用户名: 密码: 验证码:
家蚕(Bombyx mori) triosephosphate isomerase和transformer-2基因的克隆与染色体定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物信息学(Bioinformatics)是近年来在生命科学领域由分子生物学和计算机信息处理技术相结合的一个交叉学科,它的基本出发点是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。
     随着家蚕基因组序列的完全解读,家蚕分子生物学数据库信息积累将越来越多,家蚕EST数据库中已有近12万条序列,利用已经获得的大量EST、cDNA克隆和基因组序列等生物信息资源对家蚕基因组中所包含的约2万多个基因的功能进行研究,是家蚕功能基因组研究的主要任务,而建立在生物信息数据库基础之上的电子克隆技术是进行功能基因研究的有效手段。
     本文通过对家蚕EST数据库的检索筛选,克隆了家蚕生命活动过程中的两个关键基因,预测了它们的功能;并利用它们各自的生物信息资源对它们的表达调控和染色体定位进行了研究。研究结果如下:
     1 家蚕磷酸甘油醛异构酶基因(Bmtpi)的克隆与染色体定位分析
     以长翅蝶磷酸甘油醛异构酶(tpi)基因cDNA序列为探针,对家蚕EST数据库进行同源检索筛选,克隆了家蚕磷酸甘油醛异构酶(Bmtpi)基因的cDNA序列,基因全长1,051bp。通过NCBI的ORF finder服务器对所获得的cDNA序列进行开放阅读框架(ORF)分析,结果发现其开放阅读框架位于第95~839位,推测编码248个氨基酸。为了验证所克隆Bmtpi基因cDNA序列的正确性,在其起始密码子区域和终止密码子区域设计特异引物,经RT-PCR克隆、序列分析验证,结果表明与电子克隆序列完全一致。
     通过设计特异引物,克隆到全长为2,875bp的家蚕Bmtpi基因组序列(GenBank登记号为AY734490)。通过与cDNA序列进行比对,发现家蚕Bmtpi基因组序列内有5个内含子,且剪切位置均符合“GT-AG法则”,大小分别为580bp、297bp、103bp、1,187bp和333bp;还有6个外显子大小分别为66bp、120bp、112bp、110bp、207bp和319bp,其ORF横跨5个外显子。分析家蚕Bmtpi基因ORF上游700bp基因组DNA序列的启动子区域,结果发现存在1个启动子,位于第267~317位,可能性为0.81,没有发现典型的TATA-box和CAAT-box。
     家蚕Bmtpi基因编码248个氨基酸的蛋白质(BmTPI),在蛋白质数据库中进
In recent years, the bioinformatics has become one of the focuses in genetics and biology. It is an interdiscipline formed from molecular biology and computer science. It is based on biological databases and information. It aims to reveal the relationship between structure and function of nucleic acid and protein sequences by analysis these data and alignment these sequences.With the fulfilment of silkworm genome sequencing, the documentation in the silkworm biological databases increase such as there are nearly 120 thousands ESTs in silkworm EST database. How to use these information is very important for advance the progress of the silkworm genomic research. Analysing the function of near 20 thousands genes will become the main goal of the silkworm functional genomic research. In silica cloning the novel genes based on the EST database is an important principle in the field.In this thesis, we used the EST blast to in silico clone two novel silkworm genes: triosephosphate isomerase (Bmtpi) and transformer-2 (Bmtra-2). Moreover, we predicted the function of the putative peptides encoded by the genes. We also studied the copies of Bmtpi in the silkworm genome by comparing fluorogenic real-time quantitative PCR technique with Bmkettin and DH-PBAN as the reference gene and the model of Bmtra-2 pre-mRNA alternative splicing pathway during processing by analysis its relative EST sequence polymorphism.1 cloning and analysis the copies of silkworm Bmtpi gene in silkwormgenomeSilkworm Bmtpi gene full-length cDNA sequence of 1,051 bp deduced encoding triosephosphate isomerase was cloned by blasting the silkworm EST database with the butterfly, Heliconius tpi gene cDNA sequence information as a querying probe. Searching the cDNA sequence for potential coding regions by ORF finder (NCBI), It has a complete open reading fragment (ORF: 95~839) and putative encodes 248 aa protein. To examine the accuracy of in silico cloning cDNA sequence, we cloned by
