用户名: 密码: 验证码:
重庆主城区大气可吸入颗粒物与雾水污染特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类活动的不断加剧,大气中微粒的不断增加带来的对气候、环境和人体健康的影响已引起了人们的日益关注,城市大气颗粒物污染已成为研究的热点课题。我国颗粒物污染问题十分严重,大部分城市在绝大部分天数首要空气污染物均为PM_(10)。重庆市2000~2003 年PM_(10) 平均值基本维持在150ug/m~3 左右,超过国家空气质量二级标准50%。对重庆主城区PM_(10) 和雾水进行采样和全样品分析的研究十分重要和必要。本文紧密围绕当前城市空气污染研究的热点和前沿问题,通过系统的野外采样、外场观测、室内分析和模型计算等研究方法,对颗粒物、雾、雾水、雨水的物理化学特征以及颗粒物的来源进行了比较全面的研究。主要包括以下几方面内容:
    (1)重庆市PM_(10) 浓度的时空变化规律研究。研究了重庆市区和远郊区清洁对照点在不同季节及一天中的不同时段中PM_(10) 及污染水平变化。本研究针对上述问题进行调查,探讨了重庆大气PM_(10) 和雾水的时空变化规律以及气象因子对颗粒物污染的影响。研究表明:
    主城区PM_(10) 平均浓度为159μgm~(-3),清洁对照点的缙云山为65.3μg m~(-3),城区两个采样点颗粒物超过国家环境空气质量二级标准0.06 倍,是缙云山清洁对照点的2.43 倍。市区和清洁对照点大气颗粒物污染水平具有明显的季节性。城区两个采样点PM_(10) 浓度冬季最高,夏季最低,而清洁对照点的最大浓度也出现在冬季,但最低浓度出现在春季。
    大气粒子平均个数为799.3 个/立方厘米,最大浓度为1103.8 个/立方厘米,最小浓度为325.5 个/立方厘米。和十年前相比,大于0.3 微米的大气粒子平均数浓度增加了2.2 倍。
    大气粒子数浓度有明显的日变化,夜间和上午的浓度值较大,而午后的浓度值较小。而影响我市冬季能见度最大的是直径在0.5-0.8μm 粒子。
    (2)PM_(10) 化学性质的研究。利用XRF 研究了不同来源的颗粒物表面有害金属元素的组成;使用离子色谱(IC)分析了重庆市大气颗粒物中可溶无机组分含量。研究表明:
    颗粒物全样Fe 的元素浓度在所有19 种元素中含量最高,其次为Zn 元素和Pb 元素。交通干道上PM_(10) 样品中水溶和全样微量元素的含量明显低于环境大气PM_(10) 的9 种水溶微量元素总含量。PM_(10) 水溶性阳离子的年均浓度分别为:Na~+ 0.19μg/m~3 、NH_4~+ 3.26μg/m~3 、K~+1.92μg/m~3 和Ca~(2+) 10.54μg/m~3。Ca~(2+)是四种阳离子中浓度最高的,分别是其他三种阳离子浓度的55.5、3.23 和5.5 倍。水溶性阴离子
With the incessant exacerbation of human activities, the influence on climate, environment and human health because of the increasing air-borne particulates has drawn people’s attention increasingly. And the city atmosphere particulates pollution has become a popular research issue. The problem of atmosphere particulates pollution in china is so serious that the chief atmosphere contaminant in most days of a majority of cities is PM10. The mean values of Chongqing from the year of 2000 to 2003 basically kept around 150ug/m3, which exceeded 50% of the secondary grade of national air-quality criterion. Therefore, it is greatly important and necessary to sample the PM_(10) and fog water of Chonqging urban section and analyze the whole sample. This paper focus on the current pop issue and front problem of city air pollution, and through systemic field sampling, observation and indoor analysis, the physico-chemical characteristics of particulates, fog, fog water and rain water and the resources of particulates have been studied in entirety. The main contents are included as follows:
    (1) The research of the variation law of PM10 concentration as time and space. It discusses PM_(10) in different season and different period of a day and the pollution level variation in Chongqing urban and remote suburb cleanness contrast spot. This study investigates according to the questions above, and discusses air PM_(10) of Chongqing , time and space variation rule and the influence about the gas factors to particulates pollution. The research result demonstrates that :
    The mean concentration of PM10n urban section and in Jinyunshan cleanness contrast spot are respectively 159μgm~(-3) and 64.3μgm~(-3). Both of the particulates concentration in the two sampling location in urban are 0.06 times more than the secondary grade of national environmental air-quality criterion and 2.43 times more than the concentration of Jinyunshan cleanness contrast spot. Seasonal variation of the atmosphere particulates pollution level both in urban section and cleanness contrast spot is obvious. The highest concentration of PM_(10) of the two sampling location in urban section appear in winter, which is similar to the location of cleanness contrast spot, and the lowest concentration of the two sampling location in urban section appear in summer while the lowest concentration in the cleanness contrast spot appears in spring.
