用户名: 密码: 验证码:
基坑抽水地面沉降理论与工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由基坑抽水引起的建筑物周围地面沉降和地基沉降问题,已成为城市建设中的重大环境灾害问题之一。
     抽水对含水层的影响不仅仅是引起含水层的压缩,而且有表征体元的垂向位移和水平位移;当考虑变形对渗流场的影响时,应考虑表征体元的位移对渗流方程的影响和变形对渗透系数的影响;通过理论分析推导出了考虑表征体元位移的渗流方程;通过算例,对考虑单元体位移和不考虑单元体位移对渗流的影响进行了分析。当考虑变形对渗流场的影响时,特别是当弹性释水系数较小时,单元体的位移对渗流场有较大影响。
     对于承压含水层单井抽水引起的颗粒运动问题,以土体渗流场与应力场相互影响、相互作用的耦合机理为基础,建立了含水层中颗粒运动的数学模型及其解析解,提出了颗粒运动函数的概念,通过颗粒位移量函数绘制出了单井抽水引起含水层颗粒运动变化曲线。从曲线可看出,当抽水井井壁无颗粒逸出时,颗粒位移量的最大值并不在井壁处,而且随着抽水的延续,其最大值点也逐渐增大并向远离井周的方向推移。应用该理论对一些用现有固结
The confined aquifer system responds to fluid withdrawal as adynamic unit whose elemental volumes not only compress due to decrease inporosity but move horzoontally and vertically in order for the system to remain contiguous. When that consideration transform to influence seepage field, should consider the unit to move to influence seepage field and transform to influence hydraulic conductivity, This paper passes the theories analysis to deduce out to the seepage equation for the unit moving, and through a example study the influence to seepage field with consideration unit move and taking no account of unit move.This paper subsides for Skeletal Movement problem due to groundwater withdrawal, it is foundation to the mutual influence of seepage with stress and the couple mechanism of interaction, make a new mathematical model of skeletal movement in confined aquifer. Inspect fitness for purpose and the validity of this mathematics model with example.Based on the mechanism analysis of land subsidence from groundwater pumping in foundation pit, a formula for account of land subsidence was presented. Through case study and analysis of alternative plans, a variety of
    preventing measures were proposed due to groundwater withdrawal and applicability to preventing measures of land subsidence were analyzed.
引文
[1] Meinzer OE (1923) Outline of ground-water hydrology with definitions. U. S. Geol. Survey, Water-Supply Paper 494, 71p
    [2] Terzaghi K (1925) Principles of soil mechanics: IV; settlement and consolidation of clay. Erdbaummechanic 95(3): 874-878
    [3] Terzaghi K (1943) Theoretical soil mechanics. New York, Wiley, 510 p
    [4] Abidin HZ, Djaja R, Darmawan D, Hadi S, Akbar A, Rajiyowiryono H, Sudibyo Y, Meilano I, Kasuma MA, Kahar J, Subarya C (2001) Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Nat Hazards 23(2-3): 365-387
    [5] Poland JF (1960) Land subsidence in the San Joaquin Valley and its effect on estimates of ground-water resources, International Association of Scientific Hydrology Commission of Subterranean Waters. IASH Publication 52:324-335
    [6] Poland JF and Green JH (1962) Subsidence in the Santa Clara Valley, California—a progress report. U. S. Geological Survey Water-Supply Paper 1619-C, 16 p
    [7] Poland JF, Davis G H (1969) Land subsidence due to withdrawal of fluids. In: Varnes D J, Kiersch G (eds) Reviews in Engineering Geology, Geol Soc Am, Boulder 2:187-269
    [8] Poland JF, Lofgren BE, Ireland RL and Pugh RG (1975) Land Subsidence in the San Joaquin Valley, California, as of 1972. U. S. Geological Survey Professional Paper 437-H, 78 p
    [9] Poland JF and Ireland RL (1988) Land subsidence in the Santa Clara Valley, California, as of 1982. U. S. Geological Survey Professional Paper 497-F, 61 p
    [10] Poland JF(1984). Mechanics of land subsidence due to fluid ithdrawal[M]. Guide book to Studies of Land Subsidence Due to Ground-water ithdrawal, Ed. By J. F. Poland, Book Crafters Press, :37-54.
