用户名: 密码: 验证码:
变值成形原理与设备设计理论的若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变值成形是通过改变金属材料截面的尺寸和形状,直接制造零件或毛坯的工艺方法,是机械制造技术与轧制技术交叉复合而成的零件制造方法,具有改善工件材料组织性能、节省材料、生产率高的特点,是21世纪大力发展的技术。本文对其成形原理与设备设计理论中的若干关键问题进行了理论和实验研究。
     提出了变值轧制成形的概念。探讨了变值轧制成形的基本现象和规律,初步建立了变值轧制成形的基本理论框架。分析了咬入条件、咬入角、接触角、咬入条件与接触角的关系和变值轧制成形状态下金属运动形式及速度规律,推导了变形速率的计算公式;研究了压下量对咬入角、接触角、变形区长度的影响规律,建立了轧透性判定模型和最小压下量公式。
     研究了金属变形区的滑动规律。分析了接触角随工件厚度曲线变化规律和对变形区金属滑动规律的影响作用;建立了变值轧制条件下前滑、后滑、断面变化系数等参数的数学模型;分析了变值成形条件下变形区表面摩擦状态和机理,利用预位移理论解释了中性面处的摩擦机理;讨论了影响摩擦和滑动的因素。
     建立了基于上限定理的设备载荷力能参数计算方法。通过建立变形区边界方程
Variable-data forming (VDF), manufacturing works or rough parts directly by changing the material cross-section size and shape, is a technology and method which is crossed by machine building with rolling. The technology, having the features of improving material properties and saving material and high productivity, etc, is a promising process in the 21th century. Some key questions in the forming principle and equipment design theory has been studied in the paper.The concept of VDA has been put out and the basic phenomenon and law of that have been researched and the theorical system of that has been set up. The biting condition and the relationship of contact angle with biting angle and with bite condition have been built. The metal moving form, speed law, deforming rate formula in variable-data farming have been studied. The affecting law of draught on biting angle and contact angle and the length of deforming zone have been studied. The judgment condition of rolling penetration and the formula of least reduction in pass have been built.The slip law of metal in the deforming zone and the change law of contacting angle with the works thickness curve slope and the effect of that on the metal in the deforming zone have been studied. The formula of forward slip and backward slip and section change coefficient has been built. The friction state and principle in the deforming zone of variable-data farming have been analyzed. With the theory of forecast displacement, the friction principle on neutral flow plane has been studied. The factor affecting friction and slip has been discussedBased on Upper-bound theorem, the calculating method of dynamics
    parameter of load on equipment has been found. By building deformation zone boundary function and cross-section speed function, the allowable velocity field and strain rate field of deformation zone bave been studied. The calculation method of plastic deformation power in deformation zone and shear power on the speed discontinuous surface and friction power on the friction surface bave been studied. The Upper-bound power calculation formula, satisfying Mises yield condition and Levy-Mises flow rule, has been put forward. The formula of forming force and moment has been obtained finaly. The accuracy of forming force calculation formula is proved by test.The basic law of metal spread has been studied. The form and cause of that have been analyzed. Under the spread branch zone hypothesis and based on the condition of minimum flow resistance and volume constant, the spread formula, which is satifying application by comparing test data with model data, has been put forward,.The concept of V-H one-pass rolling, by which the three-dimensional deformation is turn to double two-dimensional deformation to control and form, has been put out. The technology and theory and math-model and the phenomena such as works shape and forming stability of V-H one-pass rolling have been studied. The shape simulation to test V-H forming theory has been completed. The V-H forming theory has been set up.The mapping relationship of concurrent step design and the judging rule composed by functionality and information and circulation have been put out. The mechanism shape of V-H forming equipment has been studied. The concept of stress-loops has been put forward and used to improve equipment rigidity. The power type and control shape and math formula have been studied. The accuracy and practicality of stress-loops improving equipment rigidity have been checked by the finite element method. The shape and size of rolls could be obtained. The feasibility and accuracy of technologic method of V-H forming are shown by test. The key equipment of V-H forming has been developed.