    The average density number of air particles is 799.3 per cubic centimeter, the highest density number is 1103.8 per cubic centimeter and the lowest density number is
    325.5 per cubic centimeter. Compared with the values of about ten years ago, the number of the particle the size of which is over 0.3μm increased 2.2 times. Daily variation of particle density number is obvious. The concentration value is relatively high in night and morning, and lesser in the afternoon. The particles with the size between 0.5-0.8μm are the main contributor for the visibility decrease . (2) The research of the chemical character of PM10. It investigates the constitution of the deleterious metal on the surface of the particulates belongs to different source and analyzes the content of the dissolvable inorganic component in the atmosphere particulates of Chongqing using the ion color spectrum. The research result demonstrates that: The element concentration of total sample Fe granule is the highest among the all 19 element, next is Zn and Pb. The content of the dissolvable and total sampling microelement in the sample of PM10 which is sampled in traffic artery is obviously lower than the 9 kinds of dissolvable microelement in the environment atmosphere PM10. The average annual concentration of PM10 water-soluble anions are respectively Na+0.19μg/m3, NH4+ 3.26μg/m3 、K+1.92μg/m3 and Ca2+10.54μg/m3. The concentration of Ca2+ is the highest of the four anions which is respectively 55.5, 3.23, 5.5 times of the other three cations. The average annual concentration of water-soluble anions are respectively Cl-2.07μg/m3、NO3-5.39μg/m3 and SO42-17.16μg/m3. The concentration of SO42-is the highest, which is 8.3 times of Cl-and 3.2 times of NO3-. No matter the urban section or cleanness contrast spot, The ratio of [NO3-]/[ SO42-] is relatively small which indicates that the air pollution is mainly caused by fixed pollution resources. (3) The research of physical and chemical characteristic of fog. It mainly includes the fog sampling, the observation of the distribution of the fogdrop spectrum and the characteristic of the quantity of the containing water and the chemical component of the fog water as well as the research of the relationship attaching these mentioned above with the atmosphere visibility and the atmosphere polluted condition. The research result demonstrates that: The density number of fog droplet increased ten times compared with the value of about ten years ago, the average diameter of the fog droplet decreased 2.8 times and the moisture containing in the particles increased three times. Analysis of the results shows that all the ions concentration of fog water is much higher than that of precipitation. (4) The analytical research of the. It adopts the chemical mass balance particulates
    source analytical model to discuss the contribution proportion to the atmosphere made by the human activity of burning coal, traffic, transportation, construction and so on. The research result demonstrates that: Sources analytical model indicates that fugitive dust, construction dust and smut are the important sources which influence Chongqing atmosphere particulates pollution status. The innovated point of the research of this paper: (1) It is combined with the current pop research issue of the urban atmosphere pollution ”The pollution characteristic of the urban particulates and the controlling technology and the policy”which is the worldwide research problem to integer the particulates, the fogdrop spectrum, the fog water and the rainwater for the first time in Chongqing. (2) It comprehensively and systemically investigates the mass concentration of the inhalant atmosphere particulates, the time and space distribution characteristic of the chemical component and the constitution of the source of the particulates, and proposes the controlling countermeasure of the particulates pollution which has the significant academic supervising meaning to the treatment of the urban particulates pollution. (3) Besides analyzing and improving air particles spectrum fitting and the computing methods to the visibility influence, it fist concludes that the main source of the urban inhalant particulates of Chongqing is the raising road dust, the construction dust and the burning coal dust has the academic proof by using the chemical mass balance analytical model of the particulates source to compute.
引文
[1] IIASA. The new focus on fine particulate matter. http://www.iiasa.ac.at/rains/ pm-intro. 2002.
    [2] 陈德均,季延安,林肇信.大气污染化学,机械工业出版社,1987,北京
    [3] 戴树桂(主编).环境化学,高等教育出版社1995,北京.
    [4] 周福民等.北京中关村地区气溶胶的酸性测量.环境科学,1998,19(2.):6-11.
    [5] 姚小红等. 沿海地区海盐和大气污染物反应的致酸作用.环境科学.1998,19(3):22.
    [6] 唐孝炎.大气环境化学.高等教育出版社,1990,北京.
    [7] 国家环境保护局. 2002 年全国空气环境质量状况. http://www.sepa.gov.cn/ 650490878791516160/20030214/1036828.html. 2002.
    [8] 邵龙义, 时宗波,黄勤. 都市大气环境中可吸入颗粒物的研究. 环境保护, 2000.1: 24-29
    [9] Richard J. Countess. Development of a PM2.5 Emissions Inventory for the South Coast Air Basin. JAWMA, 1999, 49(9): 125-132.
