用户名: 密码: 验证码:
非协调数值流形方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以复合材料细观力学数值模拟为背景,以数值流形方法为基础,对其进行了改进和拓展,将数值流形方法推广至三维,并提出了非协调数值流形方法,通过数值算例验证了本文方法的正确性和有效性。主要取得了以下成果:
     将覆盖位移函数用自然坐标表示,对四节点四边形数值流形方法提出了改进措施,使得在一般非规则有限数学覆盖网格下,求解单元刚度矩阵的数值积分变得较简单,提高了计算效率。
     通过引入公共面法,重新定义了数值流形方法的接触判断,使接触判断的计算量大大减少,建立了三维数值流形方法。此项工作充实了数值流形方法的研究范围,拓宽了数值流形方法的应用领域。
     在流形单元总体位移场上附加非协调位移基本项,使单元位移函数趋于完全,提出了非协调数值流形方法。该方法改进了流形单元的计算精度,提高了流形单元的计算效率。
     对Wilson非协调位移基本项进行改进,得到了非协调函数生成的一般公式,给出了对应于零阶覆盖和一阶覆盖的非协调流形单元的显式表达,方便于工程应用。
     对非协调数值流形方法进行了稳定性和收敛性分析,完善了非协调数值流形方法的理论基础。并对其稳定性和收敛性进行了数值验证,数值试验表明,新单元构造过程简单,对单元畸变不敏感,计算精度可以得到一定提高,从而证明了本文所提方法的正确性和有效性。
     将非协调数值流形方法应用于稳态温度场的数值计算,推导了势问题的非协调数值流形方法。数值算例表明,非协调数值流形方法得到的温度场近似分布,能够很好地反映真实温度场分布的特性。
     数值流形方法使用有限覆盖技术,将连续与非连续问题统一在一起,成功地模拟了断续节理岩体的裂纹扩展。本文提出的非协调数值流形方法是在传统的数值流形方法基础上,引入非协调项而得到,因此,非协调数值流形方法不仅继承了数值流形方法的优点,而且提高了数值流形方法的计算精度和效率。作为对裂纹扩展问题的进一步讨论,将非协调数值流形方法应用于求解应力强度因子的有效性,并对张拉型裂纹问题进行了数值模拟。
The background of the researches is numerical simulation of particle-reinforced composites. Based on numerical manifold method, this paper improves and extends the method. A new numerical method named incompatible numerical manifold method is presented. To illustrate the feasibility and stability of the present approach, numerical examples are provided. The main contributions can be listed as follows:The covered displacement function expressed by the natural coordinate, the four-nodal quadrangular numerical manifold method is improved. It makes much easy the integration of the four-nodal quadrangular numerical manifold element in irregular covered mathematical mesh form. The results have been found more accurate than that of the finite element method.Using Common Plane techniques to detect and categorize contacts between three-dimensional blocks of any arbitrary shape, the contact detection method is reconstructed to reduce computation. The three-dimensional numerical manifold method is presented. The work enriches and extends the research domain of numerical manifold method.The incompatible displacement term is added to total displacement function, it makes displacement function tend to entire, establishes the improved manifold method named incompatible numerical manifold method. This method can greatly increase calculating accuracy and computing efficiency without adding generalized degrees of freedom.Wilson incompatible displacement function term is improved, generalized formula of incompatible displacement function is deduced. In order to apply this method to engineering, we give an explicit treatment of zero-order coved function and one-order coved function.In order to perfect theoretic system of incompatible numerical manifold method, its stability and convergence are analyzed. Some numerical examples are provided to illustrate this method. The conclusion shows that this method produces highly accurate and stable results.
引文
[1] 吴人杰.下世纪我国复合材料的发展机遇与挑战[J].复合材料学报,2000,17(1):1-4.
    [2] M.Tellaeche Reparaz, J.M.Martinez-Esnaola. Numerical simulation of plane strain compression tests of a bimetallic composite[J]. Key Eng Mat, 1997, 127-131: 1215-1222.
    [3] 王兆清,冯伟.Delaunay多边形单元的有理函数插值格式[J].力学季刊,2004,25(3):77-83.
    [4] 王兆清.有理单元法研究[D].上海:上海大学博士学位论文,2005.
    [5] Pian T.H.H. Derivation of element stiffness matrices by assumed stress distributions[J]. AIAA Journal, 1964, 2: 1333-1336.
