用户名: 密码: 验证码:
东昆仑成矿带钴矿成矿系列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钴矿是东昆仑成矿带近年新发现的重要矿种,在大量野外调查、室内资料收集、现代测试分析的基础上,对成矿地质背景重新厘定,认为东昆北为加里东弧后裂陷带、东昆中为基底隆起和花岗岩带及东昆南为复合拼贴带(大洋玄武岩高原、陆块拼贴带),并探讨了东昆仑成矿带的成矿动力学演化。
    论文对肯德可克钴铋金矿、驼路沟钴金矿、督冷沟铜钴矿的矿床(点)的控矿因素、成矿特征进行系统总结。明确提出了它们的成因分别为热水喷硫(矿源层)+热水叠加改造型,热水沉积--改造型、热液脉型。
    在分析东昆仑成矿带地球动力学条件、总结区域成矿规律的基础上,首次提出并建立东昆仑成矿带钴矿成矿系列和成矿模式,确立了钴矿勘查的找矿标志,并开展了钴矿潜力的评价,对东昆仑成矿带的钴矿理论研究和矿产勘查实践都有科学指导作用。
Cobalt discovered newly is an important mineral species in Eastern Kunlun Orogenic Beltand has shown favorable prospecting prospects, high tenor and large scale reserves. Nowadays,three cobalt deposits have discovered, that is, Kendekeke and its periphery cobalt-bismuth-golddeposit, Tuolugou cobalt-gold deposit and Dulenggou copper-cobalt deposit. There are associatedcobalt deposit and independent cobalt deposit in this orogenic belt. What are the ore-controllingcharacteristics and how about their ore-forming metallogenic dynamic mechanism and geology ofmineral deposit? The dissertation discussed these scientific problems detailedly.Eastern Kunlun Orogenic Belt, western part of China’s central orogen, is located in thesouthern margin of Qaidam massif. The belt has undergone polycyclic complex orogenicprocesses, polycyclic ocean-continent transition and complex intercontinental evolution after thecollision. As a result, typical structure-magma-sedimentation was formed. From north to south,Eastern Kunlun orogenic belt can be divided into Kunbei back-arc basin, Kunzhong basementuplift and granitic belt and Kunnan composite belt. Outcropped stratums regionally have thecharacteristics of great era span and distinct difference. The predominant stratums include thePrecambrian, Ordovician of early Paleozoic, Carboniferous-Permian of late Paleozoic and Triassicof Mesozoic. Eastern Kunlun orogenic belt have formed E-W fractured zone since the Paleozoicbecause of the influence of three regional faults. Extensive magmatism was developed anddifferent epoch rock assemblage demonstrated the plate subduction-collision and evolution ofpolycyclic ocean.
    Volcanics rocks of Eastern Kunlun orogenic belt can be divided into four series: pre-Xingkai,Caledonian, Variscan and Indosinian-Yanshanian. Pre-Xinkai volcanic rocks are composed ofbasaltic lava of Wanbaogou group. Chemical components of volcanic rocks wholly belonged tosubalkalic series. Characteristics of geochemistry and sedimentation formation indicated that theforming environment was oceanic volcanic island. Caledonian volcanic rocks included Nachitaigroup and Tanjianshan group. Furthermore, volcanic rocks of Tanjianshan group are bimodalvolcanic rocks composed of basic basalts and intermediate-acidic basalts. Geochemistry showedthe Tanjianshan group is developed in back-arc basin tectonic environment. Nachitai group mixedsome limestone and siliceous rocks formed in turbid deep water. Variscan volcanic rocks arecomposed of Maoniushan group, Dagangou group, Halaguole group and Haoteluowa group.Calcalkalic volcanic rocks of early Carboniferous Halaguole group are the magmatic islandvolcanic rocks developed in island arc of active continental margin volcanic rocks. Halaguolegroup of Kunnan composite belt develop tholeiitic basalt series and Calcalkalic seriescharacterized by magmatic arc showing its formation have genetic relation with the northwardsubduction of Bayan Har ocean.
    Metamorphisms make the mineral elements redistribution and enrichment in Eastern Kunlunorogenic belt. For metamorphisms, the great contribution to mineral deposit is that they can supplymetamorphic fluids, remobilize the mineral elements and extract the mineral elements from sourcebeds.
