用户名: 密码: 验证码:
海拉尔盆地火山碎屑岩、含片钠铝石砂岩与普通砂岩的成岩作用及其比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文运用普通薄片、铸体薄片、扫描电镜、X-射线衍射、茜素红染色、流体包裹体和碳氧同位素等技术方法,对海拉尔盆地贝尔凹陷火山碎屑岩、普通砂岩和乌尔逊凹陷含片钠铝石砂岩成岩作用进行详细描述与比较,建立火山碎屑岩和含片钠铝石砂岩成岩成藏流体的演化模式。
    火山碎屑岩和普通砂岩物质组成不同,前者特有的成岩作用为压结作用、熔结焊接作用、脱玻化作用、交代蚀变作用、自生矿物常见粘土矿物包壳和甲胄状自生石英等,对应其特有的成岩共生序列、成岩相和流体演化模式。对于物质组成相同的含片钠铝石砂岩和普通长石砂岩,成岩作用差别为前者具有特殊的自生矿物组合:自生高岭石、石英次生加大边和片钠铝石等,为幔源含CO_2流体侵位对砂岩改造而形成的自生矿物组合。
Hailaer Basin is located in the south-west of Hulunbeier Prefecture, Inner Mongolia Autonomous Region. Beier depression and Wuerxun depression are the biggest areas that have been explored and have the most potential for further exploration. The main reservoir of Beier depression consists of pyroclastic rock of Budate Group, Xinganling Group and Tongbomiao Formation and common sandstone in Nantun Formation and Damoguai Formation. The main reservoir in Nantun Formation and Damoguai Formation of Wuerxun depression is sandstone among which the dawsonite-bearing sandstone is an important oil-gas reservoir and inorganic-origin CO_2 reservoir in Wuerxun depression. In this article I carried on the detailed description and the comparative studies of diagenetic of pyroclastic rock, common sandstone in Beier depression and dawsonite-bearing sandstone in Wuerxun depression of Hailaer Basin. Therefore not only widened our research scope in diagenesis study theoretically, moreover
    provided theory for actual exploration accordingly. Lithological characteristic is the basic of diagenetic study. By appraisive experiment and description of well core and thin sections from Beier depression, it is found that the main rock type of Budate Group are andesite tuff, dacite tuff, liparite-tuff, andesite and small quantity of sedimentary tuff, etc, . The main rock type in Xinganling Group are: dacite tuff-lava breccia, andisite tuff and dacite-tuff, etc, . The main rock types in Tongbomiao Formationare rhyolite tuff-breccia, dacite tuff-breccia, andesite tuff, rhyolite flood tuff, dacite flood tuff, sedimentary tufaceous and tufaceous sandstone, etc, . The 5 porosity types of pyroclastie rock are: Intergranular porosity, Intragranular porosity, filling porosity, fracture porosity and dissolution porosity. Among them dissolution porosity includes intergranular dissolution porosity, intragranular dissolution porosity( feidspar dissolution porosity and fragment dissolution porosity), filling dissolution porosity and fracture dissolution porosity, etc, The types of porosity of pyroclastic rock are generally centralized in low (IIIA) class and medium (IIB) class. Through out the study of 40 exploratory wells and 8 development wells, altogether 2450 porosity statistics in Beier depression, it is concluded that the peak value of porosity is centralized between 8% to 16% (which occupies 50% of the total). The peak value of permeability is generally centralized less than 1×10-3μm2 (which occupied 70% of the total), with the porosity property as medium-size porosity and low permeability. According to the statistical system by Gazzi-Dickinson(1979), the dawsonite-bearing sandstones in Wuerxun
    depression are arkose sandstone and lithic feldspathic sandstone.Lying on the basic of the statistical study of framewor composition, and applying W.R. Dickinson’s triangle discriminant pattern chart which uses the composition of framewor detrital composition as the termination point to determine the provenance tectonic setting, which is, quartz extinction mode-provenance analyzing diagram QFL of QmFLt, QPLVLS, and Basu (1975) and cathode luminescence characteristic of heavy mineral and quartz extinction, I naked the following conclusion the source rock of dawsonite-bearing sandstone in Wuerxun depression was generated from the granite of Proterozoic Era of Eerguna landmass, 340 ~312 Ma subduction-collision type granite in early-medium Hercynian period or 310~250 Ma subduction type granite body. Based on the method of reservoir layer and porosity classification, and by the comprehensive study of observation of normal thin section, casting section, scanning electronic microscope and photographic analysis, we inducted the porosity of the dawsonite-bearing sandstones in Wuerxun depression into the following four types: intergranular porosity, intragranular porosity, filling porosity and dissolution porosity. I also applied photographic analyzing technique by using Laser Scanning Confocal Microscope (LSCM) for 8 samples from 2 wells Tong-6 and Su-16 in Wuerxun depression to study their porosity texture, we naked the conclusion that they belonged to medium-tiny size porosity and thin pore throat sandstone. The physical feature of reservoir layer shows as medium-low porosity with low permeability.