    RT-PCR and sequenced a cDNA fragment covering the coding region of Bmtpi gene. The result confirmed that the in silico cloning cDNA sequence was very accurate.The full-length genomic sequence of silkworm Bmtpi gene was cloned and sequenced (GenBank accession, AY734490). The result of comparing DNA sequence to cDAN sequence showed there are 5 introns with length of 580bp, 297bp, 103bp, 1,187bp, and 333bp, respectively and 6 exons with length of 66bp, 120bp, 112bp, HObp, 207bp and 319bp, respectively, all the boundary of extrons/introns have GT/AG conserved sequences, the ORF spans 5 extrons. It was predicted that there is one potential promoter sequence with 0.81 score located at the position of 267th~317th site but no TATA-box and CAAT-box in 700bp upstream silkworm Bmtpi transcript site.Blasting the deduced amino acid sequence of silkworm Bmtpi gene against the protein motif database in NCBI GenBank showed very high similarity to that of triosephosphate isomerase. It was aligned against related TPI sequences of other species such as Drosophila melanogaster (GenBank accession, CAA40804), Anopheles gambiae (XP_321467), Tenebrio molitor (CAD43178), Helicoverpa armigera and Heliothis virescens (AAA79847), and the identity were 70%, 70%, 76%, 80% and 80%, respectively. It was revealed that the putative peptide encoded by silkworm Bmtpi is significant similarity in sequence and function to TPIs of other insects. Phylogenetic tree of insect TPIs is mainly consistent with the classification system of these insects.According to the above analysis results, we can predict the deduced encoding protein by silkworm Bmtpi is similar function to triosephosphate isomerase (TPI, EC 5.3.1.1) for catalysis of conversion dihydroxyacetone phosphate into glyceraldehydes 3-phosphate in glucose glycolysis and it plays a vital role for silkworm life-support system.In butterfly Heliconius, tpi gene has been located on the Z chromosome. We defined the technical conditions for real-time quantitative PCR to co-amplify Bmtpi and reference genes using fluorogenic probes in one PCR tube and the comparative cycle threshold method to detect the copies of Bmtpi in the silkworm genome. By
    comparing the copy of Bmlpi gene with that of reference genes DH-PBAN, located on 11th chromosome (GenBank accession, D16230), the copy ratio of Bmtpi to DH-PBAN were 0.5 and 1 in female and male silkworm respectively such as the ratio of Z chromosome to antosome set in female and male silkworm. The copy ratio of Bmtpi to Bmkeltin, mapped on Z chromosome (GenBank accession, AB079865), was1 in both sex silkworm genome. It means that the copy of Bmtpi in silkworm genome is equal to that of Bmkettin. So we concluded that Bmtpi is linked with Bmkettin and located on the Z chromosome.2 cloning and analysis pre-mRNA alternative splicing pathway of silkworm Bmtra-2 geneThe cDNA sequence of the Bombyx mori that encoded amino acid peptide containing the RNA recognition motif (RRM) was selected as a probe to blast the Bombyx mori EST database for homologous clones. A novel silkworm gene {Bmtra-2) full-length cDNA of l,275bp with a complete ORF (129-984) and encoded an identical 284-aa protein was cloned and verified by RT-PCR.The full-length genomic sequence of 7,838bp of silkworm Bmlra-2 gene was cloned and sequenced (GenBank accession, AY626066). The result of comparing its DNA sequence to cDAN sequence showed there are 7 introns with length of 127bp, l,413bp, 999bp, 556bp, l,220bp, l,020bp, and l,230bp, respectively and 8 exons with length of 143bp, 134bp, 205bp, 129bp, 173bp, 48bp, 141bp and 302bp respectively, all splice sites of exons/introns conformed to the GT/AG rule, the ORF spans 8 extrons.The deduced amino acid sequence of silkworm Bmtra-2 gene contains one RRM motif, two arginine (R)- and serine (S)-rich domains (RS domain) at each end and a seven-glycine (G)-rich region located between RRM and the C-terminus of RS domain. The overall organization of this protein is similar to many insects TRA-2 and other RNA binding proteins. It showed 80% of homology to Apis mellifera TRA-2