    Regional gravity and aeromagnetic anomaly present the N-W orientation in the Western part
    E-W orientation in Middle part and N-E orientation in Eastern part. Gravity anomaly reflects E-Wand N-W orientation gradient belt and mineral resources of non-ferrous metal have closerelationship with the N-W orientation gravity and aeromagnetic anomaly. Along the gravitygradient belt and periphery of the aeromagnetic anomaly, some commercial non-ferrous metaldeposits have been discovered. Ore bodies were hosted in anomaly intersection frequently. EasternKunlun mineralized belt is located active fractured zone, lithospheric thinning and havecoincidence relation with the strong earthquake center. Mineral deposits are formed along the lowvelocity zone and the transitional belt between the high velocity zone and low velocity zone.Exhalative sedimentation formations are developed extensively in Eastern Kunlun orogenicbelt. Because of the influence of the different metallogenic geological-structural setting, somespecial submarine hydrothermal exhalation sedimentation formations were formed. For example,Kendekeke ore district located in Qimantage aulacogen developed siliceous rocks-bearing SEDEXformation. However, Tuolugou ore district located extensional oceanic setting developed siliceousalbitite-bearing volcanic clastic debris sedimentation formation. Dulenggou copper deposit isformed in subduction backgroup of Bayan Har ocean and develop Calcalkalic series magmatic arc.According to the volcanic assemblages,sedimentation formation and mineralization,EasternKunlun orogenic belt can be divided into Kunbei belt(Qimantage back arc basin) ,Kunzhongbelt(basement uplift and granitic belt) and Kunnan belt(composite belt).Geodynamic evolution in Eastern Kunlun Orogenic beltBased on the data made by former researchers and the author’s investigation,the geologicalhistory of the orogen has been divided into three stages,i.e. pre-Caledonian,Caledonian andIndochinese-Himalayan.Pre-Caledonian evolution inludes formation of Precambrain platform,breakup and convergeof Proterozoic paleocontinent.Wanbaogou oceanic bassalts,which is important to understand thetectonic evolution, were formed in late Proterozoic.The ocean plate of the Proto-Tethys began to be consumed by northward subduction toQaidam massif along the location of the present Kunzhong falut in eary Paleozoic.And structuralframe of Kunbei and Kunnan was formed.With the devlopement of the subduction,trench wasappeared in the sourthern margin of Qaidam massif.Active continent margin was formed betweenthe Kunzhong fault and Kunbei fault,but a back arc basin was formed in Kunbei belt.Bimodalvolcanic rocks were distributed intensively.By that time,a trench-arc-basin system was developedin the southern edge of Qaidam massif.Nachitai group,whichi composed of volcanic clastic rocksand carbonatite formation was formed in the basalt plateau after formation of the Wanbaogouoceanic basalt and before collision with Qaidam massif.In early middle Silurian, siliceous albititewas formed in extensional tectonic setting of Wanbaogou oceanic basalt plateau. In lateCaledonian,Wanbaogou plateau basalts were collaged to the Qaidam massif.the late Paleozoic volcanic rocks were formed in continental magmatic arc and they furtherpointed out that the subduction of this stage belonged to Andes-type.The oceanic crust wasdirectly subducted downward to the continent without island arc formed.The Hercynian granites,mainly batholiths,are the most widely developed intrusives in theorogenic while early Indochinese granites are mostly stock-shaped and mainly distributed inKunnan bent.Based on petrochemical data,it is recognized that the granites of this stage belong tosubduction and syncollisional type.Since lated indochinese stage,intensive crustal-mantle reactionhappened,which lead to the formation of a series of widely distributed mafic-ultramafic
    intrusives.The tectonic regime transormed from compressional orogeny to extensional liospherethinning,which coincided the beginning of the breaking up of the supercontinent Pangea.Thetectonic regime transformation controlled the formation of mantle-derived,mantle-crustal bybridmagmatic activities and a large number of hydrothermal ore deposits in late Indochinese.Metallogenic Mechanism of Typical Deposit of Eastern Kunlun Orogenic Belt:Kendekeke Co,Bi and Au deposit: It developed in the early Paleozoic back-arc basin ofKunbei fractured zone. With the northward subduction of southern seamounts, back-arc basin andsubmarine hydrothermal exhalation sedimentation ore-bearing formation are formed. Submarinehydrothermal exhalation sedimentation formed siliceous rocks and particulate pyrites, pyrrhotites,gel pyrites and other Co, Bi, Au and Cu multiple