用户名: 密码: 验证码:
含铝碳化硅纤维的连续化制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研制和开发耐1500℃或更高温度的连续SiC纤维,即耐超高温SiC纤维是先驱体转化法制备SiC纤维的主要发展方向。制备耐超高温SiC纤维理想的方法是在SiC纤维的先驱体中引入少量铝元素,其起到烧结助剂和抑晶的作用,从而在高温烧结下脱去氧和富余碳,可以生成含少量铝的近化学计量比的SiC纤维。
     本研究首次在国内突破了先驱体法制备耐超高温SiC纤维的连续化工艺。制备含铝碳化硅纤维的连续化工艺包括先驱体聚铝碳硅烷(PACS)的放大合成、连续熔融纺丝、原纤维的不熔化处理和不熔化纤维的连续烧成和烧结。1350℃烧成制得连续含有少量铝和较多氧的Si-Al-C-O纤维,即KD-A纤维。KD-A纤维再经1800℃烧结转化为含少量铝和少量氧的Si-Al-C纤维,即KD-SA纤维。本论文对上述工艺进行了详细地研究,对过程中的中间产物和两种含铝碳化硅纤维的多级结构和多项性能进行了系统的分析和表征。
     聚硅碳硅烷(PSCS)和乙酰丙酮铝(Al(AcAc)_3)是合成先驱体PACS的理想反应物。具有良好可纺性且可生成高质量的含铝碳化硅纤维的先驱体PACS的熔点为185~200℃,相应合成条件为:Al(AcAc)_3含量3~5wt%,反应温度360~420℃,裂解温度450~500℃,保温时间7~10h。利用此工艺成功地实现了先驱体PACS的规模化合成。PACS中含有0.9~2wt%的铝和2~4wt%的氧,C/Si原子比约为2。PACS以Si—C键为主链,侧基为CH_3和H,分子支化较多。铝在PACS中主要以Si—O—Al键形式存在,形成4、5、6三种配位结构,铝在其中起到了交联点的作用,使小部分分子链形成高度交联。
     通过以上对PACS的结构控制,实现了PACS的多孔熔融纺丝。连续PACS原纤维采用热空气流方法进行不熔化处理。PACS的不熔化处理机理与PCS类似,都是Si—H键氧化,氧增重的过程。PACS由于铝的作用,只需8~9%的增重率,引入较少的氧即可达到不熔化的效果。采用一步连续烧成工艺制备了连续KD-A纤维,KD-A纤维再经1800℃烧结制备了KD-SA纤维。
To develop continuous SiC fibers with high temperature resistance above 1500℃ is the main goal for preparing polymer-derived ceramic fibers. Up to date, the most successful strategy to establish super-high-temperature resistant SiC fibers is manufacturing near-stoichiometric SiC fibers through introducing small amount of heteroelement, such as aluminum into the precursor polymer. The Al atoms in the SiC fibers play important roles as both sintering aids and grain growth inhibitor, so that the extra oxygen and free carbon can be eliminated in sintering at high temperature.In this work, a break through was made in the continuous procedure of preparing super-high-temperature resistant SiC fibers by polymer precursor route, which includes the synsthesis of precursor polyaluminocarbosilane (PACS) on larger scale, continuous melten-spinning, curing of the green fibers in air, continuous pyrolysis of the cured fibers and sintering to obtain Al-containing SiC fibers. When the pyrolysis is at 1350℃, Si-Al-C-0 fiber, named KD-A fiber, is resulted, which contains small amount of aluminum and some oxygen. The KD-A fiber can be converted, by an extra sintering at 1800℃, into Si-Al-C fiber, or KD-SA fiber, which contains aluminum and much lower amount of oxygen. In this paper, the above manufactural processes were studied in details and the structures and properties of all products and the two kinds of Al-containing SiC fibers were analysed and characterized systematically.The precursor PACS was synthesized by the reaction of aluminum acetylacetonate (Al(AcAc)3) with polysilacarbosilane (PSCS). The properties of PACS suitatable for preparing Al-containing SiC fibers with high quality include: the contents of 0.9 ~ 2 wt% of Al and 2 ~ 4 wt % of O, the atomic ratio C/Si of 2 or above, moderate molecular weight and soften point around 185 ~ 200 ℃ and a good spinnability. The corresponding PACS was synthesized by the reaction of PSCS with 3 ~ 5% of Al(AcAc)_3
    at reaction temperature 360 ~ 420°C and pyrolysis temperature 450 ~ 500°C for 7 ~ lOhrs. The PACS thus synthesed is made of Si—C main chain with methyl and H as side groups. The Al in PACS exists in the manner of Si—O—Al bonds with coordination numbers of 4, 5 and 6, so that the Al atoms act as crosslinking point in some of the chains.The PACS resulted by the above procedure was shaped into green fibers by multi-orifice melten-spinning. In the curing of the PACS green fibers in air, a different mechanism was found that for the suitable infusiblity, a smaller amount of oxidation extend than that of PCS is necessary. The processes of continuous pyrolysis of the cured fibers in inert gas up to 1350°C to obtain KD-A fibers and sintering of KD-A fibers to convert into KD-SA fibers at 1800°C were also investigated.The formula of KD-A fiber is SiC1.31O025Alo.oi8 with C and O rich on the surface. The fiber is made up of some P-SiC cystalline and Si-C-O amorphous continuous phase with Al embedded uniformly. The average tensile strength, Young's modulus and diameter of the KD-A fiber are 2.3 ~ 2.6GPa, 190 ~ 230GPa and 12 ~ 14pm, respectively.For KD-SA fiber, nearly stoichiometric composition was confirmed as chemical composition of SiC1.03Oo.013Alo.024- The fiber is composed of large number of P-SiC grains, small amount of a-SiC crystalline and SiC amorphous phase. The Al in KD-SA fibers is mainly arranged on the surface of P-SiC grains and exists in two manners: Al — C bonds connected with the surfaces of the grains and Al —O bonds, or AI2O3, to the amorphous phase. The average tensile strength, Young's modulus and diameter of the KD-SA fiber are 2.0 ~ 2.2GPa, 370 ~ 410GPa and 10 ~ 12um, respectively.The KD-A fiber shows better oxidation resistance than Nicalon fibers because of smaller amount of oxygen involved. After oxidation tests at 1300°C for 30 hrs, KD-A fibers remained 40% of the initial strength, while the strength of Nicalon fiber lost completely. At super-high-temperature in Ar, KD-A fiber lost its strength gradually, but slower than Nicalon fiber, until 1500°C, but the strength increased rapidly above. The special "saddle" shape is similar with that of Tyranno-AM fiber.In the case of the KD-SA fiber, excellent oxidation resistance was exhibited. After
    oxidation tests at 1300 °C for 100 hrs, KD-SA fiber maintained 55% of the initial strength, while that of Hi-Nicalon fiber was 23%. When KD-SA fiber was exposed in Ar, the tensile strength did not decrease even at 1800°C. KD-SA fiber showed the best creep resistance among all kinds of SiC fibers. At 1800°C, for example, the creep parameter m retained to 0.33, compared with Tyranno SA fiber, in which m decreased to 0. The high-temperature resistance of KD-SA fiber is based on two factors: the near stoichiometry provides chemical stability of the fiber at high temperature and the inhibility of Al around p-SiC grains prevents the growth of grain at super-high temperature.
