用户名: 密码: 验证码:
滇东南马关地区新生代富钾火山岩和幔源包体的地球化学特征及其深部动力学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇西大陆由扬子板块、华南板块、印支板块以及若干不同地史时期
    形成的地体组成,北西-南东向的哀牢山-红河断裂带横贯此区,在断裂
    带北段大理洱海地区和南段马关地区,分别发育了早晚两期新生代镁铁
    质富钾火山岩。本文以马关地区为研究工作区,选择区内新生代富钾火
    山岩及其所携带幔源橄榄岩包体为研究对象,开展主、微量元素和同位
    素组成研究,以阐明富钾火山岩的岩浆作用过程、源区特征与形成机制,
    揭示该区上地幔的热-化学结构、部分熔融和地幔交代作用的性质以及可
    能的深部动力学过程,并结合前人对洱海地区富钾火山岩的研究资料,
    对比两套富钾火山岩的地球化学特征,以探讨扬子板块和华南板块两个
    不同构造单元下岩石圈地幔源区的特征和富集机制以及岩浆作用的构造
    背景。
     马关富钾火山岩的Mg#在0.56~0.69之间,低于与地幔橄榄岩平衡的
    原始岩浆的Mg#(0.68~0.75),表明马关富钾火山岩并非原始岩浆,而是
    经历了不同程度的结晶分异作用。Sr同位素比值(~(87)Sr/~(86)Sr=
    0.704 l~0.7060)与1/Sr之间不存在正相关关系,以及高Ce/Pb(6.43~25.4,
    平均16.6)和Nb/U(31.2~62.1,平均48.9)、低La/Nb(0.37~0.65,平
    均0.45)和高εNd(>5.64)的特征,表明岩浆成分受地壳混染的可能性小,
    其元素和同位素组成反映了岩浆源区的特征。玄武质组分Al_2O_3、Fe_2O_3、
    CaO和Na_2O含量高,暗示其源区为饱满型地幔;相对亏损的HREE组
    成反映岩浆来源于石榴子石相地幔的部分熔融。与板内高钾火山岩类似
    的高TiO_2含量(>2%)和OIB型微量元素特征,暗示其源区是受源自软
    流圈小体积硅酸岩熔体交代的饱满型石榴子石相二辉橄榄岩。
     位于扬子板块西缘的洱海高钾火山岩(42~24 Ma)富集LILE,亏损
Maguan (southeastern Yunnan) is situated to northwest of South China Sea and extends along the border between China and Vietnam. It is located geologically in the eastern side of the south section of the Ailaoshan-Red River fault belt and structurally within the South China block on the western margin of the Yangtze Plate, where Cenozoic lava is extensively distributed. This paper mainly deals with the elemental and isotope geochemistry of the Cenozoic potassic lava in this area, the petrology, mineral chemistry, elemental and isotope geochemistry as well as the equilibrium temperature of the mantle-derived peridotite xenoliths in the potassic lava. The data are used to explore the magmatic processes, the nature of the source regions and the formation mechanisms of the potassic lava, and to investigate the compositions and dynamic processes of the upper mantle in the study area.The potassic lava in the Maguan area is characterized by the low-medium value of Mg# (0.56-0.69), which is lower than that for the primary magma in equilibrium with mantle-derived peridotite (0.68-0.75). This suggests that the Maguan potassic lava was not primary magma, but may have undergone crystallization and differentiation to various degrees. The lack of correlation between Sr isotope ratio (0.7041-0.7060) and 1/Sr, the
    consistently high Ce/Pb (6.43-25.4, Avg. 16.6) and Nb/U (31.2-62.1, Avg. 48.9) ratios as well as the low La/Nb (0.37-0.65, Avg. 0.45) and high εNd ( > 5.64 ) values argue against contamination of the potassic rocks by crustal components. Consequently, the elemental and isotope signatures inherited the characteristics of the magmatic source regions for the lava. The high contents of basaltic components like Al2O3, Fe2O3, CaO and Na2O imply a fertil mantle source, while the relatively depleted HREE composition indicates that the magma was derived from the partial melting of a garnet-bearing mantle. The high TiO2 content (>2%), similar to that for intraplate highly potassic lava, and the OIB type trace elemental signatures imply that its source could be fertile garnet-bearing lherzolite which has been metasomatized by small volume silicate melt derived from the asthenosphere.The Erhai ultrapotassic lava (42-24 Ma) that is located on the west margin of the Yangtze plate is enriched in LILE but depleted in HFSE, and characterized by low TiO2 contents ( <1% ), high