ore-forming elements. Because of short life ofactive basin, thermal power is small comparatively; the hydrothermal sedimentation providedimportant ore-forming materials for the late mineralization. Hercynian orogenic activities enrichedthe mineral elements again. Large scale mineralization developed in Mesozoic era and is thepredominant mineralization stage for Kendekeke deposit. Indosinian-Yanshanian magma broughtstrong thermodynamics condition and hydrothermal replacements make the metallogenic elementsreactive, remobilized and enrich in special location. The typical hydrothermal sedimentation stagecan formed the rock, not ore deposit, and skarnalization is the predominant mineralized stage.Tuolugou Co deposit: Bayan Har Ocean located in southern part of Eastern Kunlun orogenicbelt entered the oceanic subduction phase after the Paleozoic extension. Metallic elements wereaccumulated by hydrothermal activities caused by seeping of seawater and formations bearing Coand Au were formed gradually.Modified mineralizations and deformation of fold and shear havebeen developed in Yanshanian-Himalayan thrusting.There were extensive structural deformationand replacement and no large scale magmatic intrusions in Kunnan belt similar to the paleozoicKunzhong belt.Primary stratifications were replaced by penetrative foliations.Mineralizedsiliceous albitite were defomated and reoriented and characteristics of stratiform but notbed,veinlike but not vein have been generated.Later phase structures developed intensively cut theoriginal mineralization belt and formed diverse uplift and denudation.Dulenggou copper deposit:There are three mineralizatinal ways.First Bayan Har oceansubduction along southern part of Eastern KunLun orogenic belt ,the deep penetrating and heatedsea water reacted withrocks,and Cu,Co,Fe ore-forming elements,.Second under the influence oflate (HaiXi-Indosinian)tectonic movements,,ore-forming elements suffered strong tectonicdeformation,folding, morphology of orebodies shows lensoid in space.Cobalt deposits are controlled by metallogenic dynamics.According to geotectonic setting,characteristics of ore-controlling structures and metallegenic mechanism, the cobaltmetallegenesis in Eastern Kunlun Mountain can be divided into four metallegenic series, i. e.sedimentary exhalative ( source bed ) –hydrothermal fluid superposed, sedimentary exhalative–deformation reconstruction, hydrothermal fluid and skarn metallegenic series.The Cobalt metallogenic model was built in Eastern Kunlun Mountain, it underwent thefollowing stages, i. e. the early Caledonian sedimentary exhalative stage that provided the sourceof Cobalt deposit, the late Caledonian deformation reconstruction stage that formed sedimentaryexhalative–deformation reconstruction Cobalt deposit, Hercynian-Yanshan magmatism stage thatprovided heat and ore source and formed hydrothermal vein and skarn cobalt deposits.The metallogenic potential of cobalt was discussed by us. The potential of the dominantcobalt deposit types grade in the following turn, i. e. sedimentary exhalative–deformation
引文
1.Annels.A.E and Simmonds.J.R..Cobalt in the Zambin Copper-belt , Precambrianresearch,1984(25):75-98
    2.Bernard.A,J.Dagallier.G,Soler.E.Oregenesis:Thestate of the Art[M].1982.553-564.
    3. Bischoff J,Roserbauser R J,Salinity variations in submarine hydrothermal systemby layered double-diffusive convection. Jour Geol,1989,97:613-623
    4.Bostrom K,Kramemer T,Gantner S.Provenace and accumulation rates of opalinesilica,Al,Fe,Mn, Ni and Co in pacific pelagic sediment[J].Chemical Geology,197311(1/2):123-148
    5.Bostrom K. Langban-An exhalative sedimentary deposit Econ. Geol,1979, 74:10002-10011.
    6. Condie K J .Plate Tectonics and Crust Evolution.Oxford: PergamonPress,1982.73-120
    7.Condie K J.Mantle Plumes and their Record in Earth history[M]. CambridgeUniversity Press, Oxford, UK,2001,1-306
    8.Cox D P and Singer D A. Mineral Deposits Models.U.S.Geological SurveyBulletin, 1987.1693-1998.
    9.CYAMEX Sientific Tean. First manned submersible diveson the East Paccific
    10. Franklin.,J M,Lydon,J Mand sangster,D F,Volcanic-associated massive sulfidedeposits[J].Economic Geology 75:485-627
    11. Gill,J B.Orogenic Andesites and Plate Tectonic.Heidberg: SpringerVerlag,1981.17-79
    12. Hekinia R,Fevrieretal.Sulfur depoits from the East Pacific Rise 21 °N.Science.1980,207:1433-1444
    13. Hou Z, Mo X. Two stratigraphic alterations and double-diffusive convectionsystem under the Kuroko-type massive sulfide deposits in the Gacun,S W China.Jour of Earth Science,1996
    14. Hsu K J,Pan Guitang,Sengor A M C.Tectonic evolution of the Tibetan plateau: aworking hypothesis based archipelago nodel orogenesis,International GeologicalReview,1995,37:473-508.
