建造长江薄型塑性混凝土防渗墙[J].人民长江.2002,8:45~47
    [94] 钟星,李德新.无限深透水地基防渗板墙设置深度初探[J].防渗技术.1997,2:27~29
    [95] 黄秋鸿,石艳.插板截渗墙在惠州大堤加固工程中的应用[J].水利水电科技进展.2001,60~61
    [96] 王满兴,王造根,李学跃.深层搅拌桩防渗墙在长江堤防工程中的应用[J].人民长江.2002,8:40~41
    [97] 王道虎,包钢,许成.深层搅拌水泥粉喷桩加固坝基的施工[J].建筑施工.1997年9期
    [98] 郑俊杰,刘志刚.石灰桩与深层搅拌桩联合加固杂填土地基处理[J].建筑施工.1997年9期
    [99] 张明宇.坝基垂直铺塑和深层搅拌桩联合防渗[J].东北水利水电2003,6:20
    [100] 黄新,周国钧.水泥加固土硬化机理初探[J].岩土工程学报.1994
    [101] 黄祚继.多头小直径深层搅拌桩截渗墙技术[J].水利水电技术.2001,第10期
    [102] 蔡伟强.浅谈多头小直径深层搅拌桩防渗墙技术在福州防洪堤中的应用[J].水利科技.2001,47~48
    [103] 杨坚,关沃康.高压定喷灌浆在基坑工程中的应用[J].华北水利水电学院学报.2001,42~44
    [104] 黄家权.高喷技术在长江邱家湾段防渗工程中的应用[J].人民长江.2002,8:48~50
    [105] 白云.高压喷射灌浆防渗加固技术在温泉水库坝基防渗处理中的应用[J].岩土工程技术.19989
    [106] 蓝冰,邓新德.高压喷射注浆在基坑防渗工程中的应用[J].西部探矿工程.2001(增刊),139~140
    [107] 张茂前,衣晓光,李明镐.浅析音河水库坝基消险加固高压喷射灌浆防渗技术[J].黑龙江水利科技.2001,4:77~78
    [108] 陈永贵,张可能,魏中超.高压喷射灌浆构筑垂直防渗板墙围井试验的几个问题[J].探矿工程.2002,4:12~14
    [109] 李辉,华继骞,宋意勤,李兴兵,强成仓,钱玉林,胡顺洋.振动沉膜板墙防渗技术的工程应用[J].西部探矿工程.2002,4:109~110
    [110] 潘维宗,白永年,张灿峰,王文秀.振动沉模防渗板墙新技术的试验[J].水利水电科技进展.2002,4:38~40
    [111] 刘汉龙.振动沉模大直径现浇混凝土薄壁管桩技术及其应用[J].岩土工程学报.2002,12:20~21
    [112] 杜云飞,吴庆军,赵吉生.垂直铺塑及其在堤基防渗处理中的应用[J].基础工程.2001,30~31
    [113] 钱玉林,严斌,胡唐伯.渗透变形的防治及其工程应用[J].土工基础.2001,3:57~60
    [114] 李天科,王艳艳,杨宗国.黄河大堤基础截渗工程技术比较[J].山东农业大学学报.2002,1:72~74
    [115] 叶家田,风美.新沂河大小陆湖段防渗处理工程效果观测与分析[J].江苏水利.1999(增刊),~
    [116] 孙进.复合土工膜堆石堤堤基两种防渗处理方案研究[J].南京农业大学学报.2001,65~68
    [117] 崔金铁,王佳奎,杨虎男.链槽铺塑防渗技术在尼尔基水利工程中的应用[J].东北水利水电.2003,6:13~14
    [118] 单既连,赵洪丽,王彦明.复合土工膜在塘河水电费站技改工程中的应用[J].防渗技术.1999,14~16
    [119] 陈鸿飞,朱逢春,高荔,田汉功,王惠.垂直铺塑及其在堤基防渗处理中的应用[J].水利水电科技进展.2000,52~53
    [120] 王永明,吴萍,周文柱.土工膜在土石坝坝体防渗中的应用[J].黑龙江水专学报.2002,27~28
    [121] 李毅男,黄士奎,张庆华.垂直铺塑技术在灰场防渗中的应用[J].山东电力技术.2002,4:56~58
    [122] 候建飞.防渗帷幕在码头后方地基处理工程中的应用[J].中国港湾建设.1999,4:37~39
    [123] 向才旺,郭俊才,姚大喜主编.水泥应用[M].北京:中国建材工业出版社,1999
    [124] 沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社.1991
    [125] 李东等.水泥粘土浆在地下的固结与硬化[J].探矿工程.1999,1:32~33
    [126] 邱森才.水玻璃水泥粘土灌浆技术的应用[J].水利水电科技进展(增刊).2001,2:38~39
    [127] Goldfein S. Fibrous Reinforcement for Portland Cement[J]. Modern Plastics. 1962, 42(8): 156~160
    [128] 杨光煦著.堤坝及其施工关键技术研究与实践[M].北京:中国水利水电出版社.2000
    [129] 中华人民共和国水利部国际合作与科技司编.堤防工程技术标准汇编[M].北京:中国水利水电出版社.1999
    [130] 杨有海等.粉煤灰与石灰、水泥拌合料的强度特性试验研究[J].岩土工程学报.2001,2:227~230
    [131] Jones, C W. Tests of Soil-Fly Ash Mixtures for Soil Stabilization and Canal Lining[R]. Report No. REC-ERC-86-9. December 1986, p