引文
[1] 杜立权,机械零件毛坯轧制的进展及在我国应用的看法[J],金属成型工艺,17(4),1999:52—54.
    [2] Johnson W, Mamalis A G. Rolling of rings[J]. Int. Metals Reviews, (4), 1979: 137—148.
    [3] 马余选,王晋毅,高尔夫球杆轧机的设计[J],稀有金属材料与工程,30(3),2001:235—237.
    [4] 华林,梅雪松,吴序堂,环件轧制运动学规律和参数[J],热加工工艺,(2),1998:20—22.
    [5] 丁贤玉,刘莉霞,曾煜,轧制螺旋叶片的数学分析[J],起重运输机械,(8),1998:6—7.
    [6] Yang Shenhua, Kou Shuqing, Deng Chunping, Research and application of precision roll-forging taper-leaf spring of vehicle[J], Journal of Material Processing Technology 65, 1997: 268—271.
    [7] Erol Sancaktar, Mathieu Gratton, Design, analysis, and optimization of composite leaf spring for light vehicle applications[J], Composite structures, 44, 1999: 195—204.
    [8] 胡正寰,刘晋平,零件轧制技术的形状与展望[J],机电产品开发与创新,(6),1998:1—3.
    [9] 黄贞益,王萍等,变断面细长产品成形方法探讨[J],金属成型工艺,17(6)1999:33—37.
    [10] 寇淑清,杨慎华,黄良驹,机引犁铧闭式型槽精密辊锻技术研究[J],热加工工艺,(4),2001:33—34.
    [11] 马晓利,杨庆平,张凌霞,变截面悬臂梁的形状优化[J],应用力学学报,18(1), 2001.
    [12] H. A. Al-Qureshi, Automobile leaf spring from composite materials[J], Journal of Materials Processing Technology, (118)2001: 58—61.
    [13] L. Daugherty, Composite leaf spring in heavy truch applications[J], Composite Materials, Proceedings of Japen-US Conference, Tokyo, 1981: 529—538.
    [14] 刘军营,李素玲,汽车变截面板簧轧机的成型原理与方法[J],山东冶金,18(6),1996:32—34.
    [15] 陈芳育,汽车变截面板簧新产品的开发[J],机械开发,(1),1995:61—62.
    [16] 刘良元,李俊涛,孙怀安,大截面汽车板簧用钢的研究[J],钢铁,34(3),1999:58-62.
    [17] 冯月友,方书生,黄昌文,大截面板簧和稳定杆的热处理改进[J],热处理,17(4),2002.
    [18] 韩建保,云志刚,汽车悬架动载性能检测与理论分析[J],汽车工程,(3),2002
    [19] 王爱民 杨爱华 罗耀华 吴建勋 李和民,钢板弹簧侧弯的形成机理及其控制[J],金属热处理(10).2000,
    [20] 何辉,段敏,陈勇,等厚断面渐变刚度钢板弹簧的优化设计计算[J],汽车技术,(4),2000.
    [21] 蒋立盛,少片弹簧的计算及其尺寸参数的选择[J],汽车技术,(6),1984.
    [22] 薛彪,孙乐殿,刘日春.变截面板簧刚度的设计与计算[J],冶金设备,(1).1999.
    [23] 步一鸣,少片变断面弹簧[J],汽车悬架学会技术交流资料,(10),1985.
    [24] 刘惟信,汽车设计[M],清华大学出版社,2001,7.
    [25] 佟刚,任飞,苗卫东,变截面少片钢板弹簧模糊优化设计[J],沈阳航空工业学院学报,18(3),2001:23—25.
    [26] 王海文,轧钢机械设计[M],机械工业出版社,1983,6.
    [27] 杨慎华,寇淑清,变截面板簧精密辊锻模具CAD/CAM集成系统[J],汽车工程,(1),2000.
    [28] 詹红,运新兵,辊锻模型与锻件轮廓曲面的几何分析[J],大连铁道学院学报,20(2),1999:94—98.
    [29] Kevin F K. An approximate three-dimensional metal flow analysis for shape rolling[J]. Journal of Engineering for industry. (110), 1988: 223—230.
