用户名: 密码: 验证码:
裂缝中气液二相流体临界渗流机理与理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油天然气开采、煤层气开发及煤矿瓦斯抽放等工程领域中,都存在着裂缝中气液二相流体渗流的问题。气液二相流体的相对渗透率决定着油气、煤层气、瓦斯等资源的采收率。我们在进行低渗透煤层裂缝渗透特性实验的过程中,发现当气液相对饱和度达到某一临界值时,气液二相流体的相对渗透率都会迅速下降,甚至发生二相流体的流动都停止的现象。我们称这种现象为气液二相流体在裂缝中渗流的临界渗流现象。为了揭示这种奇特现象产生的机理,采用了理论推演、数值实验、物理模拟、实验室岩石裂缝渗流试验、现场工程数据分析等手段,对裂缝中气液二相流体临界渗流的机理与理论进行了全面的、详细的研究,取得了如下主要成果和结论:
     1.通过对气体、液体以及气液二相流体各自在裂缝中的渗流规律,进行详细的理论分析和推演,建立了裂缝中气液二相流体渗流的混合数学模型,该模型主要包括五个控制方程;
     连续性方程:div(P_w(?)_w+P_g(?)_g)+(?)(P_wS_w+P_gS_g)/(?)t+I=0
     气体裂缝渗流达西定律:q_g=(-b~2/12μ_g)S_g((?)P/(?)S)
     液体裂缝渗流达西定律:q_w=(-b~2/12μ_w)S_w((?)P/(?)S)
In many engineering such as oil-gas exploitation, coalbed methane exploitation and extraction, there always occurs gas-liquid two-phase flow through a fracture. The gas-liquid relative permeability in fracture always determines the recovery ratio of oil, nature gas, coalbed methane, and gas. When we are studying the fracture seepage characters of low permeability coal, we find that when the gas relative saturation closed to a certain value, the relative permeability of gas and liquid will fall down rapidly and sometimes the flow of the two-phase will stop. We name this phenomenon as critical seepage phenomenon of gas-liquid two-phase flow in single fracture, and the gas relative saturation as critical gas relative saturation where the critical seepage phenomenon occurs. In order to reveal the mechanism of critical seepage phenomenon of gas-liquid two-phase flow in single fracture, we study the gas-liquid two-phase seepage law in detail by means of theory deduce, numerical simulation, physical simulation, fracture seepage test of rock samples, analyses with in situ data from one gas production well. The main achievements and conclusions are listed as follows:[1] After analyzing the fracture seepage law of gas, water and gas-liquid two-phase fluid in detail, a combined mathematical model of gas-liquid two-phase flow in single fracture is set up. This model involves five control equations:Continuity equation: divDarcy law of gas seepage in fracture:Darcy law of liquid seepage in fracture:
    Gas-liquid relative saturation equation: g £>(l - Sg0)+ p0Sg0Equation of state for an ideal gas: pg = ——RTWith proper definite condition, these five control equations make up of the complete combined mathematic model of gas-liquid two-phase flow in single fracture. While substitute the five equations into one combined equation, we get the final control equation of gas-liquid two-phase fluid seepage in single fracture:2 U C ^ ?r r.2 ? C Va2 2 ,2 2\V~^go) M 0 Po^go \\ P P~ P(\ -sj+ Ptss,+ It 24//, P(i - s,,)+ P,st, }Caxr+"v"J dt{p(\-SgO)+PoSgO)+ XT p(l-SgO)+PoSgO dt[2] The numerical solution of above combined mathematic model is researched, and the Finite Element Simulating program is designed by using Fortran computer language.[3] After a great deal of numerical simulating, the critical seepage phenomenon is proved objective. The probable critical gas relative saturation ranges from 44% to 70%. When the probability is above 80%, the critical gas relative saturation is about 47-65%. When the gas saturation is about 57-60%, then the pabobility of critic phenomena occuring is 1. The mechanism of generating critical seepage phenomenon is due to the extraordinary different of gas-liquid seepage properties and the high compressibility of gas. If