引文
[1] Johnson D W., Evans A G., Goettler R W. Ceramic Fibers and Coatings: Advanced Materials for the Twenty-first Century. Publication NMAB-494, Washington D. C.: National Academy Press, 1998: 1-49.
    [2] Russell J D. High-Performance Synthesis Fibers for Composites. Publication NMAB-458, Washington D. C.: National Academy Press, 1992: 1-129.
    [3] 彭志坚,司文捷,林仕伟,苗赫濯.用有机硅聚合物制备高温结构陶瓷材料研究进展.无机材料学报,2001,16(5):779-790.
    [4] 周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社,1995.
    [5] 王零森.特种陶瓷.长沙:中南工业大学出版社,1994.
    [6] 吴人洁.复合材料.天津:天津大学出版社,2002.
    [7] Cooke T F. Inorganic Fibersoa Literature Review. J. Am. Ceram. Soc., 1991, 74(12): 2959-78.
    [8] Karnitz M A., Craig D F., Richlen S L. Continuous Fiber Ceramic Composite Program. Am. Ceram. Soc. Bull., 1991, 70(3): 430-435.
    [9] Frank K. Preform Fiber Architeture for Ceramic-Matrix Composites. Ceramic Bulletin, 1989, 68(2): 401-414.
    [10] Kaya H. The Application of Ceramic-Matrix Composites to the Automotive Ceramic Gas Turbine. Comp. Sci. Technol., 1999, 59: 861-872.
    [11] Kroke E., Li Y L., Konetschny C., Lecomte E. Silazane Derived Ceramic and Related Materials. Mater. Sci. Eng., 2000, R26: 97-199.
    [12] Baldus P., Jansen M., Sporn D. Ceramics Fibers for Martix Composites in High-Temperature Engine Applications. Science, 1999, 285(30): 699-703.
    [13] Rice R W. Ceramics from Polymer Pyrolysis, Opportunities and Needs-a Materials Perspective. Am. Ceram. Soc. Bull., 1983, 62(8): 889-892.
    [14] Laine R M., Babonneau F. Preceramic Polymer Routes to Silicon Carbide. Chem. Mater., 1993, 5: 260-279.
    [15] Birot M., Pillot J P., Dunogues J. Comprehensive Chemistry of Polycarbosilane, Polysilazane, and Polycarbosilazane as Precursors of Ceramic. Chem. Rev., 1995, 95(5): 1443-1477.
    [16] Walker B E., Roy J R., Rice W., Becher P F., Bender B A., Coblenz W S. Preparation and Properties of Monolithic and Composite Ceramics Produced by Polymer Pyrolysis. Am. Ceram. Soc Bull., 1983, 62(8): 916-923.
    [17] Lipowitz J. Polymer-Derived Ceramic Fibers. Am. Ceram. Soc. Bull., 1991, 70 (12): 1888-1894.
    [18] Yajima S. Special Heat-Resisting Materials from Organometallic Polymers. Am. Ceram. Soc. Bull., 1983, 62(8): 893-898.
    [19] Okamura K. Ceramic Fibers from Polymer Precursors. Composites, 1987,18(2): 107-120.
    [20] Lipowitz J., Freeman H A., Chen R T., Prack E R. Composition and Structure of Ceramic Fibers Prepared from Polymer Precursors. Advanced Ceramic Materials, 1987, 2(2): 121-128.
    [21] Bunsell A R., Berger M H. Fine Diameter Ceramic Fibers. J. Europ. Ceram. Soc, 2000, 20: 2249-2260.
    [22] Bunsell A R., Berger M H. Inorganic Fibers for Composite Materials. Comp. Sci. Technol., 1994, 51: 127-133.
    [23] Richer R., Roewer G, Bohme U., Busch K., Babonneau F., Martin H., Mullert E. Organosilicon Polymers-Synthesis, Architecture, Reactivity and Applications. Applied Organometallic Chemistry, 1997, 2: 71-106.
    [24] West R., David L D., Djurovich P I., YU H., Sinclair R. Polysilastyrene: Phenylmethylsilane Dimethylsilane Copolymers as Precursors to Silicon Carbide. Am. Ceram. Soc. Bull, 1983, 62(8): 899-902.
    [25] Wills R R., Markle R A., Mukherjee S P. Siloxanes, Silanes, and Silazanes in the Preparation of Ceramics and Glasses. Am. Ceram. Soc. Bull., 1983, 62(8): 904-915.
    [26] Galasso F., Basche M., Kuehe K. Preparation, Structure and Properties of Continuous Silicon Carbide Filaments. J. Appl. Phys. Lett., 1966, 9(1):37-39.
    [27] Yajima S., Okamura K., Hayashi J., Omori M. Synthesis of Continuous SiC Fibers with High Tensile Strength, J. A. Ceram. Soc, 1976, 59(7-8): 324-327.
    [28] Yajima S., hayashi J., Okamura K. Pyrolysis of a Polyborodiphenylsiloxane, Nature, 1977, 266: 521-522.
    [29] Yajima S., Okamura K., Matsuzawa T., Hasegawa Y., Shishido T. Anomalous Characteristics of the Microcrystalline State of SiC Fibers, Nature, 1979, 279: 706-707.
    [30]. Schilling C L, John J R., Wesson P., Williams T C. Polycarbosilane Precursors for Silion Carbide. Am. Ceram. Soc. Bull., 1983, 62(8): 912-915.
    [31] Seyferth D., Wisemann H., Schwark J M. Organosilicon Polymers as Precursors for Silicon-containing Ceramic. (in Inorganic and Organomatllic Polymer). ACS. Symp. Ser, 1987, 360: 143.