    [10] 吴国平. 我国四城市空气中PM2.5 和PM10的污染水平. 中国环境科学,1999. 19(2):133-137
    [11] David P. Lamoree, Jay R. Turner. PM Emissions Emanating from Limited-Access Highways. JAWMA, 1999, 49(9): 85-94.
    [12] Michael John Kleeman. Source Contributions to the Size and Composition Distribution of Urban Particulate Air Pollution. PH. D. Thesis, California Institute of Technology, 1998.
    [13] 戴树桂,朱坦,白志鹏.受体模型在大气颗粒物原解析中的应用和进展.中国环境科学1995 ,15(4):252-257.
    [14] 冯银厂,白志鹏,朱坦.大气颗粒物二重原解析技术原理及应用.第二届环境模拟与污染控制学术研讨会论文集.2001,11 月.
    [15] 冯银厂博士论文:关于化学质量平衡(CMB)受体模型应用中若干问题的研究,南开大学环境科学与工程学院,2002 年4 月.
    [16] J. C. Chow, J. G. Watson, E. M. Fujita, Z. Lu, D. R. Lawson. Temporal and Spatial Variations of PM2.5 and PM10 Aerosol in the Southern California Air Quality Study. Atmospheric Environment, 1994, 28(12): 2061-2080.
    [17] J.H.Seinfeld.AIR POLLUTION.physical and chemical fundamentals. Mc. Graw-Hill book company, 1975:75-78.
    [18] Kato,N.,1996.Analysis of structure of energy consumption and dynamics of emission of atmospheric species related to the global environmental change (SOX,NOX and CO2)in Asia. Atmosphereic environment 30,2757-2785.
    [19] Countess R.J. ,Wolff G.T. The Dever winter aerosol: A comprehensive chemical characterization . Journal of Air and Waste Management,1980.30(11):1194-1200.
    [20] Fang G, Chang C, et al. Characterization of chemical species in PM10 and PM2.5 aerosols in suburban and rural sites of central Taiwan. The Science of the Total Environment. 1999, 234:
    203-212.
    [21] Willis R.D. Workshop on UNMIX andPMFas Applied to PM2.5 (Final Report). U.S. EPA, RTP, NC. February 2000
    [22] Michael J K. Source contributions to the size and composition distribution of urban particulate air pollution. Ph. D. Thesis, California Institute of Technology. 1998.
    [23] Kerminen V M, Teinila K, Hillamo R. Size-segregated chemistry of particulate dicarboxylic acids in the Arctic atmosphere. Atmospheric Environment. 1999, 33: 2089-2100.
    [24] 刘强, 王明星, 李晶. 大气气溶胶研究现状和发展趋势. 中国粉体技术. 1999, 5(13): 17-23.
    [25] Horvath H. Size segregated light absorption coefficient of the atmospheric aerosol. Atmospheric Environment. 1993, 27A: 317-384.
    [26] Sloane C S, Watson J G, et al. Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in Denver. Atmospheric Environment. 1991, 25A: 1013-1024.
    [27] Pratsinis S E, Ellis C, et al. The carbon-containing component of the Los Angles aerosol: source apportionment and contributions to the visibility budget. Journal of Air Pollution Control Association. 1984, 34: 643-650.
    [28] Countess R J, Wolff G T, Steven H C. The Denver winter aerosol: A comprehensive chemical characterization. Journal of Air & Waste Management Association. 1980, 30: 1194-1200.
    [29] Chow J C, Bachmann J D, Wierman S S G, et al. Visibility: science and regulation. Journal of Air & Waste Management Association. 2002, 52: 973-999.
    [30] Andreae,M.O.;Ccrutzen,P.J,“Atmospheric aerosols:Bio geochemical sources and role in atmospheric chemistry”, science, 1997, 276: 1052.
    [31] Matthew P. Fraser, Glen R. Cass, Bernd R. T. Simoneit. Particulate Organic Compounds Emitted from Motor Vehicle Exhaust and in the Urban Atmosphere. Atmospheric Environment, 1999, 33: 2715-2724.
    [32] Michael J. Kleeman, Glen R. Cass. Effect of Emissions Control Strategies on the Size and Composition Distribution of Urban Particulate Air Polltion. Environmental Science and Technology, 1999, 33(1): 177-189.
    [33] Nigel N. Clark, Ronald P. Jarrett, Christopher M. Atkinson. Field Measurement of Particulate Matter Emissions, Carbon Monoxide, and Exhaust Opacity from Heavy-duty Diesel Vehicles. JAWMA, 1999, 49(9): 76-84.
    [34] Sievering,H.,Boatman,J.,Galloway,J., Keene,W.,Kim, Y.Luria,M., Ray,J., 1991.
    [35] Heterogene-ous sulfur converion in sea-salt aerosol particles:the role of aerosol water content and size distribution .atmospheric environment 25,1479-1487.