    (GenBank accession, XP_396858), 65% to Drosophila virilis TRA-2 (AAB58113), 64% to Musca domestica TRA-2 (AAW34233), 60% to Drosophila melanogaster TRA-2 (AAA28953) and 58% of Anopheles Anopheles TRA-2 (EAA13826). The conserved regions were the RRM and RRM-linker junction region. Based on the organizational and sequence similarities of this silkworm TRA-2 to other insects TRA-2, we tentatively designated this gene as the silkworm Bmtra-2. Although similarity extended throughout the entire protein, the RS domains were of low alignment, it should be noted the glycine (G) rich region was not contained in other insects known TRA-2 protein, BmTRA-2 has RRM motif and can interact with specific silkworm pre-mRNAs to affect their splicing patterns in a manner analogousto the way as other insectsTRA-2.According to the sequence polymorphism of ESTs selected from the blasting output ofBombyx mori EST database there are multiple transcripts from Bmtra-2 gene. By comparing these ESTs to Bmtra-2 DNA sequence, it was found that there are six mRNA produced from Bmtra-2 pre-mRNA using alternative splicing pathway. The model of Bmtra-2 pre-mRNA alternative splicing pathway during processing was verified by RT-PCR. All six isoforms deduced from six alternative spliced mRNA of Bmtra-2 pre-mRNA have the same second structure and all contain one RRM and two RS domains at each end. There are differences of phosphorylation site among them. Whether these differences of phosphorylation site bring about different roles will be analyzed in the future.In this article, we successfully cloned silkworm Bmtpi gene and Bmtra-2 gene through in silico cloning gene approach together with experimental verification. Their functions were predicated by blasting protein database and comparing with other insect homologues. We located Bmtpi on Z chromosome by comparing the copies ratio of Bmtpi to DH-PBAN and Bmkettin between male and female silkworm
    genome. We also found that Bmtra-2 gene can produce six mRNAs by alternative splicing pathways during its pre-mRNA processing just like that of tra-2 gene of Drosophila. But the functions of two genes should be studied with the more effective approach in the future. The effective approach established in this study should contribute to study of large-scale functional genes in silkworm genome.
引文
1. Abe H, Harada T, Kanehara M, et al. 1998a. Genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-1, in the silkworm, Bombyx mori. Genes Genet Syst. 73 (4) : 237-242.
    2. Abe H, Kanehara M, Terada T, et al. 1998b. Identification of novel random amplified polymorphic DNAs (RAPDs) on the W chromosome of the domesticated silkworm, Bombyx mori, and the wild silkworm, B. mandarina, and their retrotransposable element-related nucleotide sequences. Genes. Genet. Syst. , 73 (4) : 243-254.
    3. Abe H, Ohbayashi F, Shimada T, et al. 2000a. Molecular structure of a novel gypsy-Ty3-like retrotransposon (Kabuki) and nested retrotransposable elements on the W chromosome of the silkworm Bombyx. Mol. Gen. Genet, 263 (6) : 916-924.
    4. Abe H, Ohbayashi F, Shimada T, et al. 1998c. A complete full-length non-LTR retrotransposon, BMC1, on the W chromosome of the silkworm, Bombyx mori. Genes Genet Syst. 73 (6) : 353-358.
    5. Abe H, Ohbayashi F, Sugasaki T, et al. 2001. Two novel Pap-like retrotransposons (Kamikaze and Yamato) from the silkworm species Bombyx mort and B. mandarina: common structural features of Pap-like elements. Mol Genet Genomics. 265 (2) : 375-385.
    6. Abe H, Sugasaki T, Kanehara M, et al. 2000b. Identification and genetic mapping of RAPD markers linked to the densonucleosis refractoriness gene, nsd-2, in the silkworm, Bombyx mori. Genes. Genet. Syst, 75 (2) : 93-96.