    [32] Laine R M., Babonneau F., Y. Blohowiak K., Kennish R A., Rahn J A., Exharos G J. The Evolutionary Process during Pyrolytic Transformation of Poly(n-methylsilazane) from a Preceramic Polymer into an Amorphous Silicon Nitride/Carbon Composite. J. Am. Ceram. Soc., 1995, 78: 137-145.
    [33] Zhang C., Babonneau E, Bonhomme C., Laine R M., Soles C L., Hristov H A., Yee A F. Highly Porous Polyhedral Silsesquioxane Polymers: Synthesis and Characterization. J. Am. Chem. Soc., 1998, 120: 8380-8391.
    [34] Interrante L V., Shen Q. "Polycarbosilanes," in Silicon-Containing Polymers. Kluwer Academic Pubs., 2000, 244-321.
    [35] Liu Q., Shi W., Babonneau F., Interrante L V. Synthesis of Polycarbosilane/Siloxane Hybrid Polymers and their Pyrolytic Conversion to Silicon Oxycarbid Ceramics. Chem. Mater., 1997, 9: 2434-2441.
    [36] 王浩,李效东,冯春祥.SiC陶瓷纤维先驱体的研究动态.宇航材料工艺,2000,30(2):11-16.
    [37] 余煜玺,李效东,曹峰.化学计量比SiC陶瓷纤维先驱体制备方法.高科技纤维与应用,2003,28(2):21-25.
    [38] 于应德,冯春祥,宋永才,邹治春.碳化硅纤维连续化工艺研究.宇航材料工艺,1997,27(2):21-25.
    [39] 余煜玺,李效东,曹峰.先驱体法制备SiC陶瓷纤维过程中聚碳硅烷纤维的交联方式.宇航材料工艺,2002,32(6):10-13.
    [40] Jansen M. Highly Stable Ceramics through Single Source Precursors. Solid State Ionics, 1997, 101-103: 1-7.
    [41] Suwardie H., Kalyon D M., Kovenklioglu S. Thermal Behavior and Curing Kinetics of Poly(carbosilane). J. Appl. Polym. Sci., 1991, 42: 1087-1095.
    [42] Chen L., Goto T, Hirai T. Preparation and Pressureless Sintering of Chemical Vapour Deposited SiC Composite Powder. J. Mater. Sci., 1996, 31: 679-683.
    [43] Martin H P., Muller E., Richter R., Roewer G., Berndler E. Conversion Process of Chlorine Containing Polysilanes into Silicon Carbide. J. Meter. Sci., 1997, 32: 1381-1387.
    [44] Ly H Q., Taylor R., Day R J., Heatley F. Conversion of Polycarbosilane (PCS) to SiC-based Ceramic. Part I Characterisation of PCS and Curing Products. J. Meter. Sci., 2001, 36: 4037-4043.
    [45] LY H Q., Taylor R., Day R J., Heatley F. Conversion of Polycarbosilane (PCS) to SiC-based Ceramic. Part II. Pyrolysis and Characterization. J. Meter. Sci., 2001, 6: 4045-4057.
    [46] Yajima S., Hasegama Y, Hayashi J., Iimura M. Synthesis of Continuous Silicon Carbide Fiber with high Tensile Strength and high Young's Modulus, Part 1 Synthesis of Polycarbosilane as Precursor. J. Mater. Sci., 1978,13: 2569-2576.
    [47] Hasegawa Y, Iimura M., Yajima S. Synthesis of Continuous Silicon Carbide Fiber, Part 2 Conversion of Polycarbosilane Fiber into Silicon Carbide Fibers. J. Mater. Sci., 1980, 15: 720-728.
    [48] Hasegawa Y. Synthesis of Continuous Silicon Carbide Fiber, Part 3 Pyrolysis Process of Polycarbosilane and Structure of the Products. J. Mater. Sci., 1983,18: 3633-3648.
    [49] Hasegawa Y. Synthesis of Continuous Silicon Carbide fiber, Part 4 The Structure of Polycarbosilane as the Precursor. J. Mater. Sci., 1986, 21: 321-328.
    [50] Ichikawa H., Machibo F., Mitsuno S., Ishikawa T. Synthesis of Continuous Silicon Carbide Fiber, Part 5 Factors Affecting Stability of Polycarbosilane to Oxidation. J. Mater. Sci., 1986, 21: 4352-4358
    [51] Hasegawa Y. Synthesis of Continuous Silicon Carbide Fiber, Part 6 Pyrolysis Process of Cured Polycarbosilane Fiber and Structure of SiC Fiber. J. Mater. Sci., 1989,24: 1177-1190.
    [52] Demir A. Improvements in Refractoriness and Properties of Nicalon Fibers by High-Temperature Heat-Treatment. J. Mater. Sci., 2001, 36: 2931-2935.
    [53] Hemida A T., Pailler R., Naslain R. Continuous SiC-based Model Monofilaments with a low free
     Carbon Content Part 1: from the Pyrolysis of a Polycarbosilane Precursor under an Atmosphere of Hydrogen. J. Mater Sci., 1997, 32: 2359-2366.
    [54] Shimoo T., Toyoda F., Okamura K. Thermal Stability of Low-Oxygen Silicon Carbide Fiber (Hi-Nicalon) Subjected to Selected Oxidation Treatment. J. Am. Ceram. Soc., 2000, 83(6): 1450-1456.
    [55] Shimoo T., Okamura K. Thermal Stability of Low-Oxygen SiC Fibers Fired under Different Conditions. J. Mater Sci., 1999, 34: 5623-5631.
    [56] Takeda M., Imai Y., Ichikawa H., Kasai N., Seguchi T., Okamura K. Thermal Stability of SiC Fiber Prepared by an Irradiation-Curing Process. Comp. Sci. Technol., 1999, 59: 793-799.
    [57] Takeda M., Sakamoto J I., Imai Y., Ichikawa H. Thermal Stability of the Low-Oxygen-Content Silicon Carbide fiber Hi-Nicalon. Comp. Sci. Technol., 1999, 59: 813-819.
    [58] Chollon G., Pailler R., Naslain R., Laanani F., Monthioux M., Olry P. Thermal Stability of a PCS-Derived SiC fiber with a low Oxygen Content (Hi-Nicalon). J. Meter. Sci., 1997, 32: 327-347.