    [36] T. D. Durbin, M. R. Smith, J. M. Norbeck, T. J. Truex. Population Density, Particulate Emission Characterization, and Impact on the Particulate Inventory of Smoking Vehicles in the South Coast Air Quality Management District. JAWMA, 1999, 49(1): 28-38.
    [37] L. J. Dolislager, N. Motallebi. Characterization of Particulate Matter in California. JAWMA, 1999, 49(9): 45-56.
    [38] L. Haller, C.Claiborn, T. Larson, J.Koeing, G. Norris, R. Edgar. Airborne Particulate Matter Size Distributions in an Arid Urban Area. JAWMA, 1999, 49(2): 161-168.
    [39] J. C. Chow. Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. JAWMA, 1995, 45(5): 320-382.
    [40] 赵德山,王明星. 煤烟型城市污染大气气溶胶. 中国环境科学出版社,1991,北京.
    [41] Grosjean D. Organic acids in southern California air: Ambient concentrations, mobile source emissions, in-situ formation and removal processes. Environmental Science & Technology. 1989, 23: 1506-1514.
    [42] Grosjean D, Van Cauwenberghe K, Schmid J, Kelley P. Identification of C3-C10 aliphatic dicarboxylic acids in airborne particulate matter. Environmental Science & Technology. 1978, 12: 313-316.
    [43] Rogge W F, Mazurek M A, Cass G R. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment. 1993, 27: 1309-1330.
    [44] Saxena P, Hildemann L M. Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry. 1996, 24: 57-109.
    [45] Dick W D, Saxena P, McMurry P H. Estimation of water uptake by organic compounds in submicron aerosols measured during the southeastern aerosol particles and visibility study. Journal of Geophysical Research. 2000, 105D: 1471-1479.
    [46] 蒋维楣,曹文俊, 蒋瑞宾. 空气污染气象学教程. 气象出版社, 1993,北京.
    [47] 李宗恺,潘云仙, 孙润桥. 空气污染气象学原理及应用. 气象出版社, 1985,北京.
    [48] Chow J C, Watson J G, et al. PM10 and PM2.5 composition in California’s San Joaquin Valley. Aerosol Science and Technology. 1993, 18: 105-128.
    [49] C. S. Chritoforou, L. G. Salmon, M. P. Hannigan, P. A. Solomon, G. R. Cass. Trends in Fine Particle Concentration and Chemical Composition in Southern California. JAWMA, 2000, 50(1): 43-53.
    [50] Lee Y L, Sequeira R. Water-soluble aerosol and visibility degradation in Hong Kong during autumn and early winter, 1998. Environmental Pollution. 2002, 116: 225-233.
    [51] Cass G R. On the relationship between sulfate air quality and visibility with examples in Los Angeles. Atmospheric Environment. 1979, 13: 1069-1084.
    [52] Tang I N, Wong W T, Munkelwitz H R. The relative importance of atmospheric sulfates and nitrates in visibility reduction. Atmospheric Environment. 1981, 15: 2463-2469.
    [53] White W H, Roberts P T. On the nature and origins of visibility-reducing aerosols in the Los Angeles Air Basin. Atmospheric Environment. 1977, 11: 803-812.
    [54] Patterson E, Eatough D J. Indoor/outdoor relationships for ambient PM2.5 and associated pollutants: epidemiological implications in Lindon, Utah. Journal of Air & Waste Management Association. 2000, 50: 103-110.
    [55] 赵伦. 大气颗粒物对人体健康影响的研究进展. 山东环境. 1997, 75(1): 40-41.
    [56] 魏复盛, 胡伟. 空气细粒子污染的某些特性及环境效应. 香山科学会议主题“可吸入颗粒物的形成机理和防治对策”. 重庆. 2002 年5 月.
    [57] Swift D L. The oronasal airways: the definer and ignored respiratory ozone of the PM10 regulatory convention. Inhalation Toxicology. 1995, 7(1): 125-150.
    [58] Amdur M O, Dubriel M, Creasia D. Respiratory response of guinea pigs to low levels of sulfuric acid. Environmental Research. 1978, 15: 418-423.
    [59] Koenig J Q, Pierson W E, Horike M. The effect of sulfuric acid on pulmonary function in adolescent asthmatics. American Review of Respiratory Disease. 1983, 128: 221-225.
    [60] Bauer M A, Utell M J, Speers D M, et al. Effects of near ambient levels of sulfuric acid aerosol on lung function in exercising subjects with asthma and COPD. American Review of Respiratory Disease. 1988, 137: A167.
    [61] Leikauf G D, Spector D M, Albert R E, Lippmann M. Dose-dependent effects of submicrometer sulfuric acid aerosol on particle clearance from ciliated human lung airways. American Industrial Hygiene Association Journal. 1984, 45: 285-292.