    7. Adams MD, Celniker SE, Holt RA, et al. 2000. The genome sequence of Drosophila melanogaster. Science. 287 (5461) : 2185-2195.
    8. Bass B L. 2000. Double-stranded RNA as a template for gene silencing. Cell, 101: 235-238.
    9. Benson DA, Karsch-Mizrachi I, Lipman DJ, et al. 2002. GenBank. Nucleic Acids Res, 30 (1) : 17-20.
    10. Bosher J M, Labouesse M. 2000. RNA interference: genetic wand and genetic watchdog. Nature Cell Biology, 2: 31-36.
    11. Cheng TC, Xia QY, Qian JF, et al. 2004. Mining single nucleotide polymorphisms from EST data of silkworm, Bombyx mort, inbred strain Dazao. Insect Biochem Mol Biol. 34 (6) : 523-530.
    12. Fire A, Xu S, MontgomeryM K, et al. 1998. Potent and specific genetic interference by doublestranded RNA in Caenorhabdits elegans. Nature, 391: 806-811.
    13. Fleischmann R D, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae. Science, 269: 496-512.
    14. Goffeau et al. 1997. The yeast genome directory. Nature, 387 (Suppl) : 5-105
    15. Goldsmith M R, Shj J. 1994. A molecular map for the silkworm: constructing new links between basic and applied research. American Chemical Society Symposium Series, 544: 45-48.
    16. Goldsmith M R. 1991. The Bombyx mort genome mapping project. Sericolosia, 31: 145-155.
    17. Goldsmith MR, Shimada T, Abe H. 2005. The genetics and genomics of the silkworm, Bombyx mort. Annu Rev Entomol. 50: 71-100.
    18. Gura T. A. 2000. Silence that speaks volumes. Nature, 404: 804-808.
    19. Holt RA, Subramanian GM, Halpern A, et al, 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 298 (5591) : 129-149.
    20. Isobe R, Kojima K, Matsuyama T, et al. 2004. Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms, Arch Virol. 149 (10) : 1931-1940.
    21. Jinrui S, Heckel D G, Goldsmith M R. 1995. A genetic linkage map for the domesticated silkworm, Bombyx mori, based on restriction fragment length polymorphism. Genet Res Camb, 66: 109-126.
    22. Kadono-Okuda K, Kosegawa E, Mase K, et al. 2002. Linkage analysis of maternal EST cDNA clones covering all twenty-eight chromosomes in the silkworm, Bombyx mori. Insect Mol Biol. 11(5): 443-451.
    23. Kawasaki H, Ote M, Okano K, et al. 2004. Change in the expressed gene patterns of the wing disc during the metamorphosis of Bombyx mori. Gene. 343(1): 133-142.
    24. Kawasaki H, Sugaya K, Quan GX, et al. 2003. Analysis of alpha- and beta-tubulin genes of Bombyx mori using an EST database. Insect Biochem Mol Biol. 33(1): 131-137.
    25. Kikuchi Y, Mori K, Suzuki S, et al. 1992. Structure of the Bombyx mori fibroin light-chain-encoding gene upstream sequence elements common to the light and heavy chain. Gene, 15:110(2): 151-158.
    26. Mita K, Kasahara M, Sasaki S, et al. 2004. The genome sequence of silkworm, Bombyx mori. DNA Res. 11(1): 27-35.
    27. Mita K, Morimyo M, Okano K, et al. 2003. The construction of an EST database for Bombyx mori and its application. Proc Natl Acad Sci U S A. 100(24): 14121-14126.
    28. Munn. 2004. Genome of honeybee sequenced in USA. Bee World. 85(1): 12-13.
    29. Nagaraju J, Reddy KD, Nagaraja GM, et al. 2001. Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori. Heredity, 86(Pt 5): 588-597.
    30. Ohbayashi F, Shimada T, Sugasaki T, et al. 1998. Molecular structure of the copia-like retrotransposable element Yokozuna on the W chromosome of the silkworm, Bombyx mori. Genes Genet Syst. 73(6): 345-352.