    By observation through polarizering microscope and scanning electronic microscope, we discovered that the types of diagenetic of pyroclastic rock in Beier Depression consist of diagenetic phase of compaction-recrystallization, clinkering-welding, agglutination and authigenesis (including specific jacketing clay mineral and corslet-shape authigenic quartz), devitrification, metasomatic alteration and erosion-dissolution. Each different type of diagenetic shows different diagenetic phenomenon, and therefore defines different diagenetic paragenetic sequence. In Xinganling Group and Tongbomiao Formation it can be partitioned into 4 diagenetic phases: Patch shape ankerite diagenetic phase, erosion-dissolution kaolinite diagenetic phase, clinkering-welding corslet-shape anthigenic quartz microlite diagenetic phase and adhesion-alteration ankerite diagenetic phase. The diagenetic stage in Xinganling Group is mainly Phase A of middle diagenetic stage, but the possibility of the existence of Phase B and Phase A of early diagenetic stage could not be excluded. The diagenetic stage of Tongbomiao Formation belongs to Phase A of middle diagenetic stage. The diagenetic types of dawsonite-bearing sandstone can be classified to mechanical compaction, agglutination and authigenesis, Group of anthigenic clay mineral, alteration and dissolution. The diagenetic sequence is as follows: quartz overgrowth, authigenic quartz, authigenic kaolinite, anthigenic ledikite, calcite, spathic iron, sulfite ore, sodium feldspar, potash feldspar and dawsonite. This can be clasified into 3 diagenetic combination and 4 diagenetic phase, which are: Feebleness mechanical compaction-kaolinite fill up diagenetic phase, relatively
    violence compaction-unstable component and dissolution diagenetic phase, quartz overgrowth agglutination diagenetic phase and dawsonite agglutination or alternation diagenetic phase. The diagenetic stage contains Phase A and Phase B of early diagenetic stage and Phase A in middle diagenetic stage, among which Phase B of early diagenetic stage and Phase A in middle diagenetic stage are the main diagenetic stages. Comparing pyroclastic rock with feldspathic sandstone, the compaction of pyroclastic rock not only provides similar compaction of terrigenous clastic rock, but also shows the feature of compaction and clinkering-welding. Devitrification is a special type of diagenesis of pyroclastic rock and mainly developed in shard tuff.Alteration and replacement is another special type of diagenesis of pyroclastic rock and mainly developed in tuff and tuff lava. The specific agglutination and authigenic mineral of pyroclastic rock is jacketing clay mineral (rhagas into corslet-shape authigenic quartz and illite). In erosion and dissolution, besides the dissolution of unstable components like arkosic and rock fragments, it is common to find the phenomenon of the dissolution of shard and crystallinoclastic. Considering of diagenesis paragenetic sequence, the diagenesis paragenetic sequence of pyroclastic rock includes not only agglutinate and authigenic mineral (such as patch shape calcite, adhesion-alteration calcite and dolomite etc, ), but also jacketing clay mineral, clinkering-welding, compaction and piezocrystallization, alteration and erosion and other specific diagenetic features. By the study of diagenetic phase feature, we naked