    [6] Pian T.H.H. Finite element stiffness methods by different variational principles in elasticity. In: birkhoff G, Varga R.S, Eds. Numerical solution of field problems in continuum physics[J]. American Mathematical Society, 1970, 253-271.
    [7] T.Scharnhorst, Pian T.H.H. Finite element analysis of rubber-like materials by a mixed model[J]. International Journal for Numerical Methods in Engineering, 1978, 12(4): 665-676.
    [8] T.H.Steinkopff, M.Sautter. Simulating the elasto-plastic behavior of multiphase materials by advanced finite element techniques, Part Ⅰ: A rezoning technique and the multiphase element method[J]. Computational Materials Science, 1995, 4(1): 10-14.
    [9] T.H.Steinkopff, M.Sautter. Simulating the elasto-plastic behavior of multiphase materials by advanced finite element techniques, Part Ⅱ: Simulation of the deformation behavior of Ag-Ni composites[J]. Computational Materials Science, 1995, 4(1): 15-22.
    [10] J.Zhang, N.Katsube. A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions[J]. International Journal for Numerical Methods in Engineering, 1995, 38: 1635-1653.
    [11] J.Zhang, N.Katsube. A polygonal element approach to random heterogeneous media with rigid ellipses or voids[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 148: 225-234.
    [12] S.Ghosh, S.N.Mukhopadhyay. Material based finite element analysis of heterogeneous media involving dirichlet tessellations[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 104: 211-247.
    [13] S.Ghosh, R.I.Mallett. Voronoi cell finite-elements, Computers and Structures[J]. 1994, 50(1): 33-46.
    [14] S.Ghosh, Y.S.Liu. Voronoi cell finite-element model based on micropolar theory of thermoelasticity for heterogeneous materials[J]. International Journal for Numerical Methods in Engineering, 1995, 38(8): 1361-1398.
    [15] S.Ghosh, S.Moorthy. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi-cell finite-element method[J]. Computers and Mathematics with Application M, 1995, 121(1-4): 373-409.
    [16] S.Ghosh, K,Lee, S.Moorthy. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi cell finite element method[J]. International Journal of solids and structures, 1995, 32(1): 27-62.
    [17] S.Moorthy, S.Ghosh. Model for analysis of arbitrary composite and porous microstructures with Voronoi-cell finite elements[J]. International Journal for Numerical Methods in Engineering, 1996, 39(14): 2363-2398.
    [18] S.Ghosh, K.Lee, S.Moorthy. Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model[J]. Computers and Mathematics with Application M, 1996, 132(1-2): 63-116.
    [19] K.Lee, S.Ghosh. Small deformation multi-scale analysis of heterogeneous materials with the Voronoi cell finite element model and homogenization theory[J]. Computational Materials Science, 1996, 7(1-2): 131-146.
    [20] S.Ghosh, Z.Nowak, K.Lee. Quantitative characterization and modeling of composite microstructures by Voronoi-cells[J]. Acta Materialia, 1997, 45(6): 2215-2234.
    [21] S.Ghosh, Z.Nowak, K.Lee. Tessellation based computational methods for the characterization and analysis of heterogeneous microstructures[J]. Composites Science and Technology, 1997, 57(9-10): 1187-1210.
    [22] S.Moorthy, S.Ghosh. A Voronoi-cell finite-element model for particle cracking in elastic-plastic composite materials[J]. Computers and Mathematics with Applications M, 1998, 151(3-4): 377-400.
    [23] S.Ghosh, S.Moorthy. Particle fracture simulation in non-uniform microstructures of metal-matrix composites[J]. Acta Materialia, 1998, 46(3): 965-982.
    [24] M.S.Li, S.Ghosh, T.N.Rouns. Serial sectioning method in the construction of 3-D microstructures for particle-reinforced MMCs[J]. Materials Characterization, 1998, 41(2-3): 81-95.
    [25] M.S.Li, S.Ghosh, O.Richmond. Three dimensional characterization and modeling of particle reinforced metal matrix composites, Part Ⅰ: Quantitative description of microstructural morphology[J]. Materials Science and Engineering A: Structural Materials, 1999, 265(1-2): 153-173.
    [26] M.S.Li, S.Ghosh, O.Richmond. Three dimensional characterization and modeling of particle reinforced metal matrix composites, Part Ⅱ: Damage characterization[J]. Materials Science and Engineering A: Structural Materials, 1999,266(1-2): 221-240.