    31. Phillip A Sharp. 2001. RNA interference-2001. Gene & Development, 15: 485-490.
    32. Phillip A Sharp. 1999. RNAi and double-strand RNA. Gene & Development, 13: 139-141.
    33. Pinyarat W, Shimada T, Xu WH, et al. 1995. Linkage analysis of the gene encoding precursor protein of diapause hormone and pheromone biosynthesis-activating neuropeptide in the silkmoth, Bombyx mori. Genet Res, 65(2): 105-111.
    34. Prasad MD, Muthulakshmi M, Arunkumar KP, et al. 2005. SilkSatDb: a microsatellite database of the silkworm, Bombyx mori. Nucleic Acids Res. 33 Database Issue: D403-406.
    35. Promboon A, Shimada T, Fujiwara H, et al. 1995. Linkage map of random amplified polymorphic DNAs (RAPDs) in the silkworm, Bombyx mori. Genet.Res. Camb, 66: 1-7.
    36. Quan G X, Kanada T, Tamura T. 2002. Induction of the white egg 3 mutant phenotype by
     injection of the double-stranded RNA of the silkworm white gene. Insect Molecular Biology, 11 (3): 217-222.
    37. Reddy KD, Abraham EG, Nagaraju J. 1999. Microsatellites in the silkworm, Bombyx mori: abundance, polymorphism, and strain characterization. Genome, 42(6): 1057-1065.
    38. Reddy KD, Nagaraju J, Abraham EG. 1999. Genetic characterization of the silkworm Bombyx mori by simple sequence repeat (SSR)-anchored PCR. Heredity, 83(Pt 6): 681-687.
    39. Sayda M Elbashir, Winfried Lendeckel, Thomas T. 2001. RNA interference is mediated by 21 and 22 mucleotide RNAs. Gene &Development, 15 :188-200.
    40. Suzuki MG, Shimada T, Kobayashi M. 1998. Absence of dosage compensation at the transcription level of a sex-linked gene in a female heterogametic insect, Bombyx mori. Heredity, 81 (Pt 3): 275-283.
    41. Tabunoki H, Higurashi S, Ninagi O, et al. 2004. A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS Lett. 567(2-3): 175-178.
    42. Takeda Y, Chuman Y, Shirasu N, et al. 2004. Structural analysis and identification of novel isoforms of the circadian clock gene period in the silk moth Bombyx mori. Zoolog Sci. 21(9): 903-915.
    43. Tan YD, Wan C, Zhu Y, et al. 2001. An amplified fragment length polymorphism map of the silkworm. Genetics, 157(3): 1277-1284.
    44. The Arabidopsis Genome Initiative. 2000. Arabdopsis genome has been sequenced and annotated by the Arabidopsis Genome Initiative (AGI). Nature, 408: 796-815.
    45. The C. elegans Sequencing Consortium. 1998. Genome sequence of nematode C. elegans: a platform for investigating biology. Science, 282: 2012-2018.
    46. Uhlirova M, Foy BD, Beaty BJ, et al. 2003. Use of Sindbis virus-mediated RNA interference to demonstrate a conserved role of Broad-Complex in insect metamorphosis. Proc Natl Acad Sci USA. 100(26): 15607-15612.
    47. Ventel J C, Adams M D, Myers E W, et al. 2001. The sequence of human genome. Scinece, 291(5507): 1304-1351.
    48. Venter C, et al. 2001. The sequence of the human genome. Science, 291: 1304-1351.
    49. Wang J, Xia Q, He X, et al.2005. SilkDB: a knowledgebase for silkworm biology and genomics. Nucleic Acids Res. 33 Database Issue: D399-402.
    50. Wang Y, Zhang P, Fujii H, et al. 2004. Proteomic studies of lipopolysaccharide-induced polypeptides in the silkworm, Bombyx mori. Biosci Biotechnol Biochem. 68(8): 1821-1823.
    51. Wu C, Asakawa S, Shimizu N, et al . 1999. Construction and characterization of bacterial artificial chromosome libraries from the silkworm, Bombyx mori. Mol Gen Genet, 261: 698-706.