the gas relative saturation is out of the critical saturation range, the flow of gas and water is lamina. If the gas relative saturation is right among the critical seepage saturation, the seepage state of the gas and liquid will change entirely. The flow of two fluids is disorderly and unsystematic, the flow path is zigzagged and discontinued, and the gas bubble is shrinking and expanding from time to time, so the energy is storing and releasing. The flow of two fluids lost all its forward energy, the critical seepage phenomenon occurs and the flow of two-phase fluid will stop.[4] After a great deal of experiment research of gas-liquid two-phase flow in an artificial fracture, the critical seepage phenomenon also occurs objectively. In addition, the experiment proved that the gas-liquid two-phase relative saturation is the main factor affecting the
    seepage state. By adjusting the gas relative saturation, the critical seepage phenomenon could be controlled to occur or not. The critical gas saturation ranges from 49.12% to 63.47%. The observed results proved the conclusion of last chapter, when the flow is falling into critical seepage, the gas and water will disperse along the seepage path disorderly and unsystematically.[5] Based on the results of gas-liquid seepage in coal sample's fracture, the critical seepage phenomena is also in existence.[6] The effect of gas relative saturation on gas-liquid two-phase seepage law in rock fracture is not sole; there exists a critical value of gas relative saturation Sgc. When the gas' relative saturation Sg > Sgc, the gas-liquid composite seepage coefficient varies exponentiallywith [Sg - Sgc f, and can be expressed as exp a(sg - sgcj ; When Sg < Sgc, the gas-liquid composite seepage coefficient varies exponentially with [Sg - Sgc) and can be expressed ; from the experiment, the critical gas relative saturation is 59.275%.[7] Besides the gas relative saturation, the stress state and the connectivity of the fracture also have influence on gas-liquid two-phase flow in single fracture. While all these factors taken into account, the gas-liquid two-phase seepage coefficient in single fracture can be expressed as: 2[cr, + uia, +cr,) -kf =rkoP p I" *n[8] After analyzing the well test data of a coalbed methane extraction well, we found there also has critical seepage phenomenon in coalbed methane extraction engineering. The critical gas saturation ranges from 43.9% to 60.0%. Within this range, the output of gas and water decrease to the nadir. So in order to get the continuous high output of gas, the drainage of gas and water should be taken into control to avoid the gas relative saturation to fall into the range of critical relative saturation range.In this paper, the theory and mechanism of gas-liquid two-phase critical flow in single fracture is researched in detail, both detailed theory deduce and a great numbers of experiments including numerical and physical are brought out, and the generating mechanism
    of gas-liquid two-phase critical seepage phenomenon is revealed at last. This research is useful not only to understanding the science meaning of critical seepage phenomenon, but also to providing an important theoretic base in how to improving the coefficient of gas recovery, so the achievement of this research has great science values as well as has widest application foreground.