    [132] 钱玉林等.水泥粉煤灰加固回填土地基的工程应用[J].扬州大学学报.2001,4:76~78
    [133] 城乡建设环境保护部.《粉煤灰在混凝土和砂浆中应用技术规程》(JGJ28—86)[S].北京:中国建筑工业出版社,1987
    [134] Lech.Czarrechi.聚合物混凝土现状[J].沈阳建筑,1986,2:37-43
    [135] 方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994
    [136] 中华人民共和国行业标准.砌筑砂浆配合比设计规程[M].JGJ/T98-96.北京:中国建筑工业出版社 1996
    [137] Kaniraj, S. R. Behavior of Cement-stabilized Fiber-reinforced Fly Ash-soil Mixtures[J]. Geotechnical and Geoenvironmental Engineering. 2001, 574-584
    [138] Prusinski, Jan R. Effectiveness of Portland Cement and Lime in Stabilizing Clay Soils[J]. Transportation Research Record. 1999, 215-227
    [139] 刘树堂等.水泥石灰稳定碎石的正交试验研究[J].华东公路.1999,5:3~6
    [140] 建筑砂浆基本性能试验方法[S].北京:中国计划出版社,2000
    [141] 张小平.柔性混凝土和岩土轻质材料特性与工程应用的研究[D].河海大学博士论文.2000
    [142] 俞茂宏等.双剪应力强度理论及其推广[J].中国科学.A辑,1985,28(22):1113~1120
    [143] 俞茂宏.双剪理论及其应用(中国科学院科学专著出版基金)[M].北京:科学出版社,1998
    [144] Yu M. H. and Fan S. C. eds. Strength Theory: Application Development and Prospect for 21st Century, Science Press, Beijing and New York 1998, 1178
    [145] Yu M. H.. Unified Strength Theory and Applications. Springer, Berlin, 2001, 412
    [146] Yu M. H.. Advance in strength theory of materials under complex stress state in 20 Century. Appl. Mechanics. Review, 2001, 52
    [147] Yu M. H. Yang S. Y., Unified elasto-plastic associated and non-associated constitutive model and its engineering applications. Int. J. Computers & Structures, 1999, 70(1): 627~636
    [148] 易念平等.水土作用的力学机理探讨[J].广西大学学报.2000,1:14~17
    [149] 汤连生.水-土化学作用的力学效应及机理分析[J].中山大学学报.2000,4:104~109
    [150] 钱玉林等主编.土力学与基础工程[M].中国水利水电出版社.2002
    [151] 陶纪南.莫尔-库仑准则的应用范围及临界应力状态探讨[J].岩土工程学报.1990,12(5):76~83
    [152] 李宏,刘西拉.混凝土拉、剪临界破坏及纯剪破坏[J].工程力学.1992,9(4):1~9
    [153] 殷宗泽,钱玉林.邓肯双曲线模型及其近似确定[A].第二届华东地区岩土力学学术讨论会论文集[C].浙江:浙江大学出版社.1992,172~177
    [154] 钱玉林.水泥加固土邓肯模型参数的近似确定[A].软土地基变形控制设计理论和工程实践[C].9 上海:同济大学出版社.1996,27~30
    [155] 谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社.2002
    [156] 王钊,王协群.三峡工程二期围堰低高防渗心墙方案的有限元分析[J],武汉水利电力大学学报,1997,1~6
    [157] Duncan, J. M., Chang, C. Y. Nonlinear Analysis of Stress and Strain in Soils[J]. ASCE. 1970, Vol. 96(5): 1629~1653
    [158] Daniel, D. E. & Oison, R. E. Stress-strain Properties of Compacted Clay[J]. ASCE. 1974, Vo1.100(10): 1123~1138