    the conclusion that the diagenetic phase of pyroclastic rock can be mainly clasified into the follow 4 postures: Patch shape ankerite diagenetic phase, erosion-dissolution kaolinite diagenetic phase, clinkering-welding corslet-shape anthigenic quartz microlite diagenetic phase and adhesion-alteration ankerite diagenetic phase. By the study of diagenesis stage we found that the variation in longitudinal direction of clay mineral in pyroclastic rock did not have a certain regularity that vary with the increasing of the depth like the clay mineral in arkosic sandstone. Besides the combination of agglutinate and authigenic mineral as normal sandstone has, the reservoir of dawsonite-bearing sandstone also has the specific combination of agglutinate and authigenic mineral: authigenic kaolinite, quartz secondary enlargement, dawsonite and ankerite. Although the high agglutination level of dawsonite-bearing sandstone greatly effected the development of reservoir porosity, the dawsonite-bearing sandstone arkosic generated violence solution and the solution of authigenic kaolinite is a common phenomenon. According to the feature of diagenetic paragenetic sequence, fluid inclusion and present group water, I preceded analysis on the evolution of diagenetic fluid of pyroclastic rock and dowsonite-bearing sandstone. During the process of diagenesis, rocks in Budate Group generally superimposed low temperature hydrotherm alteration. Diagenetic fluid can be partitioned into early acidic fluid stage and advanced alkali fluid stage in this period of the process. The diagenesis of pyroclastic rock in Tongbomiao Formation shows mechanical
    impaction at the early stage, accompanied with sedimentation of authigenic kaolinite, and then it shows filling up of ankerite spare and agglutination of patch shape ankerite. In this stage the fluid of diagenetic fluid shows alkali feature. With the deepening of diagenetic level, the feature of porosity fluid converted from alkality to acidity. Feldspar and volcanic detritus occured alteration and dissolution. Authigenic jacketing clay mineral and corslet-shape authigenic quartz microcrystallite had been formed. At the final stage the fluid converted again from acidity to alkality and adhesion ankerite developmented. The fluid in dawsonite-bearing sandstone experienced the following 4 stages sequentially, acidic fluid at the early stage, alkali fluid at the early stage, acidic fluid at the final stage and alkali fluid at the present stage.
引文
1、朱家祥,李淑贞等著. 1995. 超深井成烃成岩体系研究[M],上海:同济大学出版社.
    2、寿建峰,朱国华等. 开鲁盆地陆西凹陷侏罗系火山岩屑砂岩的成岩作用特点[J]. 石油勘探和开发. 1995,22(5):81-86.
    3、费卫红,李忠. 东濮凹陷桥口—白庙地区砂岩石英增生及其流体活动的反映[J]. 地质科学. 2001,36(2):152-163.
    4、张厚福,方朝亮等编. 1999. 石油地质学[M]. 北京:地质出版社.
    5、Schmoker J W, Gautier D L. Sandstone Porosity as Function of Thermal Maturity-an Approach to Porosity Comparision and Prediction [J]. Geology, 1998, 16 (11): 1697-1703.
    6、S Bloeh, J H McGowen, et al. Porosity prediction, prior to drilling, in sandstones of the kekiktuk formaion(Mississippian), North slope of Alaska [J]. AAPG, 1990, 74(9): 1371-1385.
    7、寿建峰,朱国华. 砂岩储层孔隙保存的定量预测研究[J]. 地质科学,1998, 32(2):244-249.
    8、李浩敏, 沈炎彬. 南极乔治王岛塔尔德斯半岛化石山植物群的初步研究[J]. 古生物学报,29(2):145-153.
    9、李兆鼐, 郑祥身,刘小汉,等. 西南极乔治王岛塔尔德斯半岛火山岩[M]. 科学出版社,1992,1-227.
    10、薛耀松,沈炎彬,卓二军. 南极乔治王岛始新统化石山组沉积火山碎屑岩特征[J].南极研究(中文版). 1996,8(4):31-41.
    11、薛振华,蔡源,康自立. 湘西南桂北下寒武统富铀黑色岩系中变质沉凝灰岩的岩石学特征[J]. 铀矿地质,1999,15(3).
    12、Grevenitz P, Carr P, Hutton A. Origin, alteration and geochemical correlation of late Permian airfall tuffs in coal measures, Sydney Basin, Australia[J]. International Journal of Coal Geology, 2003, 55: 27-46.
    13、Bryan S E, Cas R A F, Marti J. Lithic breccias in intermediate volume phonolitic ignimbrites, Tenerife (Canary Islands): constraints on pyroclastic flow depositional processes[J]. Journal of Volcanology and Geothermal Research, 1998, 81: 269-296.