    [27] M.S.Li, S.Ghosh, O.Richmond. An experimental-computational approach to the investigation of damage evolution in discontinuously reinforced aluminum matrix composite[J]. Acta Materialia, 1999, 47(12): 3515-3532.
    [28] K.Lee, S.Moorthy, S.Ghosh. Multiple scale computational model for damage in composite materials[J]. Computers and Mathematics with Applications M, 1999, 172(1-4): 175-201.
    [29] S.Moorthy, S.Ghosh. Adaptivity and convergence in the Voronoi-cell finite-element model for analyzing heterogeneous materials[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 185(1): 37-74.
    [30] S.Yotte, D.Breysse, J.Riss. Characterization of microcracking in a particles reinforced composite through image analysis[C]. Revue De Metalturgie, 2000, 97(2): 207-217.
    [31] S.Ghosh, Y.Ling, B.Majumder. Interfacial debonding analysis in multiple fiber reinforced composites[J]. Mechanics of Materials, 2000,32(10): 561-591.
    [32] 石根华著,裴觉民译.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [33] E.L.Wilson, R.L.Taylor, W.P.Doherty and J.Ghaboussi. Incompatible Displacement Models. In: Fenves S J, et al[A]. Numerical and Computer Methods in Structural Mechanics. Academic Press, 1973.
    [34] G.P.Bezeley, Y.K.Cheung, B.M.Irons and O.C.Zienkiewicz. Triangular element in bending-conforming and non-conforming solutions[C]. Proc. 1st Conf, on Matrix Methods in Structural Mechanics, Wright-Paterson AFB, Ohio, 1965.
    [35] G.Strang and G.J.Fix. An analysis of the finite element method[M]. Prentice-Hall, Englewood Cliffs, N, J, 1973.
    [36] R.L.Taylor, P.J.Beresford and E.L.Wilson. A non-compatible element for stress analysis[J]. Int. J. Num. Meth. Eng, 1976, 10: 1211-1219.
    [37] R.D.Cook. concepts and applications of finite element analysis[M]. 2nd ed, John Wiley, New York, 1981.
    [38] 胡海昌.弹性力学变分原理及其应用[M].北京:科学出版社,1981.
    [39] C.C.Wu, and Y.K.Cheung. Numerical stability and constitution analysis of λ-type incompatible elements[J]. Int J Num Meth Eng, 1991, 31: 1669-1682.
    [40] O.C.Zienkiewicz et al. The hierachical concept in finite element analysis[J]. Computers and Structures, 1983, 16:53-65.
    [41] 诸德超.升阶谱有限元法[M].北京:国防工业出版社,1993.
    [42] 吴长春,卞学鐄.非协调数值分析与杂交元方法[M].北京:科学出版社,1997.
    [43] 高岩.轴对称问题的Wilson四边形单元[J].应用数学和力学,1998,19(12):1113-1117.
    [44] J.C.Simo, M.S.Rifai. A class of mixed assumed strain methods and the method of incompatible modes[J], Int J Num Meth Engng, 1990, 29: 1595-1638.
    [45] R.Piltner, R.L.Taylor. A quadrilateral mixed finite element with two enhanced strain modes[J]. Int J Num Engng, 1995, 38: 1783-1808.
    [46] 钟万勰,纪峥.理性有限元[J].计算结构力学及其应用,1996,13(1):1-8.
    [47] 陈万吉.单变量有限元的新思考:精化直接刚度法[J].计算结构力学及其应用,1993,10(4):363-368.
    [48] 纪峥,钟万勰.平面理性四节点及五节点四边形有限元[J].计算力学学报,1997,14(1):19-27.
    [49] 焦兆平.非协调四节点平面等参位移元新列式方法[J].计算结构力学及其应用,1996, 13(2):147-156.
    [50] 龙驭球,辛克贵.广义协调元[J].土木工程学报,1987,20(1):1-14.
    [51] 龙驭球,黄民丰.广义协调等参元[J].应用数学和力学,1988,9(10):871-877.
    [52] Long Yuqiu, Zhao Junqing. A new generalized conforming triangular element for thin plates[J]. Communications in Applied Numerical Methods, 1988, 4:781-792.
    [53] Long Yuqiu, Xin Kegui. Generalized conforming element for bending and buckling analysis of plates[J]. Finite Elements in Analysis and Design, 1989, 5: 15-30.
    [54] Long Zhifei. Triangular and rectangular elements for plate bending based on generalized compatibility conditions[J]. Proc WCCM Ⅱ, Stuttgart, 1990, 2: 594-597.
