用户名: 密码: 验证码:
光波混频效应对波分复用系统性能的影响及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以光波混频效应对波分复用系统的影响及其应用为题,从三个方面进行研究:
    一、光波混频效应对波分复用系统性能的影响。1) 研究了波分复用系统中的脉冲四波混频效应,分析了色散、走离、自相位调制和交叉相位调制等效应在四波混频过程中的作用;2) 对比了单模光纤、非零色散平移光纤和高非线性光纤中脉冲四波混频效应的差别;3) 分析了色散管理系统中强度相关相位匹配的四波混频效应,并从抑制混频噪声的角度优化了色散管理系统的布置方式。
    二、准相位匹配光波混频型宽带波长转换器件的设计。1) 分析了线性啁啾超晶格结构在1.5μm 通信波段的波长转换特性,指出其带宽的优势和响应平坦方面的不足;2) 提出了一种用于1.5μm 通信波段宽带波长转换的正弦啁啾超晶格结构,该结构不但在转换带宽和泵浦带宽上有所改善,而且响应十分平坦;3) 设计了一种分段周期超晶格结构用于提高激光倍频的带宽和温度允限,利用该结构还可以实现多频率同时输出的激光光源。
    三、极化晶体倍频的实验研究。采用外加电场极化方法制作了周期极化铌酸锂和高掺镁铌酸锂晶体样品;利用该晶体样品进行了初步实验研究,得到了1.06μm 基频光的倍频输出,并对比分析了两种晶体材料的倍频性能。
In this dissertation, the limitations and applications of wave-mixing effects in wavelength division multiplexing (WDM) systems are investigated. The main results are:
    I. The limitations to wavelength division multiplexing systems due to wave-mixing effects are explored. 1) Pulse four-wave mixing in wavelength division multiplexing systems is investigated and compared with continuous wave and quasi-continuous wave four-wave mixing. The influences of dispersion, walk-off, self-phase modulation, and cross-phase modulation on pulse four-wave mixing effects are comprehensively simulated. 2) Pulse four-wave mixing effects in standard single-mode fiber, non-zero dispersion-shifted fiber, and high-nonlinearity fiber are compared. 3) Power-dependent phase-matched four-wave mixing in dispersion-managed systems is analytically studied. The allocation of dispersion-managed systems is optimized to surpress four-wave mixing noises.
    II. Novel Broad-band wavelength converters based on quasi-phase-matched wave-mixing effects are designed. 1) The wavelength conversion of linearly chirped optical superlattices is analyzed, and its pros and cons in the WDM systems are pointed out. 2) A sinusoidally chirped optical superlattice is proposed for wavelength conversion in 1.5μm region, whose conversion bandwidth, pump bandwidth, and response flatness are largely improved. 3) A segmented optical superlattce is designed to enchance second-hamonic generation bandwidth and temperature tolerance. Multiple frequency conversion can be realized with this optical superlattice.
    III. Periodically poled lithium niobate and Mg-doped lithium niobate samples are fabricated. Second-hamonic generations of 1.06μm in the two samples are experimentally researched. The wave-mixing properties of lithium niobate and Mg-doped lithium niobate are compared.
引文
[1] Franken P A, Hill A E, Peters C W, et al. Generation of Optical Harmonics. Phys. Rev. Lett., 1961, 7(4): 118-119
    [2] Kaiser W, Garrett C G B, Wood D L. Fluorescence and optical maser effects in CaF2:Sm++. Phys. Rev., 1961, 123(3): 766-776
    [3] Stolen R H, Ippen E P, Tynes A R. Raman Oscillation in Glass Optical Waveguide. Appl. Phys. Lett., 1972, 20(2): 62-64
    [4] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers. Appl. Phys. Lett., 1972, 21(11): 539-541
    [5] Ippen E P, Shank C V, Gustafson T K. Self-phase modulation of picosecond pulses in optical fibers. Appl. Phys. Lett., 1974, 24(4): 190-192
    [6] Stolen R H, Bjorkholm J E, Ashkin A. Phase-matched three-wave mixing in silica fiber optical waveguides. Appl. Phys. Lett., 1974, 24(7): 308-310
    [7] Sivalingam K M, Subramaniam S. Optical WDM Networks: Principles and Practice. Boston: Kluwer academic publishers, 2000.