initial 87Sr/86Sr ratios(0.7064-0.7094) and negative εNd values (-3.84~-4.64). Similar to typicalpotassic lava associated with plate subduction in the world, the Erhai ultrapotassic lava was also derived from depleted spinel phase harzburgite metasomatized by fluids originated from the subduction of the Paleotethys domain.The temporal and spatial distribution of these two types of K-rich rocks cannot be explained by any unified tectonic model. It is proposed that the Oligocene magmatism in the Erhai area may have resulted from convective thinning of the thickened lithosphere, whereas the post-Miocene volcanism in the Maguan area was related to the opening of South China Sea. It is noted that the magmatism in this area is roughly coeval with and compositionally similar to those in the circum region of South China Sea (e.g., Guangdong, Hainan Island and VietName) (16-0 Ma). There is a
    magmatic hiatus (32~17 Ma) during the opening of China Sea. It is likely that the magmatism in the Maguan area was related to the stress release subsequent to the cease of the opening of South China Sea, but the detailed dynamical mechanism needs further investigation.The peridotite xenoliths in the Maguan potassic lava include fertil lherzolite, cpx-poor lherzolite and harzburgite. Characterized by relatively simple compositional variation, these samples represent the residues of partial melting to various degrees of the upper mantle. Mantle metasomatism, if any, is limited to a very small number of samples. Cpx is depleted in LREE and shows typical MORB-type Sr-Nd isotopic signatures ( 87Sr/86Sr = 0.7064-0.7094, εNd = 9.5-12.3). These characteristics are rather similar to those for oceanic lithospheric mantle. The relatively refractory peridotites (Fo>90) show an equilibrium temperature of 928-959 ℃, which is lower than that for fertile peridotites (Fo<90, 955-1110 ℃ ). This implies that the lithospheric mantle has a stratified structure with refractory peridotites sitting above the fertile ones. Such a lithospheric architecture is most likely related to the decompressed melting of an upwelling asthenosphere. The high thermal state and the MORB-type isotope signatures of the peridotite xenoliths in the study area suggest that the Maguan peridotites may represent the newly accreted lithospheric mantle, which have been converted from the upwelled asthenosphere with a MORB-like signature. This is consistent with the extensional dynamic setting for the study area since the late Cenozoic.
引文
李献华,周汉文,韦刚健,等.2002a.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约.地球化学,31(1): 26~34.
    舒小辛.1995.云南马关地区碧玄岩中单辉橄榄岩包体的成因.矿物岩石学杂志,14:47~51.
    孙宏娟.2000.藏东及滇东南新生代钾质岩浆作用及其深部制约.中国科学院地质与地球物理研究所博士学位论文,29~61.
    王江海,尹安,Harrison T M,等.2002.青藏东缘新生代两类高钾岩浆活动的热年代学研究.中国科学(D辑),32(7):529~537.
    魏启荣.2002.青藏东缘酋长生代两期高钾岩系中深源包体的岩石学和地球化学研究,中国科学院广州地球化学研究所博士后研究工作报告,8~37.
    谢应雯,张玉泉.1995.云南洱海东部新生代岩浆岩岩石化学.岩石学报,11(4):423~433.
    谢应雯,张玉泉,钟孙霖,等.1999.云南洱海东部新生代高钾碱性岩浆岩痕量元素特征.岩石学报,15(1):75~82.
    云南省地质矿产局.1976.马关幅地质报告:94~104.
    云南省地质矿产局.1990.云南省区域地质志.北京:地质出版社,302~312,572~597.
    张玉泉,谢应雯,涂光炽.1987.哀牢山—金沙江富碱侵入岩及其与裂谷构造关系初步研究.岩石学报,(1):17~26.
    张玉泉,谢应雯.1997.哀牢山-金沙江富碱侵入岩年代学和Nd,Sr同位素特征.中国科学(D辑),27(4):289~293.
    张玉泉,谢应雯,李献华,等.2000.青藏高原东部钾玄岩系岩浆岩同位素特征:岩石成因及其构造意义.中国科学(D辑),30(5):493~498.
    朱炳泉,张玉泉,谢应雯.1992.滇西洱海东第三纪超K质火成岩系的Nd-Sr-Pb同位素特征与西南大陆地幔演化.地球化学,21(3):201~212.