    [11] Helm DC (1975) One-dimensional simulation of aquifer system ompaction near Pixel, California—1. Constant parameters. Water Resources Research 11(3): 465-478
    [12] Helm DC (1978) Field verification era one-dimensional mathematical odel for transient compaction and expansion of a confined aquifer system, erification of Mathematical and Physical Models in Hydraulic Engineering. In Proceedings 26th Hydraulic Division Specialty Conference, American Society of Civil Engineers, 189-196
    [13] Helm DC (1994) Horizontal aquifer movement in a Theis-Theim confined system. Water Resources Research 30:953-964
    [14] Pratt WE, Johnson DW (1926) Local subsidence of the Goose Creek oil field. J Geol 34:577-590
    [15] Riley FS(1969) Analysis of borehole extensometer data from central California, in Tison LJ, ed., Land subsidence, vol. 2, International ssociation of Scientific Hydrology Pub. 89:423-431
    [16] Riley FS (1998) Mechanics of aquifer systems—The scientific legacy of Joseph F. Poland, in Borchers, J., ed., Land Subsidence—Case Studies and Current Research: Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, Association of Engineering Geologists Special Publication 8: 13-27
    [17] Bear J (1972) Dynamics of Fluids in Porous Media. New York, American Elsevier
    [18] Bear J and Corapcioglu Y (1981) Mathematical model for regional land subsidence due to pumping the Integrated aquifer subsidence equation for vertical and horizontal displacements. Water Resources Research 17: 947-958
    [19] Biot MA (1941a) General theory of three-dimensional consolidation. ournal of Applied Physics 12: 155-165
    [20] Biot MA (1941b) Consolidation settlement under a rectangular load. ournal of Applied Physics 12: 426-430
    [21] Biot MA (1955) Theory of elasticity and consolidation for a porous nisotropic solid. Journal of Applied Physics 26: 182-185
    [22] Biot MA (1956a) General solution of the equation of elasticity and consolidation for a porous material. Journal of Applied Mechanics 23:91-96
    [23] Biot MA (1956b) Theory of deformation of a porous viscoelastic anisotropic soil. Journal of Applied Physics 27:459-467
    [24] Biot MA (1963) Theory of stability and consolidation of a porous medium under initial stress. J. Math. Mech. 12:521-541
    [25] Chen C, Pei S, Jiao J (2003) Land subsidence caused by groundwater exploitation in
     Suzhou City, China. Hydrogeology Journal 11:275-287
    [26] Galloway DC, Jones DR and Ingebritsen SE (1999) Land subsidence in the United States. U.S. Geological Survey Circular 1182,177 p
    [27] Lewis RW, Schrefler B (1978) Fully coupled consolidation model of subsidence of Venice. Water Resources Research 14(2):223-230
    [28] Lofgren BE (1968) Analysis of stresses causing land subsidence. US Geol Surv Prof Pap 600-B:B219-B225
    [29] Lohman SW and others (1972) Definitions of selected ground-water terms-Revisions and conceptual refinements. U.S. Geol. Survey Water-supply Paper 1978,21p
    [30] Elsworch D, Xing J.( 1989) A reduced degree of freedom model for thermal permeability enhancement in blocky rock [J[.geothermics. 18:691 —709
    [31] Oda M( 1985) A permeability tensor for discontinuous rock masses. Geotechnique 35:483-495
    [32] Oda M (1986) An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses. Water Resour Res 22:1845-1856
    [33] Louis C (1972) Rock Hydraulics, in Rock Mechanics, ed. L. Muller, P. 300-387, Springer-Verlag, Wien-New York
    [34] Snow DT (1968) Fracture Deformation and Changes of Permeability and Storage Upon Changes of Fluid Pressure: Quart., Colorado School of Mines 63 (1): 201-244
    [35] Noorishad J (1982) A finite element method for coupled stress and flow analysis in fractured rock mass. Int J Rock Mech Min Sci Geomech 19:185-193
    [36] Noorishad J (1989) Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach. J Geophys Res B12:10365-10373
    [37] Thu T M, Fredlund D G(2000). Model ling subsidence in the Hanoi City area. Vietnam[J].Canadian Geothchnical Journal,37(3):621-637.