    [8] Ramaswami R, Liu K. Analysis of effective power budget in optical bus and star networks using erbium-doped fiber amplifiers. J. Lightwave Technol., 1993, 11(11):1863-1871
    [9] Dianov E M, Abramov A A, Bubnov M M, et al. 30 dB gain Raman amplifier at 1.3μm in low-loss high GeO2-doped silica fibres. Electron. Lett., 1995, 31(13): 1057-1058
    [10] Yokokawa T, Hirano M, Tada A, et al. Dispersion compensating optical fiber for non-zero dispersion-shifted optical fiber. SEI Technical Rev., 2003, 55: 4-7
    [11] Lee H, Agrawal G P. Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation. IEEE Photon. Technol. Lett., 2003, 15(8): 1091-1093
    [12] Goh C S, Set S Y, Kikuchi K. Design and fabrication of a tunable dispersion-slope compensating module based on strain-chirped fiber Bragg gratings. IEEE Photon. Technol. Lett., 2004, 16(2): 524-526
    [13] Watanabe S, Shirasaki M. Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation. J. Lightwave Technol., 1996, 14(3): 243-248
    [14] Yang C X, Li S G, Miao H X, et al. Compact first-order polarization mode dispersion compensator based on birefringent crystals. Chin. Phys. Lett., 2004, 21(2): 326-328
    [15] Hill K O, Johnson D C, Kawasaki B S, et al. CW three-wave mixing in single-mode optical fibers. J. Appl. Phys., 1978, 49(10): 5098-5106
    [16] Cleland D A, Gu X Y, Cox J D, et al. Limitations of WDM transmission over 560 km due to degenerate four wave mixing. Electron. Lett., 1992, 28(3): 307-309
    [17] Inoue K, Nakanishi K, Oda K, et al. Crosstalk and power penalty due to fiber four-wave mixing in multichannel transmissions. J. Lightwave Technol., 1994, 12(8): 1423-1439
    [18] Forghieri F, Tkach R W, Chraplyvy A R, et al. Reduction of four-wave mixing crosstalk in WDM systems using unequally spaced channels. IEEE Photon. Technol. Lett., 1994, 6(6): 54-56
    [19] Hansryd J, Sunnerud H, Andrekson P A, et al. Impact of PMD on four-wave-mixing-induced crosstalk in WDM systems. IEEE Photon. Technol. Lett., 2000, 12(9): 1261-1263
    [20] Watanabe S. Cancellation of four-wave mixing in a single-mode fiber by midway optical phase conjugation. Opt. Lett., 1994, 19(17): 1308-1310
    [21] Murakami M, Matsuda T, Maeda H, et al. Long-haul WDM transmission using higher order fiber dispersion management. J. Lightwave Technol., 2000, 18(9): 1197-1204
    [22] Chung H S, Kim H, Jin S E, et al. 320-Gb/s WDM transmisson with 50-GHz channel spacing over 564km of short-period dispersion-managed fiber (perfect cable). IEEE Photon. Technol. Lett., 2000, 12(10): 1397-1399
    [23] Madani F M, Kikuchi K. Design theory of long-distance WDM dispersion-managed transmission system. J. Lightwave Technol., 1999, 17(8): 1326-1335
    [24] Inoue K. Four-wave mixing in an optical fiber in the zero-dispersion wavelength region. J. Lightwave Technol., 1992, 10(11): 1553-1561
    [25] Inoue K. Polarization effect on four-wave mixing efficiency in a single-mode fiber. IEEE J. Quantum Electron., 1992, 28(4): 883-894
    [26] Lor K P, Chiang K S. Theory of nondegenerate four-wave mixing in a birefringent optical fibre. Opt. Commun., 1998, 152(1-3): 26-30
    [27] Eiselt M. Limits on WDM systems due to four-wave mixing: a statistic approach. J. Lightwave Technol., 1999, 17(11): 2261-2267
    [28] 曲林杰. 单模光纤中超短脉冲的前向四波混频. 光学学报, 1999, 19(5): 609-615
    [29] Deng L, Payne M G, Garrett W R. Four-wave mixing with short pulses and optimized atomic coherence. Phys. Rev. A, 2001, 63(4): 43811/1-43811/8
    [30] Mecozzi A, Clausen C B, Shtaif M. Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photon. Technol. Lett., 2000, 12(4): 392-394
    [31] Inoue K. Phase-mismatching characteristic of four-wave mixing in fiber lines with multistage optical amplifiers. Opt. Lett., 1992, 17(11):801-803