    [55] 徐寅,龙志飞.一种列式简单的广义协调板弯曲矩形元[J].《工程力学》增刊,1995,315-319.
    [56] 卜小明,龙驭球.一种高精度的矩形板弯曲单元[J].土木工程学报,1991,24(1):17-22.
    [57] 卜小明,龙驭球.广义协调扇形板弯曲单元[J].计算结构力学及其应用,1991,8(2):208-213.
    [58] 龙志飞.广义协调条件的薄板弯曲三角形元和矩形元[J].航空学报,1991,12(9):A527-532.
    [59] Long Yuqiu, Zhao Junqing. Combined application of the energy method and the weighted residual method—a new way to construct the finite elements[J]. Chinese Journal of Aeronautics, 1992, 5(2): 130-136.
    [60] 龙志飞.两个薄板弯曲广义协调三角形元[J].计算结构力学及其应用,1992,9(1):100-106.
    [61] Long Zhifei. Low-order and high-precision triangular elements for plate bending, computational Mechanics[C]. Cheung, Lee and Leung (eds.) 1991, Balkema Rotterdam, 1793-1797.
    [62] 龙志飞.薄板飞协调元的修正位移基函数[J].结构工程学报,1991,2(3/4):155-161.
    [63] 龙志飞.采用SemiLoof型约束条件的薄板三角形广义协调元[J].工程力学,1991,8(3):124-128.
    [64] Long Yuqiu, Xi Fei. A universal method for including shear deformation in the thin plate elements[J]. Int. J. Num. Meth. Eng, 1992, 34: 171-177.
    [65] Long Zhifei. Generalized conforming triangular elements for plate bending[J]. Communications in Numerical Methods in Engineering, 1993, 9: 53-65.
    [66] Long Yuqiu, Bu Xiaoming, Long Zhifei, Xu Yiu. Generalized conforming plate bending elements using point and line compatibility conditions[J]. Computers and Structures, 1995, 54(4): 717-723.
    [67] Cen Song, Long Zhifei, Kuang Weiqi. Improved thick plate elements by introducing generalized bubble displacement fields[C]. EPMESC VI, Guangzhou, 1997, 517-522.
    [68] Cen Song, Long Zhifei, Kuang Weiqi. Two robust generalized conforming rectangular elements for thin-thick plates[C]. EPMESC VI, Guangzhou, 1997, 523-527.
    [69] Yuqiu Long, Zhifei Long, and Yiu Xu. The generalized conforming element (GCE) theory and applications[J]. Advances in Structural Engineering, 1997, 1 (1): 63-70.
    [70] Ai-Kah Soh, Song Cen, Yuqiu Long, Zhifei Long. A new twelve DOF quadrilateral element for analysis of thick and thin plates[J]. Eur. J. Mech. A/Solids, 2001, 20: 299-326.
    [71] 张春生,龙驭球,须寅.内参型附加非协调位移基本项的推导和应用[J].工程力学,2000,17(5):23-31.
    [72] 张春生,龙驭球,须寅.三维内参型附加非协调位移基本项[J].工程力学,2001,18(5):50-63.
    [73] 刘卫群,黄颖青,吴长春.满足PTC的三维非协调形函数的显式处理[J].计算力学学报,1998,15(3):373-377.
    [74] P.G.Ciarlet. The finite element for elliptic problems[M]. North-Holland, Amsterdam, 1978
    [75] 冯康.论间断有限元的理论[J].计算数学,1979,4:378-385.
    [76] R.L.Taylor, J.C.Simo, O.C.Zienkiewicz and A.H.C.Chan. The patch test—a condition for assessing FEM convergence[J]. Int. J. Num. Meth. Eng., 1986, 22: 39-62.
    [77] K.Washizu. Variational methods in elasticity and plasticity[M]. 2nd ed., Pergamon Press, 1975.
    [78] S.G.Mikhlin. Variational methods in mathematical physics[M]. Pergamon Press, 1964.
    [79] 钱伟长.变分法及有限元.科学出版社,1980.
    [80] 鹿晓阳,刘玉文,许焕然.Wilson非协调元的研究与改进[J].力学学报,1989,21(3):379-384.
    [81] 焦兆平,吴长春,黄茂光.内参型非协调元位移试解完备性的研究[J].中国科技大学学报,1992,22:308-317.
    [82] Z.C.Shi. The F-E-M test for the convergence of nonconforming finite elements[J]. Math. Comput., 1987, 49: 391-405.