    [62] Schlesinger R B, Naumann B D, Chen L C. Physiological and histological alterations in the bronchial mucociliary clearance systems of rabbits following intermittent oral or nasal inhalation of sulfuric acid mist. Journal of Toxocology and Environmental Health. 1983, 12: 441-465.
    [63] Lippmann M, Schlesinger R B, Leikauf G, Spektor D, Albert R E. Effects of sulfuric acid aerosols on the respiratory tract airways. Annals of Occupational Hygiene. 1982, 26: 677-690.
    [64] Schlesinger R B. Factors affecting the response of lung clearance system to acid: aerosols role of exposure concentration, exposure time, and relative acidity. Environmental Health Perspectives. 1989, 79: 121-126.
    [65] Dockery D W, Pope C A, Xu X. An association between air pollution and mortality in six US cities. New England Journal of Medicine. 1993, 329: 1753-1759.
    [66] Pope C A, Thun M U, Nambodim M M. Particulate air pollution as a predictor of mortality in a prospective study of US adults. American Journal of Respiratory and Critical Care Medicine. 1995, 151: 669-674.
    [67] Mechler R. A methodology to estimate changes in statistical life expectancy due to the control of particulate matter air pollution. IR-02-035, Laxengurg, Austria: IIASA. 2002.
    [68] Koch M. Airborne fine particulates in the environment: a review of health effect studies, monitoring data and emission inventories. IR-00-004, Laxengurg, Austria: IIASA. 2000.
    [69] Kerminen V M, Hillamo R, Teinila K. Ion balances of size-resolved tropospheric aerosol samples: implications for the acidity and atmospheric processing of aerosols. Atmospheric Environment. 2001, 35: 5255-52
    [70] Lelieveld, J., Heintzenberg, J., 1992. Sulfate cooling effect on climate through in-cloud oxidation of anthropogenic SO2. Science 258, 117~120.
    [71] Pruppacher, H.R., Jaenicke, R., 1995. The processing of water vapor and aerosols by atmospheric clouds, a global estimate. Atmospheric Research 38, 283~295.
    [72] Ravishankara, A. R., 1997. Heterogensous and multiphase chemistry in the tropshere. Science 276, 1058~1065.
    [73] Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric chemistry and physics: From air pollution to climate change. New York, John Wiley & Sons, Inc.
    [74] Pandis, S.N., Pilinis, C., Seinfeld, J.H., 1990. The smog-fog-smog cycle and acid deposition. Journal of Geophysical Research 95D, 8489~8500.
    [75] Pandis, S.N., Seinfeld, J.H., Pilinis, C., 1992. Heterogeneous sulfate production in an urban fog. Atmospheric Environment 26A, 2509~2522.
    [76] Facchini, M.C., Mircea, M., Fuzzi, S., Charlson, R.J., 1999. Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature 401, 257~259.
    [77] Collett Jr., J. L., Hoag, K. J., Rao, X., Pandis, S.N., 1999. Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing Atmospheric Environment 33, 4833~4847
    [78] Blando, J. D., Turpin, B.J., 2000. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment 34, 1623~1632.
    [79] Choularton, T.W., Colvile, R.N., Bower, K.N., Gallagher, M.W., Wells, M., Beswick, K.M. et al.,1997. The Great Dun Fell Cloud Experiment 1993: an overview. Atmospheric Environment 31, 2393~2405.
    [80] O’Dowd, C.D., Lowe, J.A., Smith, M.H., 1999. Observations and modeling of aerosol growth in marine stratocumulus——case study. Atmospheric Environment 33, 3053~3062.
    [81] Sasakawa, M., Ooki, A, Uematsu, M., 2003. Aerosol size distribution during sea fog and its scavenge process of chemical substances over the northwestern North Pacific. Journal of Geophysical Research 108D, 4120, doi: 10.1029/2002JD002329.
    [82] Yin, Y., Wurzler, S., Levin, Z., Reisin, T. G., 2002. Interactions of mineral dust particles and clouds: effects on precipitation and cloud optical properties. Journal of Geophysical Research 107D, 4724, doi:10.1029/2001JD001544.
    [83] Blando, J. D., Turpin, B.J., 2000. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment 34, 1623~1632.
    [84] Andreae, M.O., Charlson, R.J., Bruynseels, F., Storms, H., Van Grieken, R., Maenhaut, W., 1986. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols. Science 232, 1620~1623.
    [85] Pruppacher, H.R., Jaenicke, R., 1995. The processing of water vapor and aerosols by atmospheric clouds, a global estimate. Atmospheric Research 38, 283~295.
    [86] Shi, Z., Shao, L., Jones, T.P., Whittaker, A.G, Lu, S., Bérubé, K.A.,He, T. and Richards, R. J. 2003. Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air site in Beijing, 2001. Atmospheric Environment 37, 4097~4108.