    14、Cole J W, Brown S J A, Burt R M, et al. Lithic types in ignimbrites as a guide to the evolution of a caldera complex, Taupo volcanic center, New Zealand [J]. Journal of Volcanology and Geothermal Research, 1998, 80: 217-237.
    15、Silber A, Bar-Yosef B, Chen Y. PH-Dependent kinetics of tuff dissolutin[J]. Geoderma, 1999, 93: 125-140.
    16、WoldeGabriel G, David E, Frank M, et al. Mineralogy and temporal relations of coexisting authigenic minerals in altered silicic tuffs and their utility as potential low-temperature dateable minerals [J]. Journal of Volcanology and Geothermal Research, 1996, 71: 155-165.
    17、翟光明. 中国石油地质志卷十二. 长庆油田[M]. 北京: 石油工业出版社, 1987.
    18、翟光明主编. 中国石油地质志卷五. 华北油田[M]. 北京: 石油工业出版社, 1987.
    19、翟光明主编. 中国石油地质志卷二. 大庆. 吉林油田[M]. 北京: 石油工业出版社, 1987.
    20、翟光明主编. 中国石油地质志卷九. 江汉油田[M]. 北京: 石油工业出版社, 1987.
    21、翟光明主编. 中国石油地质志卷六. 胜利油田[M]. 北京: 石油工业出版社, 1987.
    22、王宏斌, 王璞王君, 陈弘. 中国东部中新生代火山-碎屑-凝灰岩储层研究综述[J]. 世界地质, 1997, 16(3): 34-41.
    23、杜韫华. 一种次生的片钠铝石[J]. 地质科学, 1982, 4:434-437.
    24、黄善炳. 金湖凹陷阜宁组砂岩中片钠铝石特征及对物性的影响[J]. 石油勘探与开发, 1996, 23(2):32-34.
    25、徐衍彬,陈平,徐永成. 海拉尔盆地碳钠铝石分布与油气的关系[J]. 石油与天然气地质, 1994, 15(4):322-327.
    26、宋荣华, 王军, 何艳辉, 等. 荧光显微图像技术判断储层流体性质研究[J]. 油气井测试, 2000, 9(4):28-32.
    27、孙玉梅,郭西燕,王彦. 莺-琼气区天然气主气源及注入历史分析[J]. 中国海上油气(地质). 2000, 14(4): 240-247.
    28、曾容树,孙枢,陈代钊,段振豪. 减少二氧化碳向大气的排放[J]. 中国科学基金,2004,(4):196-200.
    29、周蒂. CO2的地质存储-地质学的新课题[J]. 自然科学进展,2005,15(7):782-787.
    30、Tianfu Xu, John A. Apps, Karsten Pruess. Mineral sequestration of carbon dioxide in a sandstone-shale system[J]. Chemical Geology, 2005, 217: 295-318.
    31、吴新民, 康有新, 姜英泽, 等. 吉林大安北油田葡萄花储层岩石基本特征[J]. 西安石油学院学报, 1999, 14(1):6-9.
    32、刘伟,冯杰,王淑芝,等. 海拉尔盆地煤系烃源岩有机相分布特征[J]. 大庆石油地质与开发,2002,21(5):18-20.
    33、张吉光. 海拉尔盆地不整合的形成及其油气地质意义[J]. 大庆石油地质与开发, 2002, 5: 8-10.
    34、吴富强,李后蜀,胡雪等. 沾化凹陷渤南洼陷沙四段成岩史恢复及成岩模式建立[J]. 油气地质与采收率. 2001,8(6):1-5.
    35、徐衍彬, 冯子辉, 要丹. 海拉尔盆地二氧化碳气藏成因[J]. 大庆石油地质与开发, 1995, 14(1): 9-11.
    36、曾溅辉. 东营凹陷热流体活动及其水-岩相互作用的影响[J]. 地球科学(中国地质大学学报). 2000, 25(2): 133-142.
    37、向凤典. 珠江口盆地(东部)的CO2气藏及其对油气聚集的影响[J]. 中国海上油气(地质). 1994, 8(3): 155-161.
    38、杨金侠. 海拉尔盆地乌尔逊凹陷古流体动力场数值模拟[J]. 长安大学学报(地球科学版). 2003, 25(3): 41-47.