引文
[1] Tangren, R. F., Dodge, C.H.&Seifert, H.S., Compressibility effects in two-phase flow, I. Appl Phys., 20, p637-645, 1949
    [2] Corey AT, The interrelation between gas and oil relative permeabilities, Prod. Mon., 1954, 31:533-546
    [3] Saffman P.G., Taylor S.G., The penetration of fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. Roy. Soc. A., London Ser.[M], A.245,312~329,1958
    [4] Snow D.T., Anisotropic permeability of fractured media, Water Resource Research, Vol.5(6), 1273-1289, 1969
    [5] Muskat M. The Flow of Homogeneous Fluid in Porous Media, New York: McGraw-Hill, 2nd printing by Edwards, Mich. 1946
    [6] Wallis, G.B., One dimensional two-phase flow, McGraw-Hill, New York, 1969
    [7] Richard W. Johnson, The handbook offluid Dynamics, CRC press, Springer, 1983
    [8] Yih, C.S., Dynamics of non-homogeneous fluids, MacMillan, New York, 1965
    [9] Soo, S.L., Fluid Dyna, ics of Multiphase Systems, Blaisdell Pub-lishing Co., Waltham, 1967
    [10] Ishii, M., Thermo-Fluid Dynamics Theory of Two-Phase Flow, Eyrolles, Paris, 1975
    [11] Pai, S.I., Two-Phase Flow, Vieweg-Verlag, Braunschweig, 1977
    [12]【奥】A.E.薛定谔著,多孔介质中的渗流物理(The physics of flow through porous media),北京:石油工业出版社,1982
    [13] 葛家理编,油气层渗流力学,北京:石油工业出版社,1982
    [14] J.Bear著,李竟生译,多孔介质流体动力学,北京:中国建筑工业出版社,1983
    [15] 柏实义,二项流动,北京:国防工业出版社,1985
    [16] 刘蔚宁编著,渗流力学基础,北京:石油工业出版社,1985
    [17] 陈卓如,金朝铭编,工程流体力学,哈尔滨:哈尔滨工业大学出版社,1987
    [18] 张远君,王慧玉,张振鹏编译,两相流体动力学-基础理论及工程应用,北京:北京航空学院出版社,1987
    [19] 周维垣主编,高等岩石力学,北京:水利电力出版社,1989
    [20]【苏】叶姆采夫,关醒凡,于华译,工程流体力学,北京:高等教育出版社,1990
    [21] Joseph A. Schetz, Allen E. Fuhs, Fundamentals of fluid mechanics, John Wiley&Sons, Inc, New York, 1990
    [22] 刘大有,二相流体动力学,北京:高等教育出版社,1993
    [23] 陈钟祥,高等渗流力学,北京:科学出版社,1999
    [24] 孔祥言编著,高等渗流力学,合肥:中国科学技术大学出版社,1999
    [25] 郎兆新编著,油气地下渗流力学,北京:石油工业出版社,2001
    [26] 易家训著,章克本等译,流体力学,北京:高等教育出版社,1982
    [27] 翟云芳主编,渗流力学,北京:石油工业出版社,1998
    [28] 郭烈锦编著,两相与多相流动力学,西安:西安交通大学出版社,2002
    [29] 刘大有,关于二相流、多相流、多流体模型和非牛顿流等概念的探讨,力学进展,1994,24(1):66-73
    [30] 孙守港,贾庆升,宋丹等,低渗透油藏注气提高采收率配套技术,油气地质与采收率,2002,9(2):28-30
    [31] 郭平,李士伦,杜志敏等,低渗透油藏注气提高采收率评价,西南石油学院学报,2004,24(5):46-50
    [32] 李士伦,郭平,戴磊等,发展注气提高采收率技术,西南石油学院学报,2000,20(3):41-45
    [33] 孙卫,曲志浩,李劲峰,安塞特低渗透油田见水后的水驱油机理及开发效果分析,石油实验地质,1999,21(3):256-260
    [34] 张云峰,于建成,李蓬,高庆国,饱和水条件下天然气在岩石中扩散系数的测定,大庆石油学院学报,2001,25(4):4-7
    [35] 张宁生,王志伟,任晓娟,雷建安,低渗天然气气层损害机理探究,西安石油学院 学报(自然科学版),2002,17(3):15-18
    [36] 谭羽非,陈家新,余其铮,底水驱天然气地下储气库单井运行动态的模拟分析,哈尔滨建筑大学学报,2001,34(1):67-70
    [37] 陈发亮,邓国振,禹金营,对石油与天然气成因的思考,断块油气田,2001,8(3):8-10
    [38] 李明诚,石油和天然气运移、聚集的特征,地球物理学进展,1994,9(1):120-124
    [39] 骆祖江,煤层甲烷运移动力学模型研究,博士学位论文,煤炭科学研究总院,1997