    [87] 肖锐,刘咸德,梁汉东,董树屏,Adams, F., 2004. 北京市春夏季大气气溶胶的单颗粒表征. 岩石与矿物学报,3, 21~26.
    [88] 罗云峰,周秀骥,李维亮,1998. 大气气溶胶辐射强迫及气候效应的研究现状. 地球科学进展13,572~581.
    [89] Charlson, R.J., Seinfeld, J.H., Nenes, A., Kulmala, M., Laaksonen, A., Facchini, M. C., 2001. Reshaping the theory of cloud formation. Science 292, 2025~2026.
    [90] Kreidenweis, S.M., Walcek, C.J., Feingold, G., Gong, W., Jacobson, M.Z., Kim, C.H., Liu, X., Penner, J.E., Nenes, A., Seinfeld, J.H., 2003. Modification of aerosol mass and size distribution due to aqueous-phase SO2 oxidation in clouds: Comparisons of several models. Journal of Geophysical Research 108D, 4213, doi: 10.1029/2002JD002697.
    [91] 中国气候变化国别研究组,2000. 中国气候变化国别研究. 北京:清华大学出版社, pp1~16.
    [92] 罗云峰,2000. 大气科学学科“十五”优先资助领域和一些设想. 国家自然科学基金委等:21 世纪初大气科学回顾与展望——第三次全国大气科学前沿学科科研研讨会论文集. 北京:气象出版社,pp29~36.
    [93] 石广玉,2000. 全球(气候)变化研究的思考——不知道我们不知道什么. 国家自然科学基金委等:21 世纪初大气科学回顾与展望——第三次全国大气科学前沿学科科研研讨会论文集. 北京:气象出版社,pp40~48.
    [94] 刘小红,任传森,王明康,1994. 云下雨滴蒸发产生硫酸盐气溶胶速率的研究. 大气科学18, 349~357.
    [95] 张远航,张行军,李金龙,秦瑜,1995. 层状云降水中化学过程的数值模拟. 环境科学研究8, 21~26.
    [96] 李冰,刘小红,洪钟祥,2000. 积云对二氧化硫和硫酸盐气溶胶作用的研究. 气候与环境研究5,21~24.
    [97] 黄美元,沈志来,刘帅仁,吴玉霞,肖辉,雷恒池,白春红,1995. 中国西南典型地区酸雨形成过程研究. 大气科学19,359~366.
    [98] Lei, H.C., Tanner, P.A., Huang, M.Y., Shen, Z.L., Wu, Y.X., 1997. The acidification process under the cloud in southwest China: obervation results and simulation. Atmospheric Environment 31, 851~861.
    [99] 鲍宝堂,束家鑫,朱炳权,1995. 上海城市雾理化特征的研究. 南京气象学院学报18,114~118.
    [100] 刘红杰,王玮,高金和,庞燕波,王鸣宇,汤大钢,1996. 闽南地区酸性雾水特征初探. 环境科学研究9, 29~32.
    [101] 李子华,吴君,1995. 重庆市区冬季雾滴谱特征. 南京气象学院学报. 18,46~51.
    [102] 朱彬,李子华,黄建平,杨军,黄玉生,黄玉仁,2000. 西双版纳城、郊雾水化学组成分析. 环境科学学报20, 316~321.
    [103] 沈志来, 吴玉霞, 黄美元, 1996. 我国重酸雨地区云水化学观测研究. 科学通报41, 338~ 340.
    [104] 汤大钢, 刘红杰, 王玮, 王鸣宇, 崔平, 杜渐, 2000. 中国华北地区冬季大气污染物航空测量(I)——空中气态污染物污染特征研究. 环境科学研究13,6~9.
    [105] 王玮,汤大钢,刘红杰,王鸣宇,杜渐,2000. 中国华北地区冬季大气污染物航空测量(Ⅱ)———空中大气气溶胶污染特征研究. 环境科学研究13,10~13
    [106] Chow, J.C., Watson, J.G., Lowenthal, D., Solomon, P.A., Magliano, K., Ziman, S.D., Richards, L.W., 1993. PM10 and PM2.5 composition in California’s San Joaquin Valley. Aerosol Science and Technology 18, 105~128.
    [107] 杨复沫,2002. 北京PM2.5 污染特征于来源研究. 清华大学工学博士学位论文.
    [108] 重庆市人民政府关于实施“五管齐下”控制大气污染的通告. 渝发[2001]13 号.
    [109] 吴国平, 胡伟, 藤恩江, 等. 我国四城市空气中PM2.5 和PM10的污染水平. 中国环境科学1999, 19(2): 133-137.
    [110] 唐孝炎. 北京市蓝天工程—能见度及其影响因素和改善途径研究. 中美空气质量管理国际研讨会, 北京, 2000 年4 月.