    [30] 付沛福,辊锻理论与工艺[M],吉林人民出版社,1983.
    [31] 张承鉴,辊锻技术[M],机械工业出版社,1986.
    [32] 吕富强,姬高索,一种双功能辊轧机[J],锻压机械,(2),1996:9—11.
    [33] 王林,变截面板簧辊锻模具CAD/CAM集成系统的研究[D],吉林工业大学学位论文,1998.
    [34] 刘军营,李素玲,姜吉顺,仿型共轭式汽车变板簧轧机液压系统设计[J],中国高校科学,11(2),1997:217—221.
    [35] 刘军营,李素玲,王正红,仿型汽车变截面钢板弹簧轧机的研制[J],重型机械,(2),2001:31—33.
    [36] 万文略,周鹏,汽车变截面钢板弹簧轧机计算机控制系统的研究[J],计算机应用,(10),2000:23—24.
    [37] 汪忠良,丁金根,刘肥生,四辊变截面板簧轧机的改造[J],中国设备工程,(2),2002:16—17.
    [38] 冯成敏,石学友,陈雪萍,汽车变截面钢板弹簧计算机控制系统[J],锻压机械,(3),1999:54—55.
    [39] 刘军营,李素玲,王正红,液压全自动变截面汽车板弹簧轧机的研制[J],中国机械工程,13(12),2002:1015—1017.
    [40] 岳峰,汽车板簧制造工艺与设备[J],锻压机械,(3),1995:46—47.
    [41] 陈恒庆,日本弹簧生产与标准化的动向[J],冶金标准化与质量,39(6),2001:1—4.
    [42] 程春艳,变截面钢板弹簧的试制[J],特殊钢,15(4),1995:48—51.
    [43] 胡水平,刘钊,史志伟等,三辊式汽车变截面弹簧轧机的研制与开发[J],冶金设备,(6),2001:55—57.
    [44] 张毅杰,汽车变截面板簧生产情况初探[J],新疆钢铁,(1),2001:25—27.
    [45] 刘德民,康永林,迟道坤,汽车变截面板簧轧机伺服系统分析及应用[J],轧钢,(6),1986:20—23.
    [46] 蔡唯成,蔡力,变截面弹簧及其轧机[J],金属世界,(4),1991.
    [47] I. Rajendran, S. Vijayarangan, Optimal design of composite leaf spring using genetic algorithms[J], Computers and Structures, 79, 2001: 1121—1129.
    [48] 乔爱科,陶民华,高金凤,汽车钢板弹簧CAD[J],北京工业大学学报,22(3),1996:114—120.
    [49] 刘巧伶,林逸,张义民等,汽车多片钢板弹簧的可靠性设计[J],中国公路学报,11(2),1998:109—112.
    [50] Frank E. Fonner, Developments in the North American Iron and Steel Industry—2002[J], AIST Steel Technology 2003: 23—28.
    [51] Kazunobu Takami, Yoshiaki Nakagawa, Advanced Electrical Equipment for Hot-Rolling Mill[J], Mitsubishi Electric ADVANCE, 3, 1997: 2—4.
    [52] 曹洪德,塑性变形力学基础与轧制原理[M],机械工业出版社,1982.
    [53] Alexander. J. M, A slip line filed for the hot rolling process[J]. Proc. Inst. Mech. Engers. (169), 1955: 1021—1030.
    [54] R. W. Clough, The finite element method in plane-stress analysis[J], Proc. 2nd Asce. Conf on electronic computation. Pittsburgh. Pa. Sopt. 1960: 345—349.
    [55] O. C, Zienkiewicz. The finite element method. Mcgraw-Hill. London. 1977.
    [56] 刘建生,陈汇琴,郭晓霞,金属塑性加工有限元模拟技术与应用[M],冶金工业出版社,2003.
    [57] Rao. S. S. and Kumar. A, finite element analysis of cold strip rolling[J]. Int. J. Mech. Sci, (17), 1977: 159—168.