    52. Xia Q, Zhou Z, Lu C, et al. 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 306 (5703) : 1937-1940.
    53. Yasukochi Y. 1998. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics, 150 (4) : 1513-1525.
    54. Yoshiga T, Okano K, Mita K, et al. 2000. cDNA cloning of acyl-CoA desaturase homologs in the silkworm, Bombyx mori Gene. Apr 4; 246 (1-2) : 339-345.
    55. Zhong Bo-xiong, Weng hong-biao, Fang wei-huan. 2002. Preparation of protein samples for gel electrophoresis by sequential extraction. Journal of zhejiang university Science, 5: 606-610.
    56.陈大福,牛宝龙,翁宏飚.等.2004.利用EST库资源克隆家蚕腺苷酸转移酶基因.蚕业科学,30 (2):151-156.
    57.陈克平,鲁成,向仲怀等.2001.家蚕耐氟性RAPD分子标记研究.农业生物技术学报,9(2):136-138.
    58.陈克平,何斯美,鲁成等.1999.分子连锁图与家蚕育种.3:1-4.
    59.程道军,周泽扬,鲁成等.2000.RFLP技术构建家蚕现行DNA指纹图谱的研究.西南农业大学学报,22(6):484-486.
    60.程道军,夏庆友,周泽扬等.2003.家蚕cDNA文库构建及大规模EST测序.蚕业科学,29 (4):335-339.
    61.程廷才,夏庆友,刘春等.2004.家蚕chi、gluE和fruA基因与微生物相应基因的同源性及基因水平转移初探.遗传学报,31 (10):1082~1088.
    62.何克荣,夏建国,叶爱红等,1996.家蚕标记基因位点与数量性状基因位点重组参数的最大似然估计法.蚕业科学,22(1):31~35
    63.何宁佳,鲁成,周泽扬等.1998.利用SADF法进行家蚕基因组DNA多态性分析.生物化学与生物物理进展,25(6):563-565.
    64.何宁佳,邓礼容.1996.家蚕基因组文库的构建.西南农业大学学报,18(2):106-110.
    65.黄解于,吴祥甫.1993.家蚕的基因文库.昆虫学报,36 (2):138-142.
    66.黄君霆.2004.家蚕基因组序列解文及其展望.蚕业科学,30 (1):1-5.
    67.靳远祥,徐孟奎,陈玉银等.2004a.家蚕雌性附腺及其Ng突变体蛋白质组双向电泳图谱分析。生物工程学报,20 (4) 590-594.
    68.靳远祥.徐孟奎.陈玉银等.2004b.家蚕雌性附腺及其Ng突变体的蛋白质组差异研究。生物化学与生物物理进展,31 (7):622-627.
    69.靳远祥,徐孟奎,姜永煌等.2004c.家蚕茧色限性品种雌雄绢丝腺组织蛋白质组双向凝 胶电泳分析。农业生物技术学报,12 (4):431-435.
    70.李斌,鲁成,周泽扬等.1999.家蚕RAPD的多态性与稳定性分析.西南农业大学学报,21(5):408-411.
    71.李斌,鲁成,周泽扬等.2000.RAPD标记构建家蚕分子连锁图.遗传学报.27 (2):127-132.
    72.廖顺尧,刘运强,鲁成等.2001.家蚕卵线粒体DNA限制性内切酶长度多态性研究.西南农业大学学报,23 (1):29-32.
    73.林健荣,梅曼彤,黄自然等.2001.家蚕胚胎温敏性基因的RAPD标记筛选.农业生物技术学报,9(2):171-174.
    74.林英,赵萍,侯勇等.2005.家蚕卵黄原蛋白及其受体基因.动物学报 51(1):117-125.
    75.刘春,帅小蓉,程廷才等.2004.家蚕胚胎发育时期的RNA干涉研究。生物化学生物物理进展,31 (4) 322-327.
    76.鲁成,代方银,向仲怀。2003.家蚕基因库突变系统的研究 中国农业科学,36(8):968-975
    77.鲁成,刘连碧,周泽扬等.1996.家蚕丝素基因pFb2.9限制性片断长度多态性研究.西南农业大学学报,18(2):103-107.
    78.鲁成,余仕红,向仲怀.2002.中国野桑蚕和家蚕的分子系统学研究.中国农业科学,35(1):94-101.