    [40] 叶建平等,中国煤储层渗透性及其主要影响因素,煤炭学报,1999,24(2):118-122
    [41] 张琰,肖迎春,沙砾性低渗透气层水锁效应及减轻方法的实验研究,地质与勘探,2000,36(1):92-94
    [42] 庄惠农,韩永新,煤层气层渗流与煤层气试井,重庆大学学报(自然科学版),2000,23(supp.):19-21
    [43] 孙可明,梁冰,王锦山,煤层气开采中两相流阶段的流固耦合渗流,辽宁工程技术大学学报(自然科学版),2001,20(1):36-39
    [44] 张力,何学秋,李侯全,煤层气渗流方程及数值模拟,天然气工业,2002,22(1):23-26
    [45] 周克明,李宁,张清秀等,气水两相渗流及封闭气的形成机理实验研究,天然气工业,2002,22(supp):122-125
    [46] 张永利,邰英楼,王来贵,水—煤层气两相流体在煤层中的渗流规律,地质灾害与环境保护,2001,12(4):64-66
    [47] 余进,李允,水驱气藏气水两相渗流及其应用研究的进展,西南石油学院学报,2003,25(3):36-39
    [48] 张永利,邰英楼,徐颖,王营子矿煤层中水-煤层气两相流体渗流规律的研究,实验力学,2000,15(1):92-96
    [49] 赵阳升,胡耀青,杨栋,魏锦平,三维应力下吸附作用对煤岩体气体渗流规律影响的实验研究,岩石力学与工程学报,1999,18(6):651-653
    [50] 赵阳升,杨栋,郑少河,胡耀青,三维应力作用下岩石裂缝水渗流物性规律的实验研究,中国科学E辑,1999,29(1):82-86
    [51] Yangsheng Zhao, Yaoqing Hu, Dong Yang, An experimental research on the seepage law of two-phase fluid of gas-liquid in rock fracture, 9th Int. Congress of rock mechanics, Paris, Aug. 23-25, 1999:805—807
    [52] Yangsheng Zhao, Yaoqing Hu, Baohu Zhao, Dong Yang, Nonlinear Coupled Mathematical Model for Solid Deformation and Seepage in Fractured Media, Transport in Media, 2004, 55:119-136
    [53] Zhao Yangsheng, Hu Yaoqing, Yang Dong, The experimental approach to effective stresses law of coal mass by effect of pore pressure methane, Transport in porous Media, 2003, 53(3): 235-244
    [54] 杨栋,胡耀青,赵阳升等,3D应力下气体裂缝渗流规律实验研究,岩石力学与工程学报,2005,23(6):999-1003
    [55] 杨栋,胡耀青,赵阳升,常宗旭,切向应力对气体裂缝渗流规律影响的实验研究,第八次全国岩石力学与工程学术大会论文集,科学出版社,2004,926-928
    [56] Zhao Yangsheng, Yang Dong, Zheng Shaohe, Hu Yaoqing, Experimental study on water seepage constitutive law of fracture in rock under 3D stress, Science in China (Series E), 1999, 42(1):108-112
    [57] 赵阳升著,矿山岩石流体力学,煤炭工业出版社,北京,1994
    [58] 章梦涛,潘一山等编著 煤岩流体力学,科学出版社,北京,1995
    [59] 王宏图等,煤矿深部开采瓦斯压力计算的解析方法,煤炭学报,1999,24(3):279-283
    [60] D. H. Steve Zou, Chuxin YU, Xuefu Xian, Dynamic nature of coal permeability ahead of long wall face, Int. J. of Rock Mechanics & Mining Sciences, 1999, 36: 693-699
    [61] 白武明,王中言等,砂岩孔隙结构及其同孔隙度、渗透率的关系,中国岩石力学与工程学会第四次学术大会论文集,中国科学出版社,1999:P160-166。
    [62] 杨松岩,俞茂宏,多相孔隙介质的本构描述,力学学报,2000,32(1):11-24
    [63] 周宏伟,谢和平,孔隙介质渗透率的重正化群预计,中国矿业大学学报,2002,29(3):244-248
    [64] E. Dana, F. Skoczylas, Gas relative permeability and pore structure of sandstones, Int. J. of Rock Mechanics & Mining Sciences, 1999,36:613-625
    [65] Skoczylas F.,Henry JP, A study of intrinsic permeability to gas, Int. J. Rock Mech. Sci. Geomech. Abstr., 1995, 32(2):171-179
    [66] Reid B., et al, High velocity gas flow effects in porous gas water system, SPE, 39978
    [67] 葛传鼎译,关于在孔隙介质中水驱气的机理,天然气勘探与开发,1985,2
    [68] Zhi Wang, Jan Feyen, Prediction of fingering in porous media, Water Resource Research, 1998, 34(9): 2183-2190