    15. Hutchison C S.Economic Deposies and their Tectonic Setting.a wiley-interciencePublication,New York:1985,1,10.
    16. Irvine,T.N.etal.:A guide to the chemical classification of the common volcanicrocks.Canadian.T.Earth.Sci.No.5,1971
    17. J.M.Franklinetal.Volcanoc associated massive sulfide deposites. Economicgeology 75th Anniversary Volume.Edited By the American Society of EconomicGeology,1981.567-573
    18. Large,RLarge R.R.Australian volcanic-hosted massive sulfide deposits,features,styles,and geneticmodels.Economic Geology,1992,87,471-510.
    19. Leeder M. R.等,拉萨至格尔木的沉积学、古生态学和古环境演化,科学出版社[M]. 1988.
    20. Liegeois J P.Navez J.Hertogen J,et al.Contrasting origin of post collisional high-K calealkaline and shoshoniric versus alkaline and peralkaline granitoids.The use of slidingnormalization.Lithos,1998.45:1-28
    21. Lunicka p.Metal source of in Wolf K ed.landbech of stratifarm and strata-boundOre Deposie,Elsevier,Amsterdam.1985,12:109-208.
    22. Maniar P D and Piccoli P M.Tectonic discrimination of granitoids. Geol .Soc. Am.Bull.1989,101:635-643
    23. Marching V. Some geochemical indicators for discrimination between diageneticand hydrothermal metalliferous sediments. Marine Geology, 1982, 50: 241-256.
    24. Meylan M A,Glasby G P.含金属深海沉积物[A].Wolf K H.层控矿床和层状矿床[M].北京:地质出版社,1986 ,(9):207-279.
    25. Michael M kimberley. Exhalative origins of iron formation. Ore GeologyReviews,1989,(5):13-154
    26. Mitchell,Garson.矿床与全球构造[M].北京:地质出版社,1986:10-38
    27. Mock C.Arnaud N O,Canragrel J M.An early unroofing in northeastern Tibet?Constraints from 40Ar/39Ar thermochronology on granitoid from the easternKunlun range .East andPlanet Sci Lett,1999,171:107-122
    28. Oftedahl, C. exhalative-sedimentary ores.Geal.Foren. stockhoin Forh. 1958,80:1-19
    29. Pearce. Sources and settings of granitic rocks. Episodes,1996,19(4):120-125.
    30. Potter R W II, Clynne M A, Brown D L. Freezing point depression of aqueous sodium chloridesolutions. Econ. Geol. 1978, 73: 284-285
    31. QinDexian,Geology andgeochemistry of the super large modified emanatedsedimentary Dachangt in deposit in Guangxi province,Progress Geology ofChona(1993-1996),491-492.a)Riseat21°N(Project RITA): General results. MarineGeologys Res.1981,(4)345-379
    32. Robert,RG and Sheahan,P A.Ore Deposit Models.Geoscience Canada,ReprintSeries 3.1989.
    33. Rona P A,Scott S D.A special issue of seafoor hydrothermal minecoralization:new perspecitive[J].Economic Geology,1993,88(8):1935-2078.
    34. Rona P A. Hydrothermal mineralization at oceanic ridges.Journal of the mineralogical association of Canada.1988,26 (3):431-465
    35. Rona P A. Hydrothermal processes at seafloor spreading centers[M].N.Y.:PlenumPress,1983.473-489
    36. Sangster D F.The role of dense brines in the formation of vent-distal sedimentary-exhalative(SEDEX)lead-zinc deposits: field and laboratory
    evidence.Mineralium Deposita,2002,37(2): 149-157
    37. Slack J F,Palmer M R,Stevers B P,et al.Origin and Significance ofTourmaline-rocks in the Broken Hill District, Australia[J].EconomicGeology,1993,88(3):505-541
    38. Sunenou N.Lucchitta I.Origin of bimodal volcanism.southern Basin andRunge province.west-central Arizona.Geological Society of AmericaBulletin.1983,94:1005-1019
    39. Zhou Y Z,Chown E H,Guha,etal Hydrothermal origin of Precambrian beded chertat Gusui,Guangdong,China:Petrology and chermical evidence[J]Sedmentology,1994(3):605-619。
    40. 阿业成,等.东昆仑万宝沟群的解体及早寒武世地层的新发现[J].中国地质.2003,Vol.30 No2:199-204.