    [58] Hirakawa. T, Fujita. F, Yamada. Y, Analysis of strip rolling by the finite element method[M]. Ibid, 1984: 1132—1137.
    [59] Liu. C, Elastic plastuc finite element modeling of cold rolling of strip[J]. Int. J. Mech. Sci, 27(718), 1985: 531—541.
    [60] C. H. Lee, S. Kobayashi, New solution to rigid plastic deformation problems using a matrix method[J], Translation of the ASME,(95), 1973: 865—873.
    [61] 刘相华,刚塑性有限元及其在轧制中的应用[M],冶金工业出版社,1994.
    [62] Chandra. A, Simulation of rolling processes by the boundary element method. Advanced boundary element methods, Edited by Cruse. T. A, Springe-Verlg, 1987: 93—100.
    [63] 刘宏民,三维轧制理论及其应用—模拟轧制过程的条元法[M],科学出版社,1999:50—53.
    [64] 王翔,少片变截面钢板弹簧模糊优化设计[J],汽车研究与开发,(3),1995:33—36.
    [65] 王廷溥,齐克敏,金属塑性加工学[M],冶金工业出版社,2001.
    [66] H.李普曼著,乔端、刘宝珩泽,金属成形过程的过程塑性理论[M],冶金工业出版社,1988.
    [67] 王祖唐,金属塑性加工工步分析[M],清华大学出版社,1987.5.
    [68] 采利科夫(苏联),轧制原理手册[M],冶金工业出版社,1989.
    [69] 赵志业,金属塑性变形与轧制理论(第二版)[M],冶金工业出版社,1994.
    [70] 贺毓辛,现代轧制理论[M],冶金工业出版社,1993.
    [71] B. Hum, H. W. Colquhoun, J. G. Lenard, Measurement of friction during hot rolling of aluminum strips[J], Journal of Materials Processing Technology (60), 1996: 331—338.
    [72] Jonas Lagergren, Friction evaluation in hot strip rolling by direct measurement in the roll gap of a model duo mill[J], Journal of Materials Processing Technology (70), 1997: 207—214.
    [73] V.B.金兹伯格(美),板带轧制工艺学[M],冶金工业出版社,1998.
    [74] 日本钢铁协会编,王国栋,吴国良译,板带轧制理论与实践[M],中国铁道出版社,1990.
    [75] Campbell McConnell, J. G. Lenard, Friction in cold rolling of a low carbon steel with lubricants[J], Journal of Materials Processing Technology (99), 2000: 86—93.
    [76] Gow-Yi Tzou, Relationship between frictional coefficient and frictional factor in asymmetrical sheet rolling[J], Journal of Materials Processing Technology (86), 1999: 271—277.
    [77] 周仲荣,Leo.Vincent,微动磨损[M],科学出版社,2002.
    [78] 孙哲,张宏,平辊轧制工艺轧制力及摩擦应力的弹塑性有限元分析[J],包头钢铁学院学报,21(1),2002.
    [79] 考虑轧件弹性变形的Hill轧制力显式公式[J],钢铁研究,(3),2000.
    [80] 陈长征,周建南,轧钢机力能参数神经网络预测[J],重型机械,(4),2000.
    [81] 王秀梅,王国栋,刘相华等,基于神经网络的轧制力模型参数辨识[J],钢铁研究,(1),2000.
    [82] B.艾维超(美),王学文译,金属成形工艺与分析[M],国防工业出版社,1988.
    [83] 陈森灿,叶庆荣,金属塑性加工原理[M],清华大学出版社,1991.
    [84] 汪大年,金属塑性成形原理[M],机械工业出版社,1987.
    [85] 晓茹,胡衍生,任勇,宋耀华,基于人工神经网络的中厚板精轧机轧制力预报[J],武汉科技大学学报(自然科学版)24(02),2001。
    [86] 方原栋,张士英,带材轧制力计算新方法[J],上海金属,24(1),2002.
    [87] 戴江波,张清东,陈先霖等,2800mm中厚板轧机轧制力模型研究[J],北京科技大学学报,24(3),2002.