    [59] Chillon G., Czerniak M., Pailler R., Bourrat X., Naslain R., Pillot J P., Cannet R. A Model SiC-based Fiber with a low Oxygen Content Prepared from a Polycarbosilane Precursor. J. Meter Sci., 1997, 32: 893-911.
    [60] Takeda M., Urano A., Sakamoto J I., Imai Y. Microstructure and Oxidative Degradation Behavior of Silicon Carbide Fiber Hi-Nicalon type S. J. Nuclear Mater., 1998, 258-263: 1594-1599
    [61] Takeda M., Saek A., Sakamoto J., Imai Y., Ichikawa H. Properties of Polycarbosilane-derived Silicon Carbide Fibers with Various C/Si Compositions. Comp. Sci. Technol., 1999, 59: 787-792.
    [62] Ishikawa T. Recent Developments of the SiC Fiber Nicalon and Its Composites Including Properties of the SiC Fiber Hi-Nicalon for Ultra-High Temperature. Comp. Sci. Technol., 1994, 51: 135-144.
    [63] Toreki W., Batich C D., Sacks M D., Saleem M., Choi G J., Morrone A A., Polymer-Derived Silicon Carbide Fibers with low Oxygen Content and Improved Thermomechanical Stability. Comp. Sci. Technol., 1994, 51: 145-159.
    [64] Hochet N., Berger M H., Bunsell A R. Microstructural Evolution of the latest Generation of Small-Diameter SiC-based Fibers Tested at High Temperatures. Journal of Microscopy, 1997, 185(2): 243-258.
    [65] Kakimoto K I., Shimoo T., Okamura K. Oxidation-Induced Microstructural Change of Si-Ti-C-O Fibers. J. Am. Ceram. Soc., 1998, 81(2): 409-412.
    [66] Song Y C., Feng C., Tan Z., Lu Y. Structure and Properties of Polytitanocarbosilane as the Precursor of SiC-TiC Fibre. J. Mater Sci. Lett., 1990, 9: 1310-1313.
    [67] Song Y C., Hasegawa Y., Yang S J., Sato M. Ceramic Fibres from Polymer Precursor Containing Si-O-Ti Bonds. J. Mater Sci., 1988, 23: 1911-1920.
    [68] Hasegawa Y., Feng C X., Song Y C., Tan Z L.. Ceramic Fibres from Polymer Precursor Containing Si-O-Ti Bonds. J. Mater Sci., 1991, 26: 3657-3664.
    [69] Vahalas C., Monthioux M. On the Thermal Degradation of Lox-M Tyranno Fibres. J. Europ. Ceram. Soc., 1995, 15: 445-453.
    [70] Chollon G., Aldacourrou B., Capes L., Pailler R., Naslain R. Thermal Behaviour of a Polytitanocarbosilane-Derived Fibre with a low Oxygen Content: the Tyranno Lox-E Fibre. J. Mater Sci., 1998, 33: 901-911
    [71] 王军.含过渡金属的碳化硅纤维的制备及其电磁性能.博士学位论文.长沙:国防科技大学,1997.
    [72] Ishikawa T., Kohtoku Y., Kumagaea K. Production Mechanism of Polyzirconocarbosilane using Zirconium (Ⅳ) Acetylacetonate and its Conversion of the Polymer into Inorganic Materials. J. Mater Sci., 1998, 33: 161-166.
    [73] Yamaoka H., Ishikawa T., Kumagawa K. Excellent Heat Resistance of Si-Zr-C-O Fibre. J. Mater. Sci., 1999, 34: 1333-1339.
    [74] Itatani K., Hattori K., Harima D., Aizawa M., Okada I., Davies I J., Suemasu H., Nozue A. Mechanical and Thermal Properties of Silicon-Carbide Composites Fabricated with Short Tyranno Si-Zr-C-O Fibre. J. Mater Sci., 2001, 36: 3679-3686.
    [75] Ishikawa T., Kohtoku Y., Kumagawa K., Yamamura T., Nagasawa T. High-Strength Alkali-Resistant Sintered SiC Fibre Stable to 2200℃. Nature, 1998, 391: 773-774.
    [76] Kajii M., Tanaka S., Suzuki Y., Sato M. A thermally Conductive SiC-Polycrystalline Fiber and its Fiber-bonded Ceramic. Ceramic Engineering and Science Proceedings, 2001, 22(3): 471-480.
    [77] Hinoki T., Snead L L., Lara-Curzio E., Park J., Kohyama A. Effect of Fiber Properties on Mechanical Properties of Crystalline Silicon Carbide Composites. Ceramic Engineering and Science Proceedings, 2002, 23(3): 511-518.
    [78] Kumagawa K., Yamaoka H., Shibuya M., Yamamura T. Development of Si-M-C-(O) Tyranno Fiber Containing a small amount of Sol-Gel-Derived Oxide. Ceramic Engineering and Science Proceedings, 2001, 22(3): 399-406.
    [79] Kumagawa K., Yamaoka H., Shibuya M., Yamamura T. Fabrication and Mechanical Properties of new Improved Si-M-C-(O) Tyranno Fiber, Ceramic Engineering and Science Proceedings, 1998, 19(3): 65-72.
    [80] Wen Y., Hiroshi A., Akira K., Quanli H., Hiroshi S., Tetsuji N. Growing SiC Nanowires on Tyranno-SA SiC Fibers. J. Am. Ceram. Soc., 2004, 87(4): 733-735.
    [81] Lipowitz J., Barnard T., Bujalski D., Rabe J., Zank G. Fine-Diameter Polycrystalline SiC Fibers. Comp. Sci. Technol., 1994, 51: 167-171.
    [82] Jones R E., Petrak D., Rabe J., Szweda A. Sylramic SiC Fibers for CMC Reinforcement. J. Nuclear Mater., 2000, 223: 556-559.
    [83] 连续碳化硅纤维研究课题组.连续碳化硅纤维研究—技术报告系列,2001.2.
    [84] 余煜玺,李效东,曹峰.先驱体法制备含异质元素SiC陶瓷纤维的现状与进展.硅酸盐学报,2003,31(4):371-375.
    [85] Cao F., Li X D., Peng P., Feng C X., Wang J. Structural Evolution and Associated Properties on Conversion from Si-C-O-Al Ceramic Fibers by Sintering. J. Mater. Chem., 2002, 12(3): 606-310.
    [86] Cao F., Li X D., Kim D P. Preparation of Hybrid Polymer as a near-Stoichiometric SiC Precursor by Blending of Plycarbosilane and Polymethylsilane. J. Mater. Chem., 2002, 12(4): 1213-1217.