    [38] Michelle Sneed and Galloway DL(2000) Aquifer - System Compaction and Land Subsidence: Measurements, Analyses, and Simulations - the Holly Site, Edwards Air Force Base, Antelope Valley, California. U.S. Geological Survey, Water Resources Investigations report 00-4015
    [39] Craig RF (1995) Soil mechanics. 5th edn: Chapman & Hall, London
    [40] Fetter CW (2001) Applied hydrogeology. 4th edn: Prentice Hall, London
    [41] 张有天等(1991)裂隙岩体渗流的理论和实践,水利水电科学研究院
    [42] 仵彦卿(1997)岩体水力学基础(三),岩体渗流场与应力场耦合的集中参数模型和连续介质模型,水文地质工程地质,2:54-57
    [43] 仵彦卿(1997)岩体水力学基础(四),岩体渗流场与应力场耦合的等效连续介质模型,水文地质工程地质,3:10-14
    [44] 仵彦卿(1997)岩体水力学基础(五),岩体渗流场与应力场耦合的裂隙网络模型,水文地质工程地质,5:41-45
    [45] 仵彦卿(1998)岩体水力学基础(六),岩体渗流场与应力场耦合的双重介质模型,水文地质工程地质,1:43-46。
    [46] 仵彦卿,张倬元(1995)岩体水力学导论.成都:西南交通大学出版社
    [47] 仵彦卿,高荣芳(1997)影响油气运移的应力场温度场渗流场耦合的连续介质模型,西安理工大学学报,13(3):204-209
    [48] Wu Yan-Qing (1997) A generalized double porosity media model for coupled stress and seepage fields in fractured rock mass, Proceedings of the IAEG International Symposium on Engineering Geology and the Environment, A. A. BALKEMA, 2913-2918
    [49] 仵彦卿,高荣芳(1998)影响油气运移的应力场地温场渗流场耦合的双重介质模型,西安理工大学学报,14(2):113-143
    [50] 仵彦卿(1996)岩土体系渗流场与应力场耦合的连续介质模型.西安公路交通大学学报,16(增刊):123-125
    [51] 苑连菊等(2001)工程渗流力学及应用.北京:中国建材工业出版社
    [52] 薛禹群(2003)我国地面沉降模拟现状及需要解决的问题,水文地质工程地质,30(5):1-5
    [53] 薛禹群,张云,叶淑君,李勤奋(2003)中国地面沉降及其需要解决的几个问题,第四纪研究,23(6):587-593
    [54] 薛禹群,等.地下水动力学[M].北京:地质出版社,1986.
    [55] 薛禹群,吴吉春.数值模拟是反映客观规律和定量评价的重要手段[J].水文地质工程地质.1992,19(2):2-4.
    [56] 陈崇希(2000)关于地下水开采引发地面沉降灾害的思考.水文地质工程地质,27(1):45~48
    [57] 陈崇希,裴顺平(2001)地下水开采-地面沉降数值模拟及防治对策研究以江苏省苏州市为例[M],武汉:中国地质大学出版社
    [58] 陈崇希(2001)地下水开采-地面沉降模型研究[J],水文地质工程地质,28(2):5~8
    [59] 段永侯(1998)我国地面沉降研究现状与21世纪可持续发展.中国地质灾害与防治学报,9(2):1~5
    [60] 刘毅(2001)地面沉降研究的新进展与面临的新问题,地学前缘,8(2):273-277
    [61] 刘金砺主编(1998),高层建筑桩基工程技术,中国建筑出版社.
    [62] 刘金韬,武强,钱增江,董东林(2001).地面沉降计算中“长期释水系数”的概念及计算方法研究[J].中国矿业大学学报,30(1):103-106.
    [63] 朱锡冰,佴磊,奚建国等(1995)上海浦东新区“地下水水量-水位-沉降联合数学模型”应用[R],中国地质科学院水文地质工程地质研究所
    [64] 朱珍德(1999).裂隙岩体损伤流变模型研究及其应用[博士后D].成都:四川大学.5~26
    [65] 李勤奋,方正,王寒梅(2000),上海市地下水可开采量模型计算及预测,上海地质,2:36-43
    [66] 李世平,李玉寿,吴振业(1995).岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,17(2):13—19
    [67] 李永善编.1992.西安地裂及渭河盆地活断层研究.北京:地震出版社.
    [68] 张倬元,等(1994).工程地质分析原理[M].北京:地质出版社.
    [69] 张金才,张玉卓,刘天泉(1997).岩体渗流与底板突水[M].北京:地质出版社.37—89
    [70] 张克绪等(1996)开采地下水引起地面变形的分析[J]自然灾害学报,5(4):50-59
    [71] 武胜忠,方鹏飞.地面沉降的计算理论和方法[J].太原理工大学学报,2000,31(2):162-165.
    [72] 魏子新.上海市第四承压含水层应力-应变分析[J].水文地质工程地 质,2002,29(1):1-4.
    [73] 钱家欢,殷宗泽(1994).土工原理与计算(第二版)[M].北京:水利电力出版社.
    [74] 王兰生等(1997).城市发展中的地质环境演化与控制.地质灾害与环境保护,8(1):90~108
    [75] 苏河源(1984).第三届地面沉降国际讨论会概况.水文地质工程地质,(3):3~7
    [76] 熊光楞(1996).连续系统仿真与离散事件系统仿真.北京:清华大学出版社
    [77] 王其藩.系统动力学.北京:清华大学出版社,1996
    [78] 邹志红.冯允成.离散事件系统仿真输出数据的统计分析.北京航空航天大学学报,1995.21(2):72~7815
    [79] 周国云等.中国城市地面沉陷研究的有关问题.水文地质与工程地质,1993(3)期2
    [80] 刘宝琛等.开挖引起的岩体移动.矿冶工程,1981(1)3
    [81] 桂和荣等.地面沉降预测的SA模型.94中国科技论文精选.北京:中国科学技术出版社,1994
    [82] 侯艳声,郑铣鑫,应玉飞.中国沿海地区可持续发展战略与地面沉降系统防治[J].中国地质灾害与防治学报,2000,11(2):30-33.[3]
    [83] 牛修俊.天津市治理地面沉降主要措施分析[M].环境地质研究[M].地震出版社,1993:105-110.