    39、Baker J C, Bai G P, Hamilton P J, et al. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia[J]. Journal of Sedimentary Research, 1995, A65(3): 522-530.
    40、Bader E. Uber die buiding and konstitution des dawsonite and seine synthetic darstelling[J]. Mineralogy, Geology and Palaeotology, 1938, 74: 449-465.
    41、Chesworth W. Laboratory synthesis of dawsonite and its natural occurrences[J]. Natural and Physical Sciences, 1971, 231:40-41.
    42、张向锋, 温兆银, 吴梅梅等. 片钠铝石的水热合成研究[J]. 硅酸盐学报. 2003,31(4):336-340.
    43、Hay R L. Zeolite weathering in Olduvai Gorge, Tanganyika[J]. Bulletin of Geological Society of America, 1963, 74: 1281-1286.
    44、Smith J W, Milton C. Dawsonite in the Green River Formation of Colorado[J]. Economic geology, 1966, 61: 1029-1042.
    45、Chesworth W. Laboratory synthesis of dawsonite and its natural occurrences[J]. Nat. Phys. Sci., 1971, 231: 40-41.
    46、Golab A N, Carr P F. Changes in geochemistry and mineralogy of thermally altered coal, Upper Hunter Valley, Australia [J]. International Journal of Coal Geology, 2004, 57: 197-210.
    47、Alexandra N. Golab, Paul F. Carr. Changes in geochemistry and mineralogy of thermally altered coal, Upper Hunter Valley, Australia [J]. International Journal of Coal Geology 2004, 57: 197-210.
    48、Ortoleva, P. J., Dove, P., Richter, F., 1998. Geochemical perspectives on CO_2 sequestration, Manuscript prepared for US Department of Energy Workshop on “Terrestrial Sequestration of CO2—An Assessment of Research Needs,”Gaithersburg,
    MD. 1998.
    49、Ryoji Shiraki, Thomas L. Dunn. Experimental study on water-rock interactions during CO2 fooding in the Tensleep Formation, Wyoming, USA[J] . Applied Geochemistry, 2000, 15 : 265-279.
    50、Ross, G. D., Todd, A. C., Tweedie, J. A., 1981. The effect of simulated CO2 fooding on the permeability of reservoir rocks. In: Proc. 3rd European Symp. Enhanced Oil Recovery, pp. 351-366.
    51、Omole, O., Osoba, J. S., 1983. Carbon dioxide-dolomite rock interaction during CO2 fooding process. Paper 83-34-17 . Petrol. Soc. Canadian Inst. Min. Metal. 1-13, Ban., Alberta.
    52、Sayegh, S. G., Krause, F. F., Girard, M., DeBree, C. Rock uid interactions of carbonated brines in a sandstone reservoir: Pembina Cardium, Alberta, Canada [J]. SPE Formation Eval. 1990, 5: 399-405.
    53、Baker, J. C., 1991. Diagenesis and reservoir quality of the Aldebaran Sandstone, Denison Trough, east-central Queensland, Australia [J]. Sedimentol 1991, 38: 819-838.
    54、Lihui Liu, Yuko Suto, Greg Bignall et al. CO2 injection to granite and sandstone in experimentalrock/hot water systems [J]. Energy Conversion and Management, 2003, 44: 1399-1410.
    55、John P. Kaszuba, David R. Janecky, Marjorie G. Snow. Carbon dioxide reaction processes in a model brine aquifer at 200 _C and 200 bars: implications for geologic sequestration of carbon [J]. Applied Geochemistry 2003, 18: 1065-1080.
    56、Worden R. H.,Barclay,S. A.. Internally-sourced quartz cement due to externally-derived CO2 in sub-arkosic sandstones, North Sea [J]. Journal of Geochemical Exploration, 2000, 69-70:645-649.
    57、Watson M N,Zwingmann N, Lemon N M. The Ladbroke Grove-Katnook carbon dioxide natural laboratory: A recent CO2 accumulation in a lithic sandstone reservoir [J]. Energy, 2004, 29: 1457-1466.
    58、张晓东, 刘光鼎, 王家林. 海拉尔盆地的构造特征及其演化[J]. 石油试验地质, 1996, 16(2): 119-127.