    [87] 楚增勇,冯春祥,宋永才,李效东.先驱体法SiC纤维国内外研究与开发现状,无机材料学报,2002,17(2):193-201.
    [88] 余煜玺,李效东,曹峰.SiC陶瓷纤维力学性能评价.材料科学与工程学报,2004,22(2):296-300.
    [89] 黄照柏.陶瓷物理及化学原理.北京:中国建筑工业出版社,1983.
    [90] 郭瑞松,蔡舒,季惠明,吴厚政.工程结构陶瓷.天津:天津大学出版社,2002.
    [91] Jakowiak M H., Dicarlo J A. Pressure Effects on the Thermal Stability of Silicon Carbide Fibers. J. Am. Ceram. Soc., 1989, 72(2): 192-197.
    [92] Sacks M D. Effect of Compostion and Heat Treatment Condtions on the Tensile Strength and Creep Resistence of SiC-based Fibers. J. Europ. Ceram. Soc, 1999,19: 2305-2315.
    [93] Kim H E., Moorhead A J. Strength of Nicalon Silicon Carbide Fibers Exposed to High-Temperature Gaseous Environments. J. Am. Ceram. Soc, 1991, 74(3): 666-669.
    [94] Bender B A., Wallace J S., Schrodt D J. Effect of Thermochemical Treatments on the Strength and Microstructure of SiC Fibers. J. Mater. Sci., 1991, 26: 970-976.
    [95] Jia N Y., Bodet R., Tresster R E. Effects of Microstrucrual Instability on the Creep Behavior of Si-C-O (Nicalon) Fibers in Argon. J. Am. Ceram. Soc, 1993, 76(12): 3051-306.
    [96] Bodet R., Lamon J., Jia N Y., Tressler R E. Microstructural Stability and Creep Behavior of Si-C-O (Nicalon) Fibers in Carbon Monoxide and Argon Environments. J. Am. Ceram. Soc, 1996, 79(10): 2673-86.
    [97] Vahlas C. Thermodynamic Approach to the Oxidation of Hi-Nicalon~(?) Fiber. J. Am. Ceram. Soc, 1999, 82(9): 2514-16.
    [98] Takeda M., Saeki A., Sakamoto J I., Imai Y, Ichikawa H. Effect of Hydrogen Atmosphere on Pyrolysis of Cured Polycarbosilane Fibers. J. Am. Ceram. Soc, 2000, 83(5): 1063-69.
    [99] Burns G T., Chandra G Pyrolysis of Preceramic Polymers in Ammonia: Preparation of Silicon Nitride Powders. J. Am. Ceram. Soc, 1989, 72(2): 333-337.
    [100] Opita E J. Variation of the Oxidation Rate of Silicon Carbide with Water-Vapor Pressure. J. Am. Ceram. Soc, 1999, 82(3): 625-36.
    [101] More K L., Tortorelli P F., Ferber M K., Keiser J R. Observations of Accelerated Silicon Carbide Recession by Oxidation at High Water-Vapor Pressures. J. Am. Ceram. Soc, 2000, 83(1): 211-13.
    [102] Ohji T., Yamauchi Y, Kanematsu W. Tensile Rupture Strength and Fracture Defects of Sintered Silicon Carbide. J. Am. Ceram. Soc, 1989, 72(4): 688-690.
    [103] Dicarlo J A., Dutta S. Continuous Ceramic Fibers for Ceramic Composites. Handbook on Continuous Fiber Reinforced Ceramic Matrix Composite, Ceramic Information Analysis Center, Purdue University, West Lafayette, Indiana, 1995.
    [104] Yun H M., Goldsby J C, Dicarlo J A. Tensile Creep and Stress-Rupture Behavior of Polymer Derived SiC Fibers, NASA TM106692, 1994.
    [105] Rugg K., Tressler R E., Chollon G., Lamon J., Naslain R. Creep Comparisons of SiC Fibers. HiTemp Review, 1995, 55: 1-10.
    [106] 曹峰.耐超高温碳化硅纤维新型先驱体研究及纤维制备.博士学位论文.长沙:国防科技大学,2002.
    [107] 楚增勇.先驱体法碳化硅纤维缺陷形成机理与性能提高研究.博士学位论文.长沙:国防科技大学,2003.
    [108] Cao F., Kim D P., Ryu J H., Li X D.. Modification of Polycarbosilane as a Precursor with High Ceramic Yield for Oxygen-Free SiC Fibers. Korean J. Chem. Eng., 2001, 18(5): 761-764.
    [109] Cao F., Kim D P., Li X D., Feng C X. Synthesis of Polyaluminocarbosilane and Reaction Mechanism Study. J. Appl. Polym. Sci., 2002, 85(13): 2787-2792.
    [110] Hemida A T., Pailler R., Birot M., Pillot J P., Dunogues J. Modification of Si Precursors with an Amine-Borane Complex. J. Mater. Sci., 1997, 32: 3237-3242
    [111] Funayama O., Aoki T., Kato T., Okoda M., Isoda T. Synthesis of Thermosetting Copolymer of Polycarbosilane and Perhydropolysilazane. J. Mater. Sci., 1996, 31: 6369-6373.
    [112] Narisawa M., Oda S., Iseki T., Okamura K., Oka K., Dohmaru T. Synthesis of Fibrous Shape Ceramics from Blended Precursors of Organosilicon Polymers Containing Polymethylsilane. J. Ceram. Soc. Japan, 1998, 106(2): 220-223.
    [113] Idesaki A., Narisawa M., Okamura K., Sugimoto M., Morita Y., Seguchi T., Itoh M. SiC based Fibers Synthesized from Hybrid Polymer of Polycarbosilane and Polyvinylsilane. Key Engineering Materials, 1999, 164-165: 39-42.
    [114] Narisawa M., Idesaki A., Kitano S., Okamura K., Sugimoto M., Seguchi T., Itoh M. Use of Blended Precursors of Poly (vinylslane) in Polycarbosilane for Silicon Carbide Fiber Synthesis with Radiation Curing. J. Am. Ceram. Soc., 1999, 82(4): 1045-1051.
    [115] Idesaki A., Narisawa M., Okamura K., Sugimoto M., Morita Y., Seguchi T., Itoh M. Fine Silicon Carbide Fibers Synthesized from Polycarbosilane-Polyvinylsilane Polymer Blend Using Electron Beam Curing. J. Mater. Sci., 2001, 36: 357-362.