    [83] 石钟慈,陈绍春.九参数广义协调元的收敛性[J].计算数学,1991,13(2):193-203.
    [84] 陈绍春,石钟慈.构造单元刚度矩阵的双参数法[J].计算数学,1991,13(3):286-296.
    [85] 石钟慈,陈千勇.一个高精度矩形板元[J].中国科学:A辑,2000,30(6):504-515.
    [86] 石钟慈,王家城.一类非协调元的收敛性分析[J].计算数学,2000,22(1):97-102.
    [87] T.J.R,Hughes, M.Cohen and M.Haroun. Reduced and selective integration techniques in the finite element analysis of plates[J]. Nucl. Eng. Design, 1978, 46: 203-222.
    [88] S.L.Weissman and R.L.Taylor. Resultant fields for mixed plate bending elements[J]. Comp. Meth. Appl. Mech. Eng., 1990, 79: 321-355.
    [89] T.H.H.Pian and D.P.Chen. Alternative ways for formulation of hybrid stress elements[J]. Int. J. Num. Meth. Eng., 1982, 18: 1679-1684.
    [90] T.H.H.Pian and Sumihara. Rational approach for assumed stress finite elements[J]. Int. J. Num. Meth. Eng., 1984, 20: 1685-1695.
    [91] T.H.H.Pian and C.C.Wu. Use of additional incompatible displacements for finite element formulation, in Nonlinear Computational Mechanics[M]. ed. Wriggers and Wagner, Springer-Verlag, 1991,255-266.
    [92] 吴长春,狄生林,黄茂光.杂交元的优化设计[J].科学通报,1986,15:1142-1144.
    [93] 张灿辉,冯伟,黄黔.杂交应力元的应力子空间和柔度矩阵H对角化方法[J].应用数学和力学,2002,23(11):1124-1132.
    [94] 张灿辉,冯伟,黄黔.用单元柔度矩阵H对角化方法建立杂交应力有限单元[J].计算力学学报,2002,19(4):409-413.
    [95] Zhang Can-Hui, Feng Wei, and Huang Qian. The method of flexibility matrix diagonalization for constructing nonlinear hybrid finite elements[C], the 4th international conference on nonlinear mechanics (ICNM-IV), Co-Chairman Chien Wei-zang and Ogden Ray W., Shanghai, China, august 13-16, 2002, 394-397.
    [96] 韩建新,冯伟.一个对角化部分杂交元柔度矩阵H的方法[J].上海大学学报,2001,7(4):353-358.
    [97] 陈万吉.Wilson单元与广义杂交元的等价性[J].力学学报,1990,22(1):60-64.
    [98] 陈万古.精化直接刚度法与不协调模式[J].计算结构力学及其应用,1995,12(2):127-132.
    [99] Wanji Chen, Y.K.Cheung. Nonconforming element method and refined hybrid element method for axisymmetric solid[J]. International Journal for Numerical Methods in Engineering, 1996, 39(15): 2509-2529.
    [100] 张武.关于非协调位移元与广义杂交元的等价性的进一步研究[J].力学学报,1991,23(5):564-570.
    [101] Chengyu Ku. Modeling of jointed rock mass based on the numerical manifold method[D]. Ph.D, University of Pittsburgh, 2001.
    [102] 梁国平,何江衡.广义有限元空间——类新的逼近空间[J].力学进展,1995,25(4):562-565.
    [103] 王芝银,李云鹏.数值流形方法及其研究进展[J].力学进展,2003,33(2):261-266.
    [104] G.H.Shi. Manifold method of material analysis[C]. Transaction of the Ninth Army Conference on Applied Mathematics and Computing Minneapolis, USA, 1992.
    [105] Chen G., Miki S., and Ohnishi Y. Automatic creation of mathematical meshes in manifold method of material analysis[C]. Working Forum on the Manifold of Material Analysis, California, USA, 1995, 1: 105-126.
    [106] T.C.Ke. Artificial joint-based on manifold method[C]. Working Forum on the Manifold of Material Analysis, California, USA, 1995, 1: 21-38.
    [107] J.S.Lin. Continuous and discontinuous analysis using the manifold method[C]. Working Forum on the Manifold of Material Analysis, California, USA, 1995, 1 : 1-20.
    [108] 王芝银,王思敬,杨志法.岩体大变形分析的流形方法[J].岩石力学与工程学报,1997,16(5):199-404.