    [69] 黄全华,李士伦,孙雷等,考虑多孔介质吸附影响的凝析油气渗流,天然气工业,2001,21(2):75-78
    [70] Avraam DG, Payatakes AC, Generalized relative permeability coefficients during steady-state two-phase flow in porous media, Transport Porous Media, 1995, 20:135-168
    [71] Avraam DG, Payatakes AC, Flow regimes and relative permeabilities during steady-state two-phase flow in porous media, Transport Porous Media, 1995,20:207-236
    [72] 俞善炳等,含气多孔介质卸压层裂的间隔特征—突出的前兆,力学学报,1998,30(2):140-150
    [73] 李铁军,李允,低渗透储层气体渗流数学模型及计算方法研究,天然气工业,2000,20(5):70-72
    [74] 阮敏,何秋轩,低渗透非达西渗流临界点及临界参数判别方法,西安石油学院学报,1999,14(3):9-10
    [75] 宋付权,刘慈群,李凡华,低渗透介质含启动压力梯度一维瞬时压力分析,应用数学与力学,1999,20(1):25-32
    [76] 吴景春,袁满,张继成等,大庆东部低渗透油藏单相流体低速非达西渗流特征,大庆石油学院学报,1999,23(2):82-84
    [77] 肖鲁川,甄力,郑岩,特低渗透储层非达西渗流特征研究,大庆石油地质与开发,2000,19(5):27-30
    [78] 姚约东,葛家理,低渗透油层非达西渗流规律的研究,新疆石油地质,2000,21(3):
    [79] 陈代询,王章瑞,致密介质中低速渗流气体的非达西现象,重庆大学学报,2000,23(supp.)
    [80] 陈永敏,周娟,刘文香,刘学伟,低速非达西渗流现象的实验验证,重庆大学学报,2000,23(supp.)
    [81] E. Ebeltoft, J.E.Iversen, K.O. Vatne, et al, A novel experimental apparatus for determination of three-phase relative permeabilities at reservoir conditions, Journal of Petroleum Science and Engineering, 1998, 19:119-132
    [82] 乐长荣,气水界面移动及气井水淹研究,天然气勘探与开发,1981,4
    [83] 李晓平,杨桦,气水分界面稳定运动的渗流力学条件研究,钻采工艺,2001,24(3):39-40
    [84] 李晓平,水驱气藏渗流原理及试井分析理论研究,硕士论文,西南石油学院,1999
    [85] Frederick, D.G. Jr, et al, New correlation to predict Non-Darcy flow coefficient at immobile and mobile water saturation, SPE, 28451, 1997
    [86] Norhan Abd. Rahman, Roland W. Lewis, Finite element modeling of multiphase immiscible flow in deforming porous media for subsurface systems, Computers and geotechnics, 1999, 24:41-63
    [87] 骆祖江,付延龄,非饱和带水气二相流动力学模型,煤田地质与勘探,1999,27(5):43-45
    [88] 骆祖江,陈艺南,付延玲,水-气二相渗流耦合模型全隐式联立求解,煤田地质与勘探,2001,29(6):36-38
    [89] 李铁军,李允,低渗透储层气体渗流数学模型及计算方法研究,天然气工业,2000,20(5):70-72
    [90] Jiang Li, Donald Helm, Viscous drag, driving forces, and their reduction to Darcy's law, Water Resource Research, 1998, 34(7): 1675-1684
    [91] Jim Ferry, S. Balachandar, A fast Eulerian method for disperse two-phase flow, Int. J. of Multiphase Flow, 2001,27: 1199-1226
    [92] Geoge Christakos, Dionissios T. Hristopulos, Xinyang Li, Multiphase flow in heterogeneous porous media from a stochastic differential geometry view port, Water Resource Research, 1998, 34(1): 93-102
    [93] Snow D.T., Anisotropic permeability of fractured media, Water Resource Research, Vol.5(6), 1273-1289, 1969
    [94] Wilson C.R., An investigation of laminar flow in fractured porous media, Ph. D. Thesis, University of California, Berkeley, 1970