    [116] Idesaki A., Narisawa M., Okamura K., Sugimoto M., Tanaka S., Morita Y., Seguchi T., Itoh M. Fine SiC Fiber Synthesized from Organosilicon Polymers: Relationship between Spinning Temperature and Melt Viscosity of Precursor Polymers. J. Mater. Sci., 2001, 36: 5565-5569.
    [117] Choi G J., Toreki W., Batich C D. Improved Thermomechanical Stability of Polymer-Derived Silicon Carbide Fibers by Decaborane Incorporation. J. Mater. Sci., 2000, 35: 2421-2427.
    [118] Okamura K., Seguchi T. Application of Radiation Curing in the Preparation of Polycarbosilane-Derived SiC Fibers. J. Inorg. Organomet. Polym., 1992, 2(1): 171-179.
    [119] Okamura K., Sato M. High-Temperature Strength Improvement of Si-C-O Fiber by the Reduction of Oxygen Content. Proceedings of the 1th Japanese International SAMPE Symposium. 1989: 929-934.
    [120] 苏波,吴小进.低分子聚硅氮烷/二乙烯基苯的交联及其对裂解产物的影响.材料研究学报,1994,8(2):163-171.
    [121] Hasegawa Y. New Curing Method for Polycarbosilane with Unsaturated Hydrocarbos and Application to Thermally Stable SiC Fiber. Comp. Sci. Technol., 1994, 51: 161-166.
    [122] Hasegawa Y. SiC fibre prepared from polycarbosilane cured without oxygen. J. Inorg. Organomet. Polym., 1992, 2(1): 161-169.
    [123] Ghosh A., Jenkins M G., White K W., Kobayashi A S., Bradt R C. Elevated-Temperature Fracture Resistance of a Sintered α-Silicon Carbide. J. Am. Ceram. Soc., 1989, 72(2): 242-247.
    [124] Suganuma K., Sasaki G., Fujita T. Mechanical Properties and Microstructures of Machinable Silicon Carbide. J. Mater. Sci., 1993, 28: 1175-1181.
    [125] Itatani K., Takahashi F., Aizawa M., Okda I., Davies I J., Suemasu H., Nozue A. Densification and Microstructual Developments during the Sintering of Aluminium Silicon Carbide. J. Mater. Sci., 2002, 37: 335-342.
    [126] Maeda M., Nakamura K., Yamada M. Oxidation Resistance Evaluation of Silicon Carbide Ceramics with Various Additives. J. Am. Ceram. Soc., 1989, 72(3): 512-14.
    [127] Osendi M I., Bender B A., Lewis D. Microstrucrure and Mechanical Properties of Mullite-Silicon Carbide Composites. J. Am. Ceram. Soc., 1989, 72(6): 1049-54.
    [128] Zheng J., Unal O., Akinc M. Green State Joining of Silicon Carbide Using Polycarbosilane. J. Am. Ceram. Soc., 2000, 83(7): 1687-92.
    [129] Ju C P., Wang C K., Cheng H Y., Chen J H. Process and Wear Behavior of Monolithic SiC and Short Carbon fiber-SiC Matrix Composite. J. Am. Ceram. Soc., 2000, 35: 4477-4484.
    [130] Hu Y I. Preparation of Silicon Oxycarbide Glass Fibers from Organical Modified Silicates. J. Am. Ceram. Soc., 2000, 35: 3155-3159.
    [131] Goh K L., Mathias K L., Aspden R M., Hukins D W L. Finite Element Analysis of the Effect of Fiber Shape on Stresses in an Elastic Fiber Surrounded by a Plastic Matrix. J. Am. Ceram. Soc., 2000, 35: 2493-2497.
    [132] Munro R G., Freiman S W. Correlation of Fracture Toughness and Strength. J. Am. Ceram. Soc., 1999, 82(8): 2246-48.
    [133] Siemers P A., Mehan R L., Moran H., A Comparison of the Uniaxial Tensile and Pure Bending Strength of SiC Filaments, J. Mater. Sci., 1988, 23: 1329-1333.
    [134] 李效东.反应性与功能性高分子材料:第六章 先驱体高分子.张政朴编著.北京:化学工业出版社,2005.
    [135] 宋永才,商瑶,冯春祥,陆逸.聚二甲基硅烷的热分解研究.高分子学报,1995,6:753-757.
    [136] 谢凯,张长瑞,陈朝辉,周安郴,盘毅.低分子聚碳硅烷气相热裂解制备SiC超微粉的研究.无机材料学报,1997,12(3):291-296.
    [137] 王亦菲.连续碳化硅纤维高温性能及基于热交联的改进工艺研究.博士学位论文.长沙:国防科技大学,2004
    [138] Mackenzie J K. Introduction to Ceramics 2nd Edition. N. Y.: J. Wiley & Sons, 1976: 198.
    [139] 赵藻藩,周性尧,张悟铭等.仪器分析.北京:高等教育出版社,1990.
    [140] ASTM Test Method D3379-75, Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, PA, 1998, pp. 131.
    [141] Zhang Z F. Processing Silicon Carbide Fibers from Organosilicon Precursors. Ph. D. Thesis, Michigan: the university of Michigan, 1994.
    [142] 王从曾.材料性能学.北京:北京工业大学出版社,2001.
    [143] Mitchell B S., Zhang H Y., Maljkovic N., Ade M., Kurtenbach D., Muller E. Formation of Nanocrystalline Silicon Carbide Powder from Chlorine-Containing Polycarbosilane Precursors. J. Am. Ceram. Soc., 1999, 82(8): 2249-51.
    [144] Kurtenbach D., Martin H R, Muller E., Roewer G., Hoell A. Crystallization of Polymer Derived Silicon Carbide Materials. J. Europ. Ceram. Soc., 1998, 18: 1885-1891
    [145] Bouillon E., Langlais F., Pailler R., Naslain R., Cruege F., Huong P V., Sarthou J C., Delpuech A., Laffon C., Lagarde P., Monthioux M., Oberlin A. Conversion Mechanisms of a Polycarbosilane Precursor into an SiC-based Ceramic Material. J. Meter Sci., 1991, 26: 1333-1345.
    [146] Bouillon E., Mocaer D., Pailler R., Villeneuve J F. Composition Microstructure Property Relationships in Ceramic Monofilaments Resulting from the Pyrolysis a Polycarbosilane Precursor at 800℃ to 1400℃. J. Meter Sci., 1991, 26: 11517-1530.
    [147] 周长城.CVI-PIP工艺联用制备C_f/SiC复合材料.硕士学位论文.长沙:国防科技大学,2004.