    [109] 朱以文,曾又林.岩石大变形分析的增量流形方法[J].岩石力学与工程学报,1999,18(1):1-5.
    [110] 周维垣,杨若琼,剡公瑞.流形元法及其在工程中的应用[J].岩石力学与工程学报,1996,15(3):211-218.
    [111] G.H.Shi. Modeling rock joints and blocks by manifold method[C]. Proceedings of 32nd U.S. Symposium on Rock Mechanics, 1992, Santa Fe. New Mexico, 639-648.
    [112] 莫海鸿,陈尤雯.流形元法在岩石力学研究中的应用[J].华南理工大学学报,1998,26(9):48-53.
    [113] 王书法等.考虑侧向影响的数值流形方法及其工程应用[J].岩石力学与工程学报,2001,20(3):297-300.
    [114] J.Ghaboussi. Fully deformable discrete element analysis using a finite element approach[J]. International Journal of Computers and Geotechnics, 1997, 5: 175-195.
    [115] G.H.Shi. Numerical manifold method[C]. Proc. of the Second International Conference on Analysis of Discontinuous Deformation, Kyoto, Japan, 1997, 1-35.
    [116] C.T.Lin. Extensions to the discontinuous deformation analysis for jointed rock masses and other blocky systems[D]. Ph.D. University of Colorado, 1995.
    [117] G.H.Shi, R.E.Goodman, Generalization of two-dimensional discontinuous deformation analysis for forward modeling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13:359-380
    [118] J.S.Lin and D.H.Lee. Manifold method using polynomial basis function of any order[C]. In: Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media, Berkeley, CA, 1996: 365-372.
    [119] Guangqi Chen, Yuzo Ohnishi and Takahiro Ito. Development of high order manifold method[C]. Proc. of the 2nd International Conference on Analysis of Discontinuous Deformation, Kyoto, Japan, 1997: 132-154.
    [120] G.Q.Chen, Y.Ohnishi, T.Ito. Development of high order manifold method[J]. International Journal for Numerical Methods in Engineering, 1998, 43: 685-712.
    [121] Wang Shuilin, Ge Xiurun and Zhangguang. Manifold method with complete first order displacement function on physical cover[C]. 3rd International Conference on Analysis of Discontinuous Deformation from Theory to Practice, Vail, Colorado, USA, 1999.
    [122] 蔡永昌,张湘伟.数值流形方法在连续体数值分析中的应用[J].力学与实践,1999,21(6):53-54.
    [123] 田荣.连续与非连续变形分析的有限覆盖无单元方法及其应用研究[D].博士论文,大连:大连理工大学,2000.
    [124] 田荣,栾茂田等.高阶流形方法及其应用[J].工程力学,2001,18(2):21-26.
    [125] Shyu K., Salami M.R.. Manifold method with four-node isoperimetric finite element method. Working Forum on the Manifold of Material Analysis[C], California, USA, 1995, 1: 165-182.
    [126] Hideomi Ohtsubo, Katsuyuki Suzuki, etc. Utilization of finite covers in the manifold method for accuracy control[C]. Proc. of the 2nd International Conference on Analysis of Discontinuous Deformation, Kyoto, Japan, 1997:317-322.
    [127] Wang Shuilin, Ge Xiurun. Manifold method with four physical covers forming an element and its application[C]. 3rd International Conference on Analysis of Discontinuous Deformation from Theory to Practice, Vail, Colorado, USA, 1999.
    [128] X.J.Qiu. Manifold method without use of penalty springs. In: Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media[C]. Berkeley, CA, 1996: 205-249.
    [129] T.C.Ke. Artificial joint-based on manifold method. Working Forum on the Manifold of Material Analysis[C], California, USA, 1995, 1: 21-38.
    [130] 曹文贵,速宝玉.流形元覆盖系统自动形成方法之研究[J].岩土工程学报,2001,23(2):187-190.
    [131] 蔡永昌,张湘伟.流形方法的矩形覆盖系统及其全自动生成算法[J].重庆大学学报,2001,24(1):42-46.
    [132] J.Sheng, M.H.Chen, C.C.Chuang. Approximation theories for the manifold method. Working Forum on the Manifold of Material Analysis[C], California, USA, 1995, 1: 61-86.
    [133] 骆少明,张湘伟,蔡永昌.数值流形方法的变分原理与应用[J].应用数学和力学,2001,22(6):587-592.