    中国科学院南海海洋研究所.1990.南海陆缘扩张.北京:科学出版社,1~417.
    Briais A., Patriat P. & Tapponnier P. 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. J Geophys Res, 98: 6299-6328.
    Chung S.L., Lee T.Y. & Lo C.H., et al. 1997. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear one. Geology, 25(4): 311-314.
    England P. & Molnar P. 1990. Right-lateral shear and rotation as the explanation for strike-slip faulting in eastern Tibet. Nature, 344: 140-142.
    England P. & Molnar P. 1997. The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults. Geophys J Int, 130: 551-582.
    Foley S. & Peccerillo A. 1992. Potassic and ultrapotassic magmas and their origin. Lithos, 28: 181-185.
    Holt W.E., Li M. & Haines A.J. 1995. Earthquake strain rates and instantaneous relative motions within central and eastern Asia. Geophys J Int, 122: 569-593.
    Houseman G.A. & England P.C. 1993. Crustal thickening versus lateral expulsion in the India-Asian continental collision. J Geophys Res, 98: 12233-12249.
    Lacassin R., Malushi H. & Leloup P.H., et al. 1997. Tertiary diachronic extrusion and deformation of western Indochina: Structural and ~(40)Ar/~(39)Ar evidence from NW Thailand. J Geophys Res, 102, B5, 10013-10037.
    Leloup P.H., Lacassin R. & Tapponnier P., et al. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251: 3-84.
    Li X. H., Zhou H. W. & Chung S. L., et al. 2002. Geochemical and Sr-Nd isotopic characteristics of late Paleogene ultrapotassic magmatism in southeastern Tibet. Int Geol Rev, 44: 559-574.
    McKenzie D. 1990. Spinning continents. Nature, 344: 109-110.
    Mei H.J, Li Y.M. & Li S.R. 1992. The potassic anchibasalt with megacrysts on the Maoeryan Cliff, Magan County, Yunnan Province, China. In: Tu G Z, Ouyang Z Y, (eds). IGCAS Developments in geomestry, contribute to 29th IGC. Beijing: Seismological Press. 273-285.
    Morrison G.W. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13: 97-108.
    Muller D., Rock N.M.S. & Groves D.I. 1992. Geochemical discrimination between shoshonitic and potassic volcanic rocks from different tectonic settings: A pilot study. Mineral Petrol, 46: 259-289.
    Muller D. & Groves D. I. 2000. Potassic Igneous Rocks and Associated Gold-Copper Mineralization (3rd ed). Berlin: Springer-Verlag. 1-252.
    Rangin C, Klein M. & Roques D., et al. 1995. The Red River fault system in the Tonkin Gulf, Vietnam. Tectonophysics, 243(3-4): 209-222.
    Rogers N.W. 1992. Potassic magmatism as a key to trace-element enrichment processes in the upper mantle. J Volcanol Geotherm Res, 50: 85~99.
    Shen Z., Zhao C. & Yin A., et al. 2000. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. J Geophys Res, 105(B3): 5721-5734.
    Tapponnier P & Molnar P. 1976. Slip line field theory and large scale continental tectonics. Nature, 264: 319~324.
    Tapponnier R., Peltzer G. & Le Dain, A. Y., et al. 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 10: 611-616.
    Taylor B. & Hayes D.E., 1980. The tectonic evolution of the South China Basin. In: Hayes D.E. ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands (Monogr. Ser., vol.23). Washington D C: American Geophysical Union, 89-104.
    Wang J.H., Yin A. & Harrison T.M., et al. 2001. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth Planet Sci Lett, 188(1-2): 123-133.
    Wang Pei-Ling, Lo Ching-Hua & Chung Sun-Lin, et al. 2000. Onset timing of
     left-lateral movement along the Ailao Shan-Red River Shear Zone: ~(40)Ar/~(39)Ar dating constraint from the Nam Dinh Area, northeastern Vietnam. J Asian Sci, 18(3): 281-292.
    Wilson M. 1989. Potassic magmatism within continental plates. In: Igneous Petrogenesis. London: Unwin Hyman, 375-416.
    Xu Y.G., Menzies M.S. & Thirlwall M.F., et al. 2001. Exotic lithosphere mantle beneath the western Yangtze craton: Petrogenetic links to Tibet using highly magnesian ultrapotassic rocks. Geology, 29(9): 863-866.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700