    [111] 国务院关于环境保护若干问题的决定. 国发[1996]31 号, 1996 年8 月3 日.
    [112] 陈刚才,陈克军,杨三明,赵琦, 王安国.重庆市大气能见度变化趋势及影响因子分析.大气环境科学技术研究进展,第九届大气环境学术会议论文集. 2002.8,乌鲁木齐,65-68.
    [113] 陈刚才,陈克军,王定勇,赵琦. 室内空气中颗粒物对人体健康的影响. 重庆环境科学.2002,4:22-26.
    [114] 陈克军,陈刚才,王定勇,孟小星,陶俊,姜文华. 重庆市大气TSP 特征分析.重庆环境科学.2003,25(4):43-45.
    [115] 陈克军,陈刚才,张卫东,王定勇,孟小星. 重庆市降雨酸度影响因子分析.矿物岩石地球化学通报,2003.22(2).
    [116] 陈思龙,陈桂元,尹华川等. 重庆大气颗粒物与酸性降雨关系研究.重庆环境科学,1991,13(5):26-32.
    [117] 陈昌国,詹忻,李纳,孟梅, 叶晓红, 刘远立, 朱彤, 2002. 重庆市区大气颗粒物的物相组成分析. 环境化学21, 207-208.
    [118] 陈天虎,冯军会,张宇,李宏伟,2001. 合肥市大气颗粒物物相组成及其环境指示意义. 岩石矿物学杂志20, 433-436.
    [119] 陈宗良,葛苏,张晶,1994. 北京大气气溶胶小颗粒的测量与解析. 环境科学研究7, 3-9.
    [120] 仇志军,郭盘林,王基庆, 陆荣荣, 裘惠源, 李晓林, 朱节清,2001. 基于质子探针研究 的大气气溶胶单颗粒源解析. 环境科学22, 50-54.
    [121] 董树屏,刘涛,孙大勇,祁辉,段凤魁,吴清柱,刘咸德,Adams,F., 2001. 用扫描电镜技术识别广州市大气颗粒物主要种类. 岩矿测试20, 202-207.
    [122] 付培健, 王世红, 陈长和, 1998. 探讨气候变化的新热点:大气气溶胶的气候效应. 地球科学进展13, 387-392.
    [123] 李红, 邵龙义, 单忠健, 时宗波,2001. 气溶胶中有机物的研究进展与前景. 中国环境监测17, 62-67.
    [124] 李红, 曾凡刚,邵龙义,时宗波,2002. 可吸入颗粒物对人体健康危害的研究进展. 环境与健康杂志19, 85-87.
    [125] 李令军,高庆生,2001. 2000 年北京沙尘暴源地解析. 环境科学研究14, 1-3.
    [126] 罗云峰,周秀骥,李维亮,1998. 大气气溶胶辐射强迫及气候效应的研究现状. 地球科学进展13,572-581.
    [127] 邵龙义, 时宗波, 2003. 北京西北城区与清洁对照点夏季大气PM10 的微观特征及粒度分布. 环境科学24,11-17.
    [128] 时宗波,邵龙义,李红,Whittaker, A.G., Jones, T.P., BéruBé, K.A., Richards, R.J., 2002. 北京市西北城区取暖期环境大气中PM10 的物理化学特征. 环境科学23, 30-34.
    [129] 李子华,张立民,楼小凤.重庆市区冬季雾的宏微观结构及其物理成因.南京气象学院学报,1993,16(1).
    [130] 李子华,涂晓萍.重庆市区冬季边界层气象要素的时空分布与成雾的关系. 南京气象学院学报,1993,16(3)
    [131] 向波,刘德.重庆雾的特点及其变化分析研究.重庆气象,2002,1(1):34-37.
    [132] Mcmurry P.H. A review of atmospheric aerosol measurements. Atmospheric Environment 2000, 34: 1959-1999.
    [133] Tanner P A, Chan S M. Application of ion chromatography to the Hong Kong rainfall monitoring progress. Chromatographic Analysis. 1996, 739: 249-253.
    [134] 阎炎, 宋强. 酸雨中阴离子的微孔离子色谱法测定. 环境化学. 1997, 16 (1): 94-96.
    [135] 王丽文, 王云艳. 离子色谱法同时测定大气颗粒物中的7 种阴离子分析方法的研究.中国环境监测, 1993, 9 (4): 12-16.
    [136] 谢能, 付厚暾. 离子色谱法分析了大气总悬浮颗粒物中可溶性阴离子组份. 环境科学与技术. 1993, 9 (1): 29-32.
    [137] Wang G, Huang L, Gao S, et al. Characterization of water-soluble species of PM_(10) and PM_(2.5) aerosols in urban area in Nanjing, China, Atmospheric Environment. 2002, 36: 1299-1307.