    [88] 赵德文,李桂范,抛物线模拔矩形件三维变形理论解析,应用科学学报,15(1),1997.
    [89] 华林,环件轧制成形原理和技术设计方法[D],西安交通大学博士学位论文,2000.
    [90] P. A. Atack, I. S. Robinson, Adaptation of hot mill process models[J], Journal of Materials Processing Technology, (60), 1996: 535—542.
    [91] Yah Xiaoqiang, Zou Jiaxiang, Gao Yongsheng, Computer simulation of pass schedule on strip mills[J], Journal of University of Science and Technology Beijing, 1 (1-2), 1994: 53—58.
    [92] 孟令启,4200轧机宽展模型研究[J],郑州大学学报,31(2),1999:60—63.
    [93] J. Wen, D. M. Petty, A novel method for prediction of rolled cross section shape[J], Journal of Materials Processing Technology 80—81, 1998: 356-360.
    [94] Z. Y. Jiang, A. K. Tieu, A simulation of three-dimensional metal rolling processes by rigid-plastic finite element method[J], Journal of Materials Processing Technology 112, 2001: 144—151.
    [95] H. Zhao, S. C. Rama, G. C. Barber, etc, Expermental study of deep drawablity of hot rolled IF steel[J], Journal of Materials Processing Technology 128, 2002: 73—79.
    [96] 国家标准局,弹簧钢,GB1222—94,1995.
    [97] D. J. Kim, Y. C. Kim, B. M, Kim, Optimization of the irregular shape rolling process with an artificial neural network[J], Journal of Materials Processing Technology 113, 2001: 131—135.
    [98] Romain Boman, Jean-Philippe Ponthot, Numerical simulation of lubricated contact in rolling processes[J], Journal of Materials Processing Technology 125-126, 2002: 405—411.
    [99] V. Salganik, Mathmatical modeling of roll load and deformation in a four-high strip mill[J], Journal of Materials Processing Technology 125—126, 2002: 695—699.
    [100] 赵宪明,吴迪,变断面零件轧制数控压下系统[J],东北大学学报,20(3),1999:312—314.
    [101] 熊尚武,朱祥林,王超,热带粗轧机组立轧变形规律研究[J],轧钢,(10),1996.
    [102] Rafael Colas, Jorge Ramirez, Ignacio Sandoval, etc, Damage in hot rolling work rolls[J], Wear 230, 1999: 56—60.
    [103] 颜景星,立轧薄板坯允许轧制压力的研究与应用[J],钢铁研究学报,13(2),2001:73—76.
    [104] 刘军营,李素玲,朱向荣.基于并行设计的需求设计分析[J].组合机床与自动化加工技术,(2),2003,12—13.
    [105] 刘军营,徐宁,基于应力同线的刚度设计[J],机械设计与制造工程,(4),2002,19—20.
    [106] 刘慧,齐志新等,不同形状立辊轧边的有限元分析[J],冶金设备,(4),2004.
    [107] Liu Junying, Li Suling, Yang Zidong, Forming technology of variable data rolling and application in manufacturing of farming taper leaf spring[J], Transaction of the CASE, 15(5), 2003 17—21.
    [108] Liu Junying, Liu Hongzhao, Lu Chuanyi, Research on forming principle and technology application of variable data rolling[J], Proceedings of the world engineers convention 2004, Vol G, Shanghai, China. 2004, 207-211.
    [109] 肖凯鸣,谢士强,白志大,轧机液压压下系统动态性能分析和研究[J],液压气动与密封,(5),2000:17—20.
    [110] 钟廷珍,短应力线轧机的理论与实践[M],冶金工业出版社(第二版),1998.
    [111] 李连升,刘绍球,液压伺服理论与实践[M],国防工业出版社,1990.
    [112] 黄庆学,梁爱生,高精度轧制技术[M],冶金工业出版社,2002.
    [113] 刘国燕,中厚钢板热轧制变形和微观组织演变过程[D],燕山大学学位论文,2001.
    [114] 龚曙光,ANSYS基础应用及范例解析[M],机械工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700