    [95] Witherspoon, P A., J. S. Y. Wang, K. Iwai, J. E.Gale, Validity of cubic law for fluid flow in a deformable rock fracture, Water resources research, 1980, 16(6): 1016-1024
    [96] Y. W. Tsang, C. E Tsang, channel model of flow through fractured media, Water Resource Research, 1987, 23(3): 467-479
    [97] W.L. Chen, M.C. Twu, C. Pan, Gas-liquid two phase flow in micro-channels, Int. J. of Multiphase Flow, 2002,28:1235-1247
    [98] Z. Chen, S. P Narayan, Z. Yang, S. S. Rahman, An experimental investigation of hydraulic behavior of fractures and joints in granitic rock, Int. J. of Rock Mechanics & Mining Sciences, 2000,37:1061-1071
    [99] Schrauf TW, Evans DD, Laboratory studies of gas flow through a single nature fracture, Water Resource Research, 1986,22(7): 1038-1050
    [100] Reitsma Stanley., Bernard. H. Kueper, Laboratory measurement of capillary pressure-saturation reltionship in a rock fracture[J], Water Resource Research, 1994, 30(4):865-878
    [101] E. Lajeunesse, J. Martin, N. Rakotomalala, et al, 3D instability of miscible displacements in a Hele-Shaw Cell, Physical Review Letters, 1997, 79(26):5254-5257
    [102] Pierre Gavrilenko, Yves Gueguen, Flow in fractured media, A modified renormalization method, Water resource Research, 1998,34(2): 177-191
    [103] 韩冰,叶自桐,周创兵,裂隙岩体饱和/非饱和渗流机理初步研究[J],水科学进展,1999,10(4):375-381
    [104] 韩冰,叶自桐,周创兵,单裂隙岩体非饱和临界状态渗流特性初步研究,水科学进展,2000,11(1)
    [105] P. Persoff, K. Pruess, Two-phase flow visualization and relative permeability measurement in nature rough-walled rock fracture, Water resources research, 1995, 31(5):1175-1186
    [106] Hakon Amundsen, Geri Wagner, Unni Oxaal, Paul Meakin, Jens Feder, slow two-phase flow in artificial fractures: experiment and simulations, Water Resource Research, 1999, 35(9): 2619-2626
    [107] Diego Berger, Carol Braester, Gas-Liquid displacement through fracture networks,Water Resource Research, Vol.36, No.11, p3205-3210, 2000
    [108] 周创兵,裂隙岩体渗流场与应力场耦合研究,博士论文,武汉水利电力学院,1995
    [109] T.N. Narasimhan, Hydraulic characterization of aquifers, reservoir rocks, and soils: a history of ideas, Water Resource Research, 1998, 34(1): 33-46
    [110] Thomas S. Soerens, David A. Sabatini, Jerry H. Harwell, Effects of flow bypassing and nonuniform NAPL distribution on the mass transfer characters of NAPL dissolution, Water Resource Research, 1998, 34(7): 1657-1673
    [111] Zdenek Bazant,Er-Ping Chen, 结构破坏的尺度律,力学进展,1999,29(3):383-433
    [112] 陈平,张有天,裂隙岩体渗流与应力耦合分析,岩石力学与工程学报,1994,13(4):299-308
    [113] 葛修润,任建喜,蒲毅彬等,煤岩三轴细观损伤演化规律的CT动态实验,岩石力学与工程学报,1999,18(5):497—502
    [114] 李宏,朱浮声等,岩石统计细观损伤与局部弱化失稳的尺寸效应,岩石力学与工程学报,1999,18(1):28-32
    [115] 王经明,李竟生,裂隙-岩石格架系统中二相流的耦合模型,煤田地质与勘探,1998,26(supp.)