    [84] 吕海臣.长春市地下水开发环境问题研究[J].地质灾害与环境保护,2000,11(3):268-270.
    [85] 许延春,耿德庸,申宝宏.淮北临涣矿区地层非采动沉降分析[J].岩土工程学报,1994,16(6):140-146.
    [86] 缪俊发,吴林高,王璋群.大型深井点降水引起地面沉降的研究[J].岩土工程学报,1991:60-64.
    [87] 哈承佑,赵继长,贾家鳞,等.南通市主要环境地质问题[M].环境地质研究,地震出版社,1993:127-134.
    [88] 梁金国,碎石桩加强夯综合处理软土地基的研究与实践,岩土工程师,1993(4).
    [89] 建筑桩基技术规范[JGJ94—94),中国建筑科学研究院主编,中国建筑工业出版社,1995
    [90] 宋广信,建筑渣土夯扩桩复合地基技术(一种新的地基处理方法),地基处理,1999年(3). 理,1999年(3).
    [91] 董东林.山西临汾地裂缝灾害敏感性评价与发展趋势预测[硕士学位论文][D].北京:中国矿业大学北京研究生部,1997.
    [92] 胡惠民,沈永坚.华北地区及其主要城市地面沉降的演变和发展[J].中国地质灾害与防治学报,1991,2(4).
    [93] 张阿根,刘毅,魏子新等译.地面沉降—第六届地面沉降国际讨论会论文选[C]..北京:地质出版社,2000.
    [94] 严礼川.我国城市地面沉降概况[J].上海地质,1992,(1):40-48.
    [95] 沈国新.上海市浦东开发区地质条件评述[J].上海地质,1993,(1):1-13.
    [96] 吴南群.上海近期地面沉降统计特征[J].上海地质,1992,(1):27-37.
    [97] 龚士良.上海市浦东新区地面沉降分析[J].上海地质,1995,(1):40-48.
    [98] 陈卫中,朱维申,罗超文.万家寨引黄过程总干一、二级泵站水力劈裂试验研究[J].岩土力学,2001,22(1):26—28
    [99] 苏景中,范士凯.武汉地区地下水与深基坑工程.武汉地区深基坑工程理论与实践.武汉:武汉工业大学出版社,1999.
    [100] 胡春林,杨会军.深基坑工程深井降水技术探讨.武汉工业大学学报,2000(增):70~73.
    [101] 中华人民共和国行业标准.建筑基坑支护技术规程(JGJ120-99).北京:中国建筑工业出版社,1999.
    [102] 王银梅 太原市地面沉降初探[J]中国地质灾害与防治学报,1997,8(1):35-38
    [103] 方鹏飞 太原市地面沉降的数值分析[D]太原理工大学学位论文,2000
    [104] 朱百里,沈珠江 计算土力学[M]上海:上海科学技术出版社,1990
    [105] 凌荣华等 地面沉降模拟分析中几个基本问题的讨论[J] 中国地质灾害与防治学报,1995,6(4):53-561
    [106] 吴铁钧,金东锡.天津地面沉降防治措施及效果[J].中国地质灾害与防治学报,1998,5(2):6-12.
    [107] 陕西省第一水文地质工程地质大队.1990.西安地裂缝研究.西安:西北大学出版社.
    [108] 西安市地震局地裂缝研究组.1986.西安地裂缝形变监测与研究.西安:陕西师 范大学出版社.
    [109] 杨国强.1989.西安市地面沉降探讨.西安地质学院学报,11(3):49~55.
    [110] 易学发.1981.西安铁炉庙地裂缝与地下水的动态变化.西北地震学报,3(4):83~85.
    [111] 易学发.1984.西安市地面不均匀沉降及地裂缝成因的讨论.地震(6):50~54.
    [112] 易学发,许国昌.1987.西安地区活动断裂带及地震危险性探讨.华北地震科学,5(4):85~92.
    [113] 张云.苏南地区地面沉降概述.地质灾害与环境保护[J],1999,10(3):66~71.
    [114] 地质矿产部地质环境管理司组织翻译地面沉降[A].第四届地面沉降国际讨论会译文选集[C].北京:地震出版社,1994:11~21.
    [115] 上海市地质处.国外地面沉降论文选译[M].北京:地质出版社,1978:83~102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700