    [32] Inoue K, Toba H. Fiber four-wave mixing in multi-amplifier systems with nonuniform chromatic dispersion. J. Lightwave Technol., 1995, 13(1): 88-93
    [33] Nakajima K, Ohashi M, Shiraki K, et al. Four-wave mixing suppression effect of dispersion distributed fibers. J. Lightwave Technol., 1999, 17(10): 1814-1822
    [34] Murakami M, Matsuda T, Imai T. FWM Generation in higher order fiber dispersion managed transmission line. IEEE Photon. Technol. Lett., 2002, 14(4): 474-476
    [35] Shibata N, Braun R P, Waarts R G. Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber, IEEE J. Quantum Electron., 1987, QE-23(7): 1205-1210
    [36] Song S, Allen C T, Demarest K R, et al. Intensity-dependent phase-matching effects on four-wave mixing in optical fibers. J. Lightwave Technol., 1999, 17(11): 2285-2290
    [37] Yoo S J B. Wavelength conversion technologies for WDM network applications. J. Lightwave Technol., 1996, 14(6): 955-966
    [38] Ramamurthy B, Mukherjee B. Wavelength conversion in WDM networking. IEEE J. Select. Areas Commun., 1998, 16(7): 1061-1073
    [39] Obermann K, Kindt S, Breuer D, et al. Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers. J. Lightwave Technol., 1998, 16(1): 78–85
    [40] Lacey J P R, Pendock G J, Tucker R S. All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier. IEEE Photon. Technol. Lett., 1996, 8(7): 885-887
    [41] Davies D A O. Small-signal analysis of wavelength conversion in semiconductor laser amplifiers via gain saturation. IEEE Photon. Technol. Lett., 1995, 7(6): 617-619
    [42] Marhic M E, Park Y, Yang F S, et al. Widely tunable spectrum translation and wavelength exchange by four-wave mixing in optical fibers. Opt. Lett., 1996, 21(23): 1906–1908
    [43] Donnelly J P, Le H Q, Swanson E A, et al. Nondegenerate four-wave mixing wavelength conversion in low-loss passive InGaAsP-InP quantum-well waveguides. IEEE Photon. Technol. Lett., 1996, 8(5): 623-625
    [44] Geraghty D F, Lee R B, Verdiell M, et al. Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers. IEEE J. Select. Topics Quantum Electron., 1997, 3(5): 1146 –1155
    [45] Xu C Q, Okayama H, Shinozaki K, et al. Wavelength conversions ~1.5μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides. Appl. Phys. Lett., 1993, 63(9): 1170–1172
    [46] Chou M H, Brener I, Fejer M M, et al. 1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides. IEEE Photon. Technol. Lett., 1999, 11(6): 653-655
    [47] Li Q, Feng D. Study of defects in Ba2NaNb5O15 crystals with etching. Sci. Sin., 1981, 24(3): 332-341
    [48] Batchko R G, Shur V Y, Fejer M M, et al. Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation. Appl. Phys. Lett., 1999, 75(12): 1673-1675
    [49] Zhu, S N, Zhu Y Y, Ming N B.Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 1997, 278(5339): 843-846
    [50] Lu Y L, Mao L, Ming N B. Green and violet light generation in LiNbO3 optical superlattice through quasiphase matching. Appl. Phys. Lett., 1994, 64(23): 3092-3094
    [51] Armstrong A, Bloembergen N, Dcuing J, et al. Interactions between light waves in a nonlinear dielectric. Phys. Rev., 1962, 127(6): 1918-1939
    [52] Franken P A, Ward J F. Optical harmonics and nonlinear phenomena. Rev. Modern Phys., 1963, 35(1): 23-39
    [53] Ito K, Helmfrid S, Tatsuno K. Experimental study on a second-harmonic intensity modulator with quasi-phase-matched optical waveguides. Jpn. J. Appl. Phys., 1994, 33(7A): 3929-3933
    [54] Lu Y L, Lu Y Q, Cheng X F, et al. Growth of optical superlattice LiNbO3 with different modulating periods and its applications in second-harmonic generation. Appl. Phys. Lett., 1996, 68(20): 2781-2783
    [55] Zhu Y Y, Zhu S N, Hong J F, et al. Domain inversion in LiNbO3 by proton exchange and quick heat treatment. Appl. Phys. Lett., 1994, 65(5): 558-560