    [116] 王媛,速玉宝,徐志英,三维裂隙岩体渗流耦合模型及其有限元模拟,水文地质工程地质,1995,(3):1-5
    [117] 赵阳升,胡耀青,赵宝虎,杨栋,块裂介质岩体变形与气体渗流的耦合数学模型及其应用,煤炭学报,2003,28(1):41-45
    [118] 常宗旭 赵阳升 胡耀青 杨栋,裂隙岩体渗流与三维应力耦合的理论与实验研究,岩石力学与工程学报,2004,19(supp.2):4907-4911
    [119] 赵阳升,胡耀青,杨栋等,气液二相流体裂缝渗流规律的模拟实验研究,岩石力学与工程学报,1999,18(3):354-356
    [120] 赵成刚,杜修力,崔杰,固体、流体多相孔隙介质中的波动理论及其数值模拟,力学进展,1998,28(1):
    [121] 肖裕行,王泳嘉,王思敬,卢世宗,裂隙岩体水力特征数值模拟实验的初步结果,工程地质学报,1999,7(1):82-88
    [122] 袁绍国,杨万根,刘占魁,渗透系数各向异性对裂隙水渗流潜水面的影响,水文地质工程地质,1995,(3):5-8
    [123] 林良俊,马凤山,煤层气产出过程中气水两相流与煤岩变形耦合数学模型研究,水文地质与工程地质,2001,(1):1-3
    [124] Yangsheng Zhao, Yaoqing Hu, Dong Yang, An experimental research on the seepage law of gas-liquid two-phase fluid in rock fracture, 9th Int. Congress of rock mechanics, Paris, Aug. 23-25, 1999, 805—807
    [125] Fourar, M., S. Bories, R. Lenormand, and P. Persoff, Two-phase flow in smooth and rough fractures: measurement and correlation by porous-medium and pipe flow models, Water Resource Research, 1993, 29(11):3699-3708
    [126] Wanfang, Z., H.S. Wheater, and P.M. Johnson, State of the art of modeling two-phase flow in fractured rock, Environ. Geo., 1997, 31 (3/4), 157-165
    [127] P. Gondret, N. Rakotomalala, M. Rabaud, Viscous parallel flows in finite aspect ratio Hele-Shaw cell:Analytical and numerical results, Phys. Fluids, 1997, 9 (6): 1841-1843
    [128] Ljubinko Kondic, 1 Peter Palffy-Muhoray, 2 and Michael J. Shelley, Models of non-Newtonian Hele-Shaw flow, Physical review(E), 1996, 54(5): 4536-4539
    [129] 杨米加,陈明雄,贺永年,单裂隙曲折率对流体渗流过程的影响,岩土力学,2001,21(1):78-82
    [130] 王媛,单裂隙面渗流与应力的耦合特性,岩石力学与工程学报,2002,21(1):83-87
    [131] 王媛,速宝玉,单裂隙面渗流特性及等效水力隙宽,水科学进展,2002,13(1):61-68
    [132] 陈江峰,裂隙网络分维及其与渗透率的关系,煤田地质与勘探,1999,7:50-52
    [133] 杨森著,水气二相流浓度分布规律的研究,博士论文,成都科技大学,1991
    [134] 王金勋,吴晓东,杨普华等.孔隙网络模型法计算气液体系吸吮过程相对渗透率.天然气工业,2003;23(3):8-11