    [159] Corotis, R. B., Hassan, m. & Krizek, R. J. Nonlinear Stress-strain Formulation for Soils[J]. ASCE. 1974, Vol. 97(2): 375~391
    [160] Yudhbir, V. A. & Mathur, S. K. Evaluation of Stress-strain Modulus of Saturated Clay[J]. ASCE. 1975, Vol. 101. No. GT3
    [161] Schultze, E. & Teosen, G. A Common Stress-strain Relationship for Soils[C]. Proc. of 9th ICSMFE, 1/57, Vol. 1, 277~280
    [162] Duncan, J. M., Byrne, P., Wong, K. S. & Mabry, P. Strength, Stress-strain and Bulk Modulus Parameters for Finite Element Analysis of Stress and Movements in Soil Masses[R]. Report No. UCB/GT/78-02, University of California, Berkeley
    [163] Eisensten, Z. & Law, S. T. C. The Role of Constitutive Laws in Analysis of Embankment[C]. 第四届全国土力学及基础工程会议论文集.成都科技大学译.1986
    [164] 殷家瑜,赖安宁,姜朴.高压力下尾矿砂的强度与变形特征[J].岩土工程学报.1980,2(2)
    [165] 刘祖德,陆士强,杨天林,李伯乔.应力路径对填土应力应变关系的影响及应用[J].岩土工程学报.1982,4(4)
    [166] Domaschuk, L. & Valliappan, P. Nonlinear Settlement Analysis by Finite Element[J]. ASCE. 1975, Vol. 101, No. GT7
    [167] Naylor, D. J. Stress-strain Laws for Soils[C]. Development in Soil Mechanics-1. Ed. by C. R. Scott. Chapter 2. Applied Science Publishers Lit.
    [168] Izumi, H. et al. Finite Element Analysis of Stress and Movements in Excavations[J]. Numerical Methods in Geomechanics. ASCE. 1976, 701~712
    [169] Verruijt, A. Nonlinear Elastic Approximations of the Behavior of Soils[J]. Numerical Methods in Geomechanics. ASCE. 1976, 1321~1328
    [170] 沈珠江.油罐地基固结变形的非线性分析[J].水利水运科技情报.1977,第一期
    [171] 阎明礼.重塑饱和亚粘土应力应变关系的非线性模型[J].岩土工程学报.1981,3(4)
    [172] Byrne, P. M. & Eldridge, T. L. A Three Parameters Elastic Stress-strain Model for Sand[J]. Numerical Methods in Geomechanics. ed. by R. Dunger, G. N. Pande & J. A. Studer, A. A. Balkema/Rotterdam, 73~80
    [173] 屈智炯.土的塑性力学[M].成都:成都科技大学出版社.1987
    [174] 沈珠江.土的弹塑性应力应变关系的合理形式[J].岩土工程学报.1980,2(2)
    [175] 沈珠江.土的三重屈服面应力应变模式[J].固体力学学报.1984,第二期
    [176] 向大润.土体弹塑性理论加载准则和计算模型探讨[J].岩土工程学报.1983,5(4)
    [177] 殷宗泽.一个土体双屈服面应力应变模型[J].岩土工程学报.1988,Vol.10,No.4
    [178] Roscoe, K. H., Schofield, A. N. & Thurairajah, A. Yielding of Clays in States Wetter than Critical[J]. Geotechnique. 1963, Vol. 13
    [179] Roscoe, K. H. & Burland, J. B. On the Generalized Stress-strain Behavior of Wet Clay[A]. Engineering Plasticity. ed. J. Heyman & F. A. Leckie. Cambridge University Press. 1968