    [148] 贺可音.硅酸盐物理化学.武汉:武汉工业大学出版社,1997.
    [149] 潘承璜,赵良仲.电子能谱基础.北京:科学出版社,1981.
    [150] Narisawa M., Kitano S., Idesaki A., Okamura K. Thermal Oxidation Crosslinking in the Blended Precursors of Organosilicon Polymers Containing Polyvinylsilane with Polycarbosilane. J. Mater Sci., 1998, 33: 2663-2666.
    [151] 章西焕.利用钾长石粉水热合成13X沸石分子筛的反应机理研究.北京:中国地质大学,2003.
    [152] Soraru G D., Mercadini M., Maschio R D. Si-Al-O-N Fibers from Polymeric Precursor: Synthesis, Structure and Mechanical Characterization. J. Am. Ceram. Soc., 1993, 76(10): 2595-2600.
    [153] 陆逸,李效东.聚碳硅烷的结构鉴定.宇航材料工艺,1989,6:55-59.
    [154] 杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社,2000.
    [155] Engelhardt G. Study of Surfactant Science Catalyse. Amsterdan: Elsevier, 1991: 285-315.
    [156] Zhao X S., Lu G Q., Song C. Immobilization of Aluminum Chloride on MCM-41 as a new Catalyst System for Liquid-phase Isopropylation of Naphthalene. Journal of Molecular Catalysis A: Chemical, 2003, 191: 67-74.
    [157] Chen C Y., Burkrtt S L., Davis M E. Studies on Mespporous Materials I. Synthesis Characterization of MCM-41. Microporous Mater, 1993, 2: 1-17.
    [158] Schmidt R., Akporiaye D., Stocker M. Synthesis of a Mesopore MCM-41 Material with Levels of Tetrahedral Aluminum. J. Chem. Soc., Chem Commun, 1994, 84: 1493-1494.
    [159] 张祥麟,康衡.配位化学.长沙:中南工业大学出版社,1986.
    [160] 刘世宏,王当憨,潘承璜.X射线光电子能谱分析.北京:科学出版社,1988.
    [161] 苏春辉,王艳,端木庆铎.透明莫米石陶瓷薄膜的光电子能谱研究.光学学报,1997,17(3): 342-345.
    [162] 苏春辉.透明陶瓷材料研究.博士学位论文.哈尔滨:东北大学,1996.
    [163] 王贵恒.高分子材料成型加工原理.北京:化学工业出版社,1982.
    [164] 高绪珊,吴大诚.纤维应用物理学.北京:中国纺织出版社,2001.
    [165] 郑春满,朱冰,李效东,王亦菲.聚碳硅烷纤维的热交联研究.高分子学报,2004,2:246-250.
    [166] 朱冰.低预氧化聚碳硅烷纤维热交联技术的研究.硕士学位论文.长沙:国防科技大学,2002.
    [167] 郑春满.与作者的私人学术交流.2004.
    [168] Chaussende D., Ferro G., Monteil Y., Brylinski C., Bouix J. Thermochemistry of Silicon Carbide Growth by Chemical Transport Reactions. J. Mater. Sci., 2001, 36: 335-342.
    [169] Elkind A., Barsoum M W. Grain Growth and Strength Degradation of SiC Monofilaments at High Temperatures. J. Mater. Sci., 1996, 31: 6119-6123.
    [170] Pysher D J., Goretta K C., Hodder R S., Tressler R E. Strengths of Ceramic Fibers at Elevated Temperatures. J. Am. Ceram. Soc., 1989, 72(2): 284-88.
    [171] Shimoo T., Okamura K, Toyoda F. Thermal Stability of SiO_2-coated SiC Fiber (Hi-Nicalon) under Argon Atmosphere. J. Mater. Sci., 2000, 35: 3811-3816.
    [172] Shimoo T., Okamura K., Ito M., Takeda M. High-Temperature Stability of Low-Oxygen Silicon Carbide Fiber Heat-Treated under Different Atmosphere. J. Mater. Sci., 2000, 35: 3733-3739.
    [173] Danko G A., Colombo R S P., Pippel E., Woltersdorf J. Comparison of Microwave Hybrid and Conventional Heating of Preceramic Polymers to Form Silicon Carbide and Silicon Oxicarbide Ceramics. J. Am. Ceram. Soc., 2000, 83(7): 1617-25.
    [174] Song D Y., akeda N T., Kawamoto H. Corrosion, Oxidation and Strength Properties of Nicalon SiC fiber under Loading. Materials Science and Engineering, 2000, A278: 82-87.
    [175] Shimoo T., Toyoda F., Okamura K. Oxidation Kinetics of Low-Oxygen Silicon Carbide Fiber. J. Mater. Sci., 2000, 35: 3301-3306.
    [176] Bodet R., Jia N., Tressler R E. Microstructural Instability and the Resultant Strength of Si-C-O (Nicalon) and Si-N-C-O (HPZ) Fibers. J. Europ. Ceram. Soc., 1996, 16: 653-664.
    [177] Bodet R., Jia N., Tressler R E. Thermomechanical stability of Nicalon Fibers in Carbon Monoxide Environment. J. Europ. Ceram. Soc, 1995,15: 997-1006.
    [178] Dong S M., Chollon G, Labrugere C, Lahaye M. Characterization of nearly Stoichiometric SiC Ceramic Fibres. J. Mater. Sci., 2001,36: 2371-2381.
    [179] Chawla N., Holmes J W., Mansfield J F. Surface Roughness Characterization of Nicalon? and Hi-Nicalon~(?) Ceramic Fibers by Atomic Force Microscopy. Materials Characterization, 1995, 35: 199-206.
    [180] Gouadec G, Karlin S., Colomban P. Raman Extensometry Study of NLM202 and Hi-Nicalon SiC fibers. Comp. Part B, 1998, 29B: 251-261.
    [181] Vanswijgenhoven E., Lambrinou K., Wever M., Biest O V D. Comparative Study of the Surface Roughness of Nicalon and Tyranno Silicon Carbide Fibres. Comp. Part A, 1998, 29A: 1417-1423.
    [182] Suzuki K., Kumagawa K., Kamiyama T., Shibuya M. Characterization of the Medium-Range Structure of Si-Al-C-O, Si-Zr-C-O, and Si-Al-C Tyranno Fibers by Small Angle X-ray Scattering. J. Mater. Sci., 2002, 37: 949-953.