    59、张吉光, 张宝玺. 海拉尔盆地苏仁诺尔成藏系统[J]. 石油勘探与开发, 1998, 25(1): 25-28.
    60、刘春喜, 王始波. 海拉尔盆地断层封闭性研究[J]. 大庆石油地质与开发, 2002, 21(3): 20-22.
    61、隋少强, 宋丽红, 张金亮. 海拉尔盆地乌尔逊凹陷大漠拐河组成岩作用研究[J]. 大庆石油地质与开发, 1996, 15(4): 12-16.
    62、朱平,王成善. 海拉尔盆地碎屑储集岩成岩变化与孔隙演化关系[J]. 矿物岩石,1995,15(2):41-45.
    63、李振广,萧德明,冯子辉. 海拉尔盆地泥岩干酪根13C NMR谱及生烃演化特征[J]. 石油勘探与开发,1995,22(2):24-28.
    64、刘文碧, 李德发, 周文. 海拉尔盆地油气盖层测井地质研究[J]. 西南石油学院学报, 1995, 4: 34-42.
    65、柳成志, 李凤君, 沈玉启. 海拉尔盆地泥岩烃浓度封闭特征及研究意义[J]. 大庆石油地质与开发, 1998, 17(2): 13-16.
    66、李昌谷, 张雁, 李钦铭, 王文明. 海拉尔盆地大磨拐河组下段泥岩盖层封盖油气能力评价[J]. 大庆石油学院学报, 1999, 23(2): 12-14.
    67、刘晓艳, 卢双舫, 衣英杰. 海拉尔盆地煤及其煤系泥岩生排烃定量评价[J]. 煤田地质与勘探, 2000, 28(6): 17-20.
    68、李艳红, 金奎励, 艾天杰. 基于有机包裹体研究追索海拉尔盆地煤成油[J]. 矿物岩石, 2001, 1: 28-31.
    69、陈守田, 刘招君, 崔凤林, 丁玲, 丁淑霞. 海拉尔盆地含油气系统[J]. 吉林大学学报(地球科学版), 2002, 32(2): 151-154.
    70、刘伟,冯杰,王淑芝,等. 海拉尔盆地煤系烃源岩有机相分布特征[J]. 大庆石油地质与开发,2002,21(5):18-20.
    71、王江,张宏,林东成. 海拉尔盆地乌尔逊含氦CO2气藏勘探前景[J]. 天然气工业,2002,22(4):109-111.
    72、孙善平,刘永顺,钟蓉,等. 火山碎屑岩分类评述及火山沉积学研究展望[J] . 岩石矿物学杂志,2001,20(3):313-328.
    73、陈志勇, 吴培康, 吴志轩. 丽水凹陷石油地质特征及勘探前景[J]. 中国海上油气(地质), 2000, 14(6):384-391.
    74、程峰,于少勇,邢德敬,等. 阴极发光技术在储层研究中的应用[J]. 断块油气田. 1998,5(6):17-19.
    75、邸世祥等. 中国碎屑岩储集层的孔隙结构[M]. 西安:西北大学出版社,1991.
    76、冯建辉,任战利,崔军平,等. 东濮凹陷杜桥白地区天然气气源岩分析[J]. 沉积学报. 2003,21(2):350-359.
    77、王大锐,张映红. 渤海湾油气区火成岩外变质带储层中碳酸盐胶结物成因研究及其意义[J]. 石油勘探与开发. 2001, 28(2): 40-42.
    78、隋少强, 宋丽红, 张金亮. 海拉尔盆地乌尔逊凹陷大漠拐河组成岩作用研究[J]. 大庆石油地质与开发. 1996, 15(4): 12-16.
    79、张吉光,彭苏萍,林景晔. 乌尔逊凹陷沉积成岩体系与油气分布[J]. 古地理学报. 2002, 4(3):74-82.
    80、王大锐. 油气稳定同位素地球化学[M]. 北京:石油工业出版社, 2000: 17-119.
    81、裴蒂庄. 沉积岩(中译本)[M]. 北京:石油工业出版社,1981.
    82、孙善平,王小明. 火成碎屑岩,见:池际尚主编,岩浆岩岩石学[M]. 北京:地质学院出版,1959.
    83、孙善平. 关于火山碎屑岩成因特征及分类命名问题. 见:庆祝校庆十周年第八届科学研究报告讨论会论文摘要(岩石部分). 北京地质学院,1962,22-27.