    [180] 魏汝龙.正常压密粘土的本构定律[J].岩土工程学报.1983,3(3)
    [181] 黄文熙.硬的规律对土的弹塑性应力应变模型影响的研究[J].岩土工程学报.1980,2(1)
    [182] 李广信.土的三维本构关系的探讨与验证[D].清华大学博士论文.1985
    [183] Mroz, Z. On the Description of Anisotropic Hardening[J]. J. of Mechanics and Physics of Solids. 1967, Vol. 15: 163~175
    [184] Iwan, W. D. On a Class of Models for the Yield Behavior of Continuous and Composite System[J]. J. of Applied Mechanics. 1967, Vol. 34
    [185] Mroz, Z., Norris, V. A. & Zienkiewicz, O. C. Application of an Anisotropic Hardening Models in the Analysis of Elastoplastic Deformation of Soils[J]. Geotechnique. 1979, Vol. 29(1): 1~34
    [186] Dafalias, Y. H. & Popov, E. P. A Model of Nonlinearly Hardening Materials of Complex Loadings[J]. Acta Mech. 1975, Vol. 21, 173~167
    [187] Carter, J. P., Booker, J. R. & Worth, C. P. A Critical State Soil Model for Cyclic Loading, Soil Mechanics-transient and Cyclic Loading, Ed. Pande G. N. & Zienkiewicz, O. C., John Wiley And Sons, 219~252
    [188] 殷有泉,曲圣年.弹塑性耦合和广义正交法则[J].力学学报.1982,4:63~70
    [189] Rowe, P. W. Theoretical Meaning and Observed Values of Deformation Parameters for Soil, Stress-strain of Soils, eds. By R. H. G. Parry, Roscoe Memorial Symposium, Cambridge University
    [190] Frantziskonis, G. & Deasai, C. S. Constitutive Model with Strain Softening[J]. Int. J. Solids & Structure, 1987, Vol. 13, No. 6
    [191] Desai, C. S., et al. A Hierachial Approach for Constitutive Modeling of Geologic Material[J]. Int. J. of Numerical & Analytical Method in Geomechanics. 1986, Vol. 10, No. 3
    [192] Goodman, R. E., Taylor, R. L. & Brekke, T. L. A Model for the Mechanics of Jointed Rock[J]. Soil Mechanics and Foundation Division, ASCE. 1968, 94(SM3)
    [193] Desai, C. S., Zaman, M. M. Thin Layer Element for Interface and Joints[J]. Int. J. of Intern.9 J. Num. And Analytical Mech. In Geth. 1984, Vol. 8
    [194] 殷宗泽,许国华.土与混凝土接触面剪切特性[A].第六届全国土力学及基础工程学术会议论文集[C].上海:同济大学出版社.1991,97~100
    [195] 钱玉林等.试论软弱筑堤土的固结效应[J].岩土力学.2004,7:17~20
    [196] 钱玉林等.筑堤土防渗性状试验研究[J].岩土力学.2004,5:11~12
    [197] 赵维炳,施健勇编著.软土固结与流变[M].南京:河海大学出版社.1996
    [198] 魏汝龙.软粘土的强度和变形[M].北京:人民交通出版社.1987
    [199] 《振动沉模防渗板墙施工技术规定》(内部试行)
    [200] 水利部建设与管理司.《堤防工程施工质量评定与验收规程》(试行)(SL239—1999)[S].北京:中国水利水电出版社.1999
    [201] 水利部淮河水利委员会.《水利水电建设工程验收规程》(SL223—1999)[S].北京:中国水利水电出版社.1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700