    79.鲁成,李斌,赵爱春等.2004.家蚕重要经济性状的QTL定位研究。中国科学C辑,34(3):236-242
    80.鲁成,刘运强,廖顺尧等.2002.家蚕线粒体基因组全序列测定与分析。农业生物技术学报,10 (2):163-170.
    81.秦俭,易文仲.1996,家蚕突变基因分析和基因资源库的建立及应用研究.蚕业科学,22(1):13-19.
    82.邱咏梅,夏庆友,程道军等.2004.家蚕母性基因的表达序列标签分析。昆虫学报 47(2):159-165
    83.沈以红,程道军,查幸福等.2004.家蚕脂肪体组织基因表达谱的研究 Ⅰ.家蚕5龄中期幼虫脂肪体组织基因表达分析.蚕业科学,30 (1):24-27.
    84.司马杨虎,李斌,陈大霞等.2004.不同标记数对家蚕茧质性状的QTL定位比较。蚕业科学,30(3):249-254。
    85.谭远德.1996.家蚕QTL定位与分子标记(RAPD)连锁图谱的构建:[博士学位论文]重庆:西南农业大学蚕桑丝绸学院.
    86.土井良宏.1996.家蚕突变基因与连锁群。蚕学通讯,16 (4):21-27.
    87.土井良宏.1997.家蚕突变基因与连锁群(续).蚕学通讯,17 (1):33-40.
    88.万春玲,谭远德,朱玉芳等.2001.利用AFLP技术构建家蚕分子标记连锁图谱.中国农业科学,34(3):338-341.
    89.万春玲,朱玉芳,谭远德.1999.AFLP标记在家蚕的遗传多样性方面的应用.生物技术,9(5):4-9.
    90.汪琳,周泽扬,代方银等.2000.家蚕龙角突变基因RAPD分子标记筛选及其克隆.26(1):16-19.
    91.王慧超,朱勇.2004.家蚕雌特异分子标记筛选、克隆及其序列分析.蚕业科学,30(1):34-37.
    92.翁宏飚,徐孟奎,张耀洲.1996.家蚕的RAPD及其品种间的差异.浙江农业大学学报,22(2):152-156.
    93.吴萍,李奕仁,沈兴家.2004.数量性状基因座定位与家蚕育种.25 (4):4-7.
    94.夏庆友,周泽扬,鲁成等.1998.家蚕不同地理品种分子系统学研究.昆虫学报,41(11):32-40.
    95.夏庆友,周泽扬,鲁成等.1996.家蚕Y,Nl~1基因和Z染色体的RAPD分子标记研究.西南农业大学学报,18(2):114-118.
    96.夏庆友,帅小蓉,刘春等.2003.RNA干涉及其在蚕功能基因组研究中的应用.蚕业科学,29 (3):213-216
    97.颜新培,钟伯雄,曹家树等.2004.家蚕催青期胚胎蛋白质图谱的建立。蚕业科学,30(1):28-33.
    98.颜新培,钟伯雄,徐孟奎等.2003.家蚕五龄后部丝腺蛋白质构成与茧层量的关系.蚕业科学,29 (4):344-348.
    99.姚国华,钟伯雄,颜新培等.2004.家蚕胚胎发育关联的初始蛋白质研究蚕业科学,30(4):436-439.
    100.钟伯雄,颜海燕,沈飞英,等.家蚕蛋白质双向电泳的样品制备方法(J).蚕业科学,2003,29(4):428-433
    101.钟伯雄.1999.家蚕胚胎发育时期的蛋白质变化及构造分析.遗传学报,26(6):627-633.
    102.钟伯雄.2001.五龄家蚕若干组织器官蛋白质数据库构建.遗传学报,28(3):217-224.
    103.钟伯雄,余迎朴,徐豫松等.2004.家蚕五龄幼虫后部丝腺细胞EST的测定和基因表达谱分析.中国科学C辑,34(5):436-443
    104.祝新荣,何克荣,夏建国.1997.家蚕性染色体上产卵量主基因位点的研究.浙江农业学报,9(2):109-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700