    [138] 李子华,张立民,楼小凤.重庆市区冬季雾的宏微观结构及其物理成因.南京气象学院学报,1993,16(1).
    [139] 国家环境保护局,国家技术监督局. 中华人民共和国国家标准-环境空气质量标准(GB3095-1996)
    [140] Ma C, Kasahara M, Tohno S, Hwang K. Characterization of the winter atmospheric aerosols in Kyoto and Seoul using PIXE, EAS and IC. Atmospheric Environment. 2001, 35: 747-752.
    [141] Zelenka, M.P., 1997. An analysis of the meteorological parameters affecting ambient concentrations of acid aerosols in Uniontown, Pennsylvania. Atmospheric Environment 31, 869~878.
    [142] Chow J C, Watson J G. Guidelines for PM10 Sampling and Analysis Applicable to Receptor Modeling. EPA-452/R-94-009, US EPA, Office of Air Quality Planning and Standards; Washington D. C., 1994.
    [143] 李子华.中国近40 年来雾的研究.气象学报,2001,59(5):616-624.
    [144] Li Zihua(李子华),Shi Chun’e(石春娥). 1997,3D model Study on Fog over Complex Terrain-Part Ⅱ:Numerical Experiment, ACTA METEOROLOGICA SINICA 11(1).
    [145] Malm William C , Examining the relationship between atmospheric aerosols and light extinction at Mount Rainier and North Cascades National Parks. Atmospheric Environment,1994,28(2):347-360.
    [146] K.matusmoto and II. Tanake. Formation and Dissociation of Atmospheric Particulate Nitrate and Chloride; and Approach Based on Phase Equilibrium. Atmospheric Environment, 1996,30(4):639.
    [147] 孙景群.能见度与相对湿度的关系.气象学报,1985,43(2):230-234.
    [148] Haobo Wang, David Shooter.Water soluble ions of atmospheric aerosols in three New Zealand cities: seasonal changes and sources. Atmospheric Environment, 2001,35, 6031~6040.
    [149] Sachio Ohta, Masahiro Hori.Chemical characterization of atmospheric fine particles in Sapporo with determination of water content. Atmospheric Environment, 1998,32, pp1021~1025.
    [150] Arimoto, R., Duce.Relationships among aerosol constituents from Asia and the North Pacific during Pem-West A.Journal of Geophysical Research, 1996,101,2011-2023.
    [151] Winchester, J.W., Wang, M.X., 1989. Acid-base balance in aerosol components of the Asia-Pacific region. Tellus 41B, 323~327.
    [152] Wei, F., Teng, E., Wu, G., Hu, W., Wilson, W.E., Chapman, R.S., Pau, J.C, Zhang, J., 1999. Ambient concentrations and elemental compositions of PM10 and PM2.5 in four Chinese cities. Environmental Science and Technology 33, 4188~4193.
    [153] Zhang, Z., Friedlander, S.K., 2000. A comparative study of chemical database for fine particle Chinese aerosols. Environmental Science and Technology 34, 4987~4694.
    [154] Richards R.J., Atkins J., Marrs T.C., Brown R.F.R., Masek L.C., 1989. The biochemical and pathological changes produced by the intratracheal instillation of certain components of zinc-hexachloroethane smoke. Toxicology Letter 54, 79~88.
    [155] Costa, D. L., Dreher, K. L.. 1997. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental Health Perspective 105(S5), 1053~1060.
    [156] Dreher, K. L., Jaskot, R. H., Lehmann, J. R., Richards, J. H., McGee, J. K., Ghio, A. J. and Costa, D. L., 1997. Soluble transition metals mediate residual oil fly ash induced acute lung injury. Journal of Toxicology and Environmental Health 50, 637~641.
    [157] Adamson I.Y.R., Prieditis H., Hedgecock C., Vincent R., 2000. Zinc is the toxic factor in the lung response to an atmospheric particulate sample. Toxicology and Applied Pharmacology 166, 111~119.
    [158] 王玮, 潘志, 刘红杰, 叶慧海, 岳欣, 王英, 刘萍, 2001a. 交通来源颗粒物粒径谱分布及其与能见度关系. 环境科学研究14, 17~22.
    [159] Watson, J.G., Copper, J.A., The effective variance weighting for least squares calculations applied to the mass balance receptor model. Atmospheric Environment, 1984,18, 1347~1355.
    [160] Watson, J.G., Robinson, N.F., The USEP/DRI chemical mass balance receptor model, CMB7.0. Environment Software, 1990,5,38~49.
    [161] Hidy, G.M., Venkataraman, C., The chemical mass balance method for estimating atmospheric particle sources in Southern California.Chem.Eng.Comm. 1996, 151,187~209.
    [162] Judith C.Chow, John G.Watson.A laboratory resuspension chamber to measure fugitive dust size distributions and chemical compositions. Atmospheric Environment, 1994,28, pp3463~3481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700