    [134] 骆少明.张湘伟,蔡永昌.非线性数值流形方法的变分原理与应用[J].应用数学和力学,2000,21(12):1265-1270.
    [135] Sasaki T, Morikawa S, Ishii D and Yuzo O. Elastic-plastic analysis of jointed rock models by manifold method[C]. Proc. of the 2nd International Conference on Analysis of Discontinuous Deformation, Kyoto, Japan, 1997: 309-316.
    [136] 王书法.岩体弹塑性分析的数值流形方法[J].岩石力学与工程学报,2002,21(6):900-904.
    [137] 王芝银等.数值流形方法中的几点改进[J].岩土工程学报,1998,20(6):33-36.
    [138] Te-Chih Ke and Jyh-Haw Tang. Modeling of solid-fluid interaction using the manifold method[C]. Proceeding of 2nd North American Rock Mechanics Symposium. Montreal, Quebec. Canada, 1996: 1815-1822.
    [139] 王水林,葛修润.受压状态下裂纹扩展的数值分析[J].岩土力学与工程学报,1999,18(6):671-675.
    [140] Ohnishi Yuzo, Tanaka Makoto, Koyama Tomofumi. Manifold method in saturated- unsaturated groundwater flow analysis[C]. 3rd International Conference on Analysis of Discontinuous Deformation from Theory to Practice, Vail, Colorado, USA, 1999.
    [141] Guoxin Zhang, Yasuhito Sugiura and Hiroo Hasegawa. Crack propagation and thermal fracture analysis by manifold method[C]. Proc. of the 2nd International Conference on Analysis of Discontinuous Deformation, Kyoto, Japan, 1997: 282-297.
    [142] Yaw-Jeen Chiou, Ren-Jow Tsay and Wailin Chuang. Crack propagation using manifold method[C]. Proc. of the 2nd International Conference on Analysis of Discontinuous Deformation, Kyoto, Japan, 1997: 298-308.
    [143] Ren-Jow Tsay, Yaw-Jeen Chiou, and Wailin Chuang. Crack growth prediction by manifold method[J]. Journal of Engineering Mechanics, 1999, 125(8): 884-890.
    [144] Yaw-Jeen Chiou, Yu-Min Lee, Ren-Jow Tsay. Mixed mode fracture propagation by manifold method[J]. International Journal of Fracture, 2002, 114: 327-347.
    [145] D.M.Park. A stiffness derivative finite element technique for determination of crack tip stress intensity factor[J]. International Journal of Fracture, 1974, 10: 487-502.
    [146] T.K.Hellen. On the method of virtual crack extensions. International Journal for Numerical Methods in Engineering[J]. 1975, 9:187-207.
    [147] L.Demkowicz, J.T.Oden, W.Rachowicz and O.Hardy. Toward a universal h-p adaptive finite element strategy. Part Ⅰ. Constrained approximation and data structure[J]. Computer Methods in Applied Mechanics and Engineering, 1989, 77:79-112.
    [148] 王水林,葛修润.流形方法在模拟裂纹扩展中的应用[J].岩石力学与工程学报,1997,16(5):405-410.
    [149] 李树忱,程玉民.裂纹扩展分析的无网格流形方法[J].岩石力学与工程学报,2005,第12期.
    [150] T.Belytschko, Y.Krongauz, D.Organ, M.Fleming, P.Krysl. Meshless methods: an overview and recent developments[J]. Comput. Methods Appl. Mech. Engrg., 1996; 139: 3-47.
    [151] J T.Oden, C A M.Duarte. Solution of singular problems using h-p clouds[C]. In: J.R. Whiteman (Ed.), The Mathematics of Finite Elements and Applications, John Wiley &Sons, NY, 1997: 35-54.
    [152] S.Li, W.K.Liu. Numerical simulations of strain localization in inelastic solids using mesh-free methods[J]. Int. J. Numer. Meth. Engrg, 2000; 48: 1285-1309.
    [153] S.Kulasegaram, J.Bonet, T S L.Lok., M.Rodriguez-Paz. Corrected smooth particle hydrodynamics-A meshless method for computational mechanics[C]. Technical report, ECCOMAS, 2000.
    [154] G. A.Dilts. Moving-least-squares-particle hydrodynamics: Ⅰ. Consistency and stability[J]. Int. J. Numer. Methods Engrg., 1999; 44:1115-1155.
    [155] Y.Krongauz, T.Belytschko. A Petrov-Galerkin diffuse element method (PG DEM) and its comparison to EFG. Comp[J]. Mech., 1997; 19: 327-333.