    [56] Yamada M, Nada N, Saitoh M, et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl. Phys. Lett., 1993, 62(5): 435-437
    [57] Fejer M M, Magel G A, Jundt D H, et al. Quasi-phase-matched second harmonic generation: tuning and tolerances. IEEE J. Quantum Electron., 1992, 28(11): 2631-2654
    [58] Yu N E, Ro H, Cha M. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band. Opt. Lett., 2002, 27(12): 1046-1048
    [59] Parameswaran K R, Fujimura M, Chou M H, et al. Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN. IEEE Photon. Technol. Lett., 2000, 12(6): 654-656
    [60] Chou M H, Arbore M A, Fejer M M. Adiabatically tapered periodic segmentation of channel waveguides for mode-size transformation and fundamental mode excitation. Opt. Lett., 1996, 21(11): 794-796
    [61] Chou M H, Hauden J, Arbore M A, et al. 1.5-μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures. Opt. Lett., 1998, 23(13): 1004-1006
    [62] Gallo K, Assanto G. Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides. Appl. Phys. Lett., 1997, 71(8): 1020-1022
    [63] Gallo K, Assanto G. Analysis of lithium niobate all-optical wavelength shifters for the third spectral window. J. Opt. Soc. Am. B, 1999, 16(5): 741-753
    [64] Trevino-Palacios C G, Stegeman G I, Baldi P, et al. Wavelength shifting using cascaded second-order processes for WDM applications at 1.55μm. Electron. Lett., 1998, 34(22): 2157-2158
    [65] Cristiani I, Liberale C, Degiorgio V, et al. Nonlinear characterization and modeling of periodically poled lithium niobate waveguides for 1.5-μm-band cascaded wavelength conversion. Opt. Commun., 2001, 187(1-3): 263-270
    [66] Russell S M, Powers P E, Missey M J, et al. Broadband Mid-infrared generation with two-dimensional quasi-phase-matched structures. IEEE J. Quantum Electron., 2001, 37(7): 877-887
    [67] Ni P G, Ma B Q, Wang X, et al. Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order puasiphase matching. Appl. Phys. Lett., 2003, 82(24): 4230-4232
    [68] Suhara T, Nishihara H. Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings. IEEE J. Quantum Electron., 1990, 26(7): 1265-1275
    [69] Mizuuchi K, Yamamoto K. Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts. Opt. Lett., 1998, 23(24): 1880-1882
    [70] Liu X M, Zhang H Y, Guo Y L. Theoretical analysis and optimizations for wavelength conversion by quasi-phase-matching difference frequency generation. J. Lightwave Technol., 2001, 19(11): 1785-1792
    [71] Liu X M, Zhang H Y, Guo Y L. Optimal design for the quasi-phase-matching three-wave mixing. Opt. Express, 2001, 9(12): 631-636
    [72] Liu X M, Zhang H Y, Guo Y L, et al. Optimal design and applications for quasi-phase-matching three-wave mixing. IEEE J. Quantum Electron., 2002, 38(9): 1225-1233
    [73] Chou M H, Parameswaran K R, Fejer M M, et al. Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides. Opt. Lett., 1999, 24(16): 1157-1159
    [74] Lee Y W, Fan F C, Huang Y C, et al. Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate. Opt. Lett., 2002, 27(24): 2191-2193
    [75] Asobe M, Tadanaga O, Miyazawa H, et al. Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure. Opt. Lett., 2003, 28(7): 558-560
    [76] Liu H, Zhu S N, Zhu Y Y, et al. Multiple-wavelength second-harmonic generation in aperiodic optical superlattices. Appl. Phys. Lett., 2002, 81(18): 3326-3328
    [77] Zhu S N, Zhu Y Y, Qin Y Q, et al. Experimental realization of second harmonic generation in a Fabonacci optical superlattice of LiTaO3. Phys. Rev. Lett., 1997, 78(14): 2752-2755
    [78] Chen Y B, Zhang C, Zhu Y Y, et al. Optical harmonic generation in a quasi-phase-matched three-component Fabonacci superlattice LiTaO3. Appl. Phys. Lett., 2001, 78(5): 577-579
    [79] Fejer M M, Digonnet M J F, Byer R L. Generation of 22mW of 532-nm radiation by frequency doubling in Ti:MgO:LiNbO3 waveguides. Opt. Lett., 1986, 11(4): 230-232