    [135] Atsuhide Kitagawa, Yuichi Mural, Fujio Yamamoto, Two-way coupling of Eulerian-Lagrangian model for dispersed multiphase flows using filtering functions, Int. J. of Multiphase Flow, 2001,27:2129-2153
    [136] 朱伯芳,有限单元法原理与应用,北京:中国水利水电出版社,1998
    [137] A罗焕炎,陈雨孙著,地下水运动的数值模拟,北京:中国建筑工业出版社,1988
    [138] 杜延龄,许国安,渗流分析的有限元法和电模拟法,北京:水利电力出版社,1992
    [139] 阎贵卿,阎毅编著,近代数学物理理论计算与可视化技术,长沙:国防科技大 学出版社,2000
    [140] 张瑞新,任庭祥等,虚拟现实技术在矿山安全工程中的研究发展,煤炭学报,1999:124(1):,
    [141] Benoit B.Mandelbrot,大自然的分形几何学,陈守吉,凌复华译,上海:上海远东出版社,1998
    [142] Jens Feder, Fractals, Plenum Press, New York, 1988
    [143] 李凡华,刘慈群,宋付权,分形在油气田开发中的应用,力学进展,1998,28(1):101-110
    [144] Stauffer Dietrich, Introduction of percolation theory, Taylor & Francis (Printers) Ltd., 1985
    [145] Du, C., C. Satik, and Y. C. Yortsos, Percolation in a fractional. Brownian motion lattice, AIChE. J., 1996, 42(8): 5941-5952
    [146] Wilkinson, D., and J.F. Willemsen, Invasion percolation: A new form of percolation theory, J. Phys. A Math. Gen., 1983, 16:3365-3376
    [147] 【比】prigogine,I.,Stengers,I.著,湛敏译,确定性的终结,上海:上海科学教育出版社,2000
    [148] 【美】Mark Buchanan著,刘杨,陈雄飞译,临界critical,长春:吉林人民出版社,2001
    [149] 于渌,郝柏林著,相变和临界现象,北京:科学出版社,1992
    [150] 郝柏林,于渌编著,统计物理学进展,北京:科学出版社,1981
    [151] 彭国伦编著,Fortran95程序设计,北京:中国电力出版社,2002
    [152] 谢刚,王双印,陈九顺等,Hele-Shaw cell模型中粘性指进现象的研究Ⅰ时间对粘性指进的影响,黑龙江大学自然科学学报,2000,17(1):70-72
    [153] 谢刚,王双印,陈九顺等,Hele-Shaw cell模型中粘性指进现象的研究Ⅱ流度比和表面粗糙度对粘性指进的影响,黑龙江大学自然科学学报,2000,17(2):70-72
    [154] 谢刚,王双印,陈九顺等,Hele-Shaw cell模型中粘性指进现象的研究Ⅲ出油 孔数目和孔距半径对粘性指进的影响,黑龙江大学自然科学学报,2000,17(3):71-77
    [155] 梁生正,赵克镜,冯国良等,达成水封型煤层气藏的发现及其特征,中国煤层气,1996,2:67-68
    [156] 冯国良,赵克镜,谷文彬等,大成煤层气藏形成初探,中国煤层气,1996,2:69-72
    [157] 王志章,蔡毅,杨蕾.开发中后期油藏参数变化规律及变化机理[M].北京:石油工业出版社,1999
    [158] 陈永生.油田非均质对策论[M].北京:石油工业出版社,1993
    [159] 单华生,姚光庆,周锋德,储层水洗后结构变化规律研究,海洋石油,2003,3:62-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700