    [156] J.Dolbow, T.Belytschko. Numerical integration of the Galerkin weak form in mesh-free methods[J]. Comput. Mech, 1999; 23: 219-230.
    [157] T.Belytschko, Y.Krongauz, et al. Smoothing and accelerated computations in the element free Galerkin method[J]. J. Comput. Appl. Math, 1996; 74: 111-126.
    [158] Y.Krongauz, T.Belytschko. EFG approximation with discontinuous derivatives[J]. Int. J. Numer. Methods Engrg. 1998; 41: 1215-1233.
    [159] J P.Ponthot, T.Belytschko. Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method[J]. Comput. Methods Appl. Mech. Engrg, 1998; 152: 19-46.
    [160] G R.Liu, Y T.Gu. Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation[J]. Comput. Mech, 2000; 26: 166-173.
    [161] R R Ohs., N R.Atluri. Meshless analysis of piezoelectric devices[J]. Comput. Mech, 2001; 27: 23-36.
    [162] I.Babuska, etc. The partition of unity method for the elastically supported beam[J]. Comput. Meth. Appl. Mech. Engrg. 1998; 152: 1-18.
    [163] T.Belytschko, N.Moes, S.Usui, C.Parimi. Arbitrary discontinuities in finite elements[J]. Int. J. Numer. Meth. Engrg. 2001; 50: 993-1013.
    [164] S N.Atluri, S.Shen. The meshless local Petrov-Galerkin (MLPG) method[M]. Tech Science Press, Stuttgart, 2002.
    [165] S R.Idelsohn, E.Onate, N.Calvo, F.Delpin. The meshless finite element method[J]. Int. J. Numer. Methods Eng., 2003.
    [166] S R.Idelsohn, E.Onate, N.Calvo, F.Delpin. A Lagrangian meshless finite element method applied to fluid-structure interaction problems[J]. Comput. Struct., 2003; 81(8): 655-671.
    [167] Lin Dezhang, Mo Haihong. Manifold method of material analysis[M]. The University of Oklahoma, 1994.
    [168] Zhou Weiyuan, Qiang Yang and Xiaodong Kou. Manifold method and its applications to engineering[C]. Proc. of the 2nd International Conference on Analysis of Discontinuous Deformation, Kyoto, Japan, 1997: 274-281.
    [169] Zhou Weiyuan, Xiaodong Kou and Yang Ruoqiong. Crack propagation by manifold method coupled with element free method[C]. 3rd International Conference on Analysis of Discontinuous Deformation from Theory to Practice, Vail, Colorado, USA, 1999.
    [170] 刘欣等.基于流形覆盖思想的无网格方法研究[J].计算力学学报,2001,18(1):21-27.
    [171] 栾茂田,张大林,田荣.有限覆盖无单元法在裂纹扩展数值分析问题中的应用[J].岩土工程学报,2003,25(5):527-531.
    [172] 栾茂田,田荣等.有限覆盖无单元法在岩土类弱拉型材料摩擦接触问题中的应用[J].岩土工程学报,2002,24(2):137-141.
    [173] 李树忱,程玉民.基于单位分解法的无网格流形方法[J].力学学报,2004,36(4):496-500.
    [174] 蔡永昌,廖林灿,张湘伟.高精度四节点四边形流形单元[J].应用力学学报,2001,18(2):75-80.
    [175] P A.Cundall. Formulations of a three-dimensional distinct element model[J]. Int. J Rock Min. Sci. & Geomesh Abstr., 1988, 25(3): 107-116.
    [176] 刘君.三维非连续变形分析与有限元耦合算法研究[D].[博士论文],大连:大连理工大学,2001.
    [177] I. Babuska. The finite element methods with Lagrange multipliers[J]. Numer. Math., 1973, 20: 179-192.
    [178] F. Brezzi. On the existence uniqueness and approximation of saddle-point problems arising from Lagrange multipliers[J]. RAIRO, Ser. Rouge, 1974, 8: 129-151.
    [179] Y.C.Fung. Foundations of solid mechanics[M]. Prentice-Hall, 1965.
    [180] K. Washizu. Variational methods in elasticity and plasticity[M]. 2nd ed., Pergamon Press, 1975.
    [181] R.H.MacNeal and R.L.Harder. A proposed standard set of problems to test finite element accuracy[J]. Finite Element in Analysis and Design, 1985, 1: 3-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700