    84、孙向阳,解习农. 东营凹陷地层水化学特征与油气聚集关系[J]. 石油实验地质.2001,23(3):291-296.
    85、寿建峰,赵澄林. 国外碎屑岩储层的次生孔隙研究[J]. 世界石油科学. 1998,9(2).
    86、薛振华,蔡源,康自立. 湘西南桂北下寒武统富铀黑色岩系中变质沉凝灰岩的岩石学特征[J]. 铀矿地质. 1995, 15(3):142-148.
    87、左跃明,张树明,巫建华,等. 赣南—粤北鸡笼嶂组火山岩岩石学和岩石化学特征讨论[J]. 江西地质. 2000,14(2):93-99.
    88、张荣华. 1992. 矿物在热流内化学动力学和物质迁移[M]. 北京:地质出版社
    89、张长俊,龙永文. 海拉尔盆地沉积相特征与油气分布[M]. 北京:石油工业出版社,1995.
    90、曾容树,孙枢,陈代钊,段振豪. 减少二氧化碳向大气的排放[J]. 中国科学基金,2004,(4):196-200.
    91、Stevenson J S,Stevenson L S. The petrology of dawsonite at the type locality, Montreal[J]. Canadian Mineralogist, 1965, 8: 249-252.
    92、Loughnan F C, Goldbery R. Dawsonite and analcite in the Singleton Coal Measures of the Sydney Basin[J]. American Mineralogist, 1972, 57( 9~10): 1437-1447.
    93、Aikawa-Nobuyuki, Yoshida-Masaru, Ichikawa-Koichiro. Discovery of dawsonite and alumohydrocalcite from the Cretaceous Izumi Group in Osaka Prefecture, southwest Japan[J]. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 1972, 11: 370-385.
    94 、Goldbery R, Loughnan F C. Dawsonite, alumohydrocalcite, nordstrandite and gorceixite in Permian marine strata of the Sydney Basin, Australia[J]. Sedimentology, 1977, 24(4): 565-579.
    95、Balfe P E, Carmichael D C. An occurrence of dawsonite in the Bowen Basin [J]. Queensland Government Mining Journal. 1980, 81: 519-522.
    96、张金亮. 陆东凹陷九佛堂组储层岩石学及成岩作用[J]. 西安石油学院学报, 1995, 10(2):4-10.
    97、李德敏,叶素娟,张国华. 莺歌海盆地LD15-1 构造莺黄组砂岩储层的成岩作用[J]. 中国海上油气(地质), 1995, 9(5):307-312.
    98、王海云,李捷. 东北含油气盆地储层次生孔隙形成机制[J]. 大庆石油学院学报, 1998, 22(4):5-8.
    99、李春梅, 何可. 江汉盐湖盆地盐间非砂岩储层特征及储层类型[J]. 江汉石油学院学报, 2001, 23(3):6-9.
    100、Palache C, Berman H, Frondel C. The system of mineralogy [M]. New York: Wiley Press Ltd, 1960, 1124.
    101、Zhang Xiangfeng, Wen Zhaoyin, Gu Zhonghua, et al. Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds[J]. Journal of Solid State Chemistry, 2004, 177(3): 849-855.
    102、Strckeisen A. Classification and nomenclature of igneous rocks, Neues Jahrb. Mineral [J]. Abhandl. 1967,vol. 107.
    103、Ohmoto H, Rye R O. isotopes of sulfur and carbon. In barnes H L. Geochemistry of Hydrothermal Ore Diposits[M]. 2nd Edition: New York, Wiley Press, 1979: 509-567.
    104、O’Neil J R, Clayton R N, Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates[J]. Journal of Chemical Physics, 1969, 51: 5547-5548.
    105 、Shamugam G. Significance of secondary porosity in interpreting sandstone composition [J]. The American Association of Petroleum Geologists Bulletin, 1985, 69(3): 378-384.
    106、Strckeisen A. To each plutonic rocks its proper name[J]. Earth Science Review, 1978, vol12.
    107、高玉巧,刘立,曲希玉. 海拉尔盆地乌尔逊凹陷片钠铝石及研究意义[J]. 地质科技情报,2005,24(2):45-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700