    [183] Bouillon E., Pailler R., Naslain R. New Poly(carbosilane) Models. 5. Pyrolysis of a Series of Functional Poly(carbosilanes). Chem. Mater., 1991,3(2): 356-367.
    [184] Resel R., Leising G, Lunzer F., Marschner C. Structure in Amorphous Polysilanes Determined by Diffuse X-ray Scattering. Polymer, 1998, 39(21): 5257-5259.
    [185] MacKenzie K J D., Sheppard C M., Okadab K., Kameshima Y. Nitridation of Silicon Powder Studied by XRD, ~(29)Si MAS NMR and Surface Analysis. J. Europ. Ceram. Soc, 1999, 19: 2731-2737.
    [186] Dybowski C., Gaffney E J., Sayir A., Rabinowitz M J. Solic-State ~(13)C and~( 29)Si MAS NMR Spectroscopy of Silicon Carbide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996,118: 171-181.
    [187] Jaymes I., Douy A., Massiot D., Coutures J P. Evolution of the Si Environment in Mullite Solid Solution by ~(29)Si MAS-NMR Spectroscopy. Journal of Non-Crystalline Solids, 1996, 204: 125-134.
    [188] Martin H P., Muller E., Irmer G, Babonneau F. Crystallisation Behavior and Polytype Transformation of Polymer-Derived Silicon Carbide. J. Europ. Ceram. Soc, 1997,17: 659-666.
    [189] Hartman J S., Richardson M F., Sherriff B L., Winsborrow B G Magic Angle Spinning NMR
     Studies of Silicon Carbide Polytypes, Impurities, and Highly Inefficent Spin-Lattice Relaxation. J. Am. Chem. Soc., 1987, 109: 6059-6067.
    [190] Wagner G W., Na B K., Vannice M A. High-Resolution Solid-State NMR of ~(29)Si and ~(13)C in β-Silicon Carbides. The Journal of Physical Chemistry, 1989, 93(13): 5061-5064.
    [191] Charpentier S., Kassiba A., Emery J., Carchetier M. Investigation of the Paramagnetic Centers and Electronic Properties of Silicon Carbide Nanomaterials. J. Phys: Condens. Matter, 1999, 11: 4887-4897.
    [192] Laffon C., Flank A M., Lagarde P., Laridjani M., Hagege R., Olar P., Cotteret J., Dixmier J., Miquel J L., Hommel H., Legrand A P. Study of Nicalon-based Ceramic Fibers and Powders by EXAFS Spectrometry, X-ray Diffractometry and some Additional Methods. J. Mater. Sci., 1999, 24: 1503-1512.
    [193] Babonneau F., Soraru G D., Thorne K J. Chemical Characterization of Si-Al-C-O Precursor and its Pyrolysis. J. Am. Ceram. Soc., 1991, 74(7): 1725-1728.
    [194] Finlay G R., Hartman J S., Richardson M F. ~(29)Si and ~(13)C Magic Angle Spinning NMR Spectra of Silicon Carbide Polymorphs. J. Chem. Soc. Chem. Commum., 1985, 159.
    [195] Carduner K R., Shinozaki S., Rokosz M J., Peters C. Characterization of β-Silicon Carbide by Silicon-29 Solid-State NMR, Transmission Electron Microscopy, and Powder X-Ray Diffraction. J. Am. Ceram. Soc., 1990, 73(8): 2281-2286.
    [196] 彭平,李效东.Excel 5电子表格在纤维单丝强度分析中的应用.计算机与应用化学,1998,15(2):114-118.
    [197] Weibull W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech., 1951: 293.
    [198] Wu H F., Netravali A N. Weibull Analysis of Strength Length Relationships in Single Nicalon SiC Fibers. J. Mater. Sci., 1992, 27: 3318-3324.
    [199] Bergman B. On the Estimation of the Weibull Modulus. J. Mater. Sei. Lett., 1984, 3: 689-692.
    [200] 贺福.碳纤维的强度理论.碳素,1985,4:1-9.
    [201] Frank W Z., Chen X., Christian H W. Tensile Strength of SiC Fibre. J. Am. Ceram. Soc., 1995, 78(7): 1965-1968.
    [202] Shimoo T., Okamura K., Morisada Y. Active-to-Passive Oxidation Transition for Polycarbosilane-Derived Silicon Carbide Fibers Heated in Ar-O_2 Gas Mixtures. J. Mater. Sci., 2002, 37: 1793-1800.
    [203] Shimoo T., Okamura K., Yamanaka T. Oxidation Behavior of Si-C-O Fibers (Nicalon) in Alumina. J. Mater. Sci., 2001, 36: 4137-4143.
    [204] Takeda M., Urano A., Sakamoto J., Imai Y. Microstructure and Oxidation Behavior of Silicon Carbide Fibers Derived from polycarbosilane. J. Am. Ceram. Soc., 2000, 83(5): 1171-76.
    [205] Opita E J. Oxidation Kinetics of Chemically Vapor-Deposited Slicon Carbide in Wet-Oxygen. J. Am. Ceram. Soc., 1994, 77(3): 730-36.
    [206] He G W., Shibayama T., Takahashi H. Microstructural Evolution of Hi-NicalonTM SiC Fibers Annealed and Crept in Various Oxygen Partial Pressure Atmospheres. J. Mater. Sci., 2000, 35: 1153-1164.
    [207] 王世忠,徐良瑛,束碧云.SiC单晶的性质、生长及应用.无机材料学报,1999,14(4):527-534
    [208] Yasutomi Y., Sawada J., Nagabo L., Kuroda H., Sumi T., Kogure H., Sawai Y., Kishi T. Interfacial Reactions in Aluminum/SiC Fiber Composite Electric Power Cable Using Low Oxygen SiC Fiber Reinforcement. J. Mater. Sci., 2000, 35: 4549-4555.
    [209] Rijswik W V., Shanefield D J. Effects of Carbon as a Sintering Aid in Silicon Carbide. J. Am. Ceram. Soc., 1990, 73(1): 148-149.
    [210] Jang H M., Rhine W E., Bowen H K. Densification of Alumina-Silicon Carbide Powder Composites: I, Effects of a Polymer Coating on Silicon Carbide Particles. J. Am. Ceram. Soc., 1989, 72(6): 948-953.
    [211] Jang H M., Rhine W E., Bowen H K. Densification of Alumina-Silicon Carbide Powder Composites: Ⅱ, Microstructural Evolution and Densification. J. Am. Ceram. Soc., 1989, 72(6): 954-958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700