    [80] Jundt D H, Fejer M M, Byer R L, et al. 69% efficient continuous-wave second-harmonic generation in lithium-rich lithium niobate. Opt. Lett., 16(23): 1856-1858
    [81] Miller G D, Batchko R G, Tolloch W M, et al. 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate. Opt. Lett., 1997, 22(24): 1834-1836
    [82] Chen Y F, Tsai S W, Wang S C, et al. Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate. Opt. Lett., 2002, 27(20): 1809-1811
    [83] 于建, 倪文俊, 薛挺, 等. 周期极化铌酸锂绿光倍频器的研究. 光电子·激光, 2002, 13(4): 339-342
    [84] 陈险峰, 谢绳武, 夏宇兴, 等. 周期性极化准位相匹配铌酸锂波导中二次谐波的产生. 中国激光, 2001, A28(7): 591-594
    [85] 袁清习, 任铁未, 徐军, 等. 准相位匹配周期极化钼酸钆制备及倍频效应. 光学学报, 2003, 23(7): 796-799
    [86] 梁晓燕, 侯玮, 吕军华, 等. 低阈值宽调谐PPLN 光参量振荡. 中国激光, 2002, A29(1): 10-12
    [87] Powers P E, Kulp T J, Bisson S E. Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design. Opt. Lett., 1998, 23(3): 159-161
    [88] Kang J U, Ding Y J, Burns W K, et al. Backward second-harmonic generation in periodically poled bulk LiNbO3. Opt. Lett., 22(12): 862-864
    [89] Bortz M L, Fujimura M, Fejer M M. Increased acceptance bandwidth for quasi-phasematched second harmonic genration in LiNbO3 waveguides. Electron. Lett., 1994, 30(1): 34-35
    [90] Gu B Y, Dong B Z, Zhang Y, et al. Enhanced harmonic generation in aperiodic optical superlattices. Appl. Phys. Lett., 1999, 75(15): 2175-2177
    [91] Zhang C, Wei H, Zhu Y Y, et al. Third-harmonic generation in a general two-component quasi-periodic optical superlattice. Opt. Lett., 2001, 26(12): 899-901
    [92] Liu Z W, Zhu S N, Zhu Y Y, et al. Quasi-cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling. Jpn. J. Appl. Phys., 2001, 40(12): 6841-6844
    [93] Du Y, Zhu S N, Zhu Y Y, et al. Parametric and cascaded parametric interactions in a quasiperiodic optical superlattice. Appl. Phys. Lett., 2002, 81(9): 1573-1575
    [94] Imeshev G, Fejer M M, Galvanauskas A, et al. Generation of dual-wavelength pulses by frequency doubling with quasi-phase-matching gratings. Opt. Lett., 2001, 26(5): 268-270
    [95] Liao J, He J L, Liu H, et al. Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3. Appl. Phys. Lett., 2003, 82(19): 3159-3161
    [96] He J L, Liao J, Liu H, et al. Simultaneous cw red, yellow, and green light generation, “traffic signal lights,”by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3. Appl. Phys. Lett., 2003, 83(2):228-230
    [97] Shen Y H, Hu H H, Ye L H, et al. Homogeneously poling of the large diameter PPLN wafer by means of high voltage electric pulse trigging. In: Proceedings of SPIE -The International Society for Optical Engineering, 2002, 4918: 72-78
    [98] Volk T, Wohlecke M, Rubinina N, et al. Optical-damage-resistant impurities (Mg, Zn, In, Sc) in lithium niobate. Ferroelectrics, 1996, 183(1-4): 291-300
    [99] 姚江宏, 陈亚辉, 许京军, 等. 近化学计量比铌酸锂晶体周期极化畴反转特性研究. 物理学报, 2002, 51(1): 192-196
    [100] Grisard A, Lallier E, Polgar K, et al. 3 mm-thick periodically poled lithium niobate. Proceedings of Lasers and Electro-Optics, CLEO ’01, 2001, paper CWA37
    [101] Chen Y L, Lou C B, Xu J J, et al. Domain switching characteristics of the near stoichiometric LiNbO3 doped with MgO. J. Appl. Phys., 2003, 94(5): 3350-3352
    [102] 姚江宏, 陈亚辉, 邓浩亮, 等. 近化学计量比掺镁铌酸锂晶体周期极化特性研究. 红外与毫米波学报, 2003, 22(1): 35-39
    [103] 陈云琳, 郭娟, 刘晓娟, 等. 周期极化掺镁不同组分LiNbO3 晶体的研究. 物理学报, 2004, 23(1): 156-159
    [104] Nakanura M, Higuchi S, Takekawa S, et al. Optical damage resistance and refractive indices in near-stoichiometric MgO-doped LiNbO3. Jpn. J. Appl. Phys., 2002, 41(1A/B): L49-L51
    [105] Agrawal G P. Nonlinear fiber optics, 3rd ed. San Diego: Academic, 2001.
    [106] 陈玉萍, 陈险峰, 曾祥龙, 等. 一阶准相位匹配周期性极化铌酸锂倍频产生18mW 绿光连续输出. 光学学报, 2002, 22(4): 399-401

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700