    41. 边千韬,罗小全,李红生,等.阿尼玛卿山早古生代和早石炭-早二叠世蛇绿岩的发现[J],地质科学,1999,34(4):523-524
    42. 边千韬,尹磊明,孙淑芬,等.东昆仑布青山蛇绿混杂岩中发现奥陶纪疑源类[J].科学通报.2001,46(2):167-171.
    43. 陈昌勇. 成矿系列研究现状及展望[J]. 昆明理工大学学报,1997,Vol.22,No2:12-16.
    44. 陈多福,陈先沛,陈光谦,等.热水沉积作用与成矿效应[J].地质地球化学,1997,(4):7-12.
    45. 陈国达.裂谷构造研究现状一斑[J].国外地质.1985,4:2-6
    46. 陈先沛. 热水沉积作用的概念和几个岩石学标志, 沉积学报,1992,(3):124-132.
    47. 陈永清,夏庆霖,刘红光.黑色页岩建造中的贵金属矿产评价研究[J].地球物理学进展,2003,18(2);261-268
    48. 陈毓川,黄民智.大厂锡矿地质[M].北京:地质出版社,1993:317-338
    49. 陈毓川.矿床成矿系列[J].地学前缘.1994,(3):90-94
    50. 陈毓川.矿床的成矿系列研究现状与趋势[J].地质与勘探,1997.33(1):1-4
    51. 陈毓川. 中国主要成矿区带矿产资源远景评价[M]. 北京: 地质出版社.1991:384-451.
    52. 程裕淇,陈毓川,赵一鸣,宋天锐.再论矿床的成矿系列问题[J]. 中国地质科学院院报,1983,5(6):1-64.
    53. 程裕淇,陈毓川,赵一鸣.初论矿床的成矿系列问题[J].中国地质科学院院报,1 979,1 (1):32-57.
    54. 程裕淇,赵一鸣,陈松年.中国几组主要铁矿类型[J].地质学报,1978,61(4):205-224.
    55. 崔春龙. 硅质岩研究中的若干问题[J],矿物岩石,2001,21(85):100-104.
    56. 崔军文,朱红,武长得.青藏高原岩石圈变形及其动力学[M].北京:地质出版 社,1992.
    57. 崔作舟,等.青藏高原地壳结构构造及其与地震的关系[J].中国地质科学院院报,1990,(21):215-216
    58. 戴问天.海底热液沉积成矿[J].地质与勘探,1985,(6):22-28.
    59. 邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境[J].矿床地质,1999,18(4):209-315.
    60. 邓晋福,莫宣学.三江地区火山作用与特提斯演化,见:莫宣学,路凤香主编三江特提斯演化火山作用与成矿[M]北京:地质出版社,1993,224-236
    61. 邓晋福,赵海玲,莫宣学等.中国大陆根柱构造—大陆动力学的钥匙[M]北京:地质出版社,1996;14-82.
    62. 丁清峰. 东昆仑造山带区域成矿作用与矿产资源评价[D].吉林大学博士论文.2004:120-140.
    63. 段国莲.德尔尼黄铁矿型铜钴矿床成因及其与硫化铜镍矿床的区别[J].地质与勘探].1991,27(2):20-24.
    64. 范德廉,张涛,叶杰.与黑色岩系有关的超大型矿床[A].谢学锦,邵跃,王学求.走向21 世纪矿产勘查地球化学[C].北京:地质出版社,1999:61-91.
    65. 付大捷, 等, 赣西五宝山钴矿床地质特征及成因探讨[J]. 矿产与地质,1998,12(2):1-7.
    66. 高延林,吴向农,左国朝.东昆仑早清水泉蛇绿岩特征及大地构造意义[J].地科院西安地矿所所刊,第21 号,1988(1):17-28.
    67. 郜兆典.海相热水沉积矿床问题探讨[J].广西地质.2000,Vol.13,No.2:23-28.
    68. 古凤宝,吴向农.东昆化华力西--印支期花岗岩组合及构造环境[J].青海地质,1996,5(1):18-36.
    69. 郭正府,邓晋福,许志琴,莫宣学,等.晚古生代-中生代中酸性火山岩与陆内造山过程.现代地质[J].1998:Vol21,No3:344-352.
    70. 郭正府.东昆仑火成岩、构造演化和青藏高原新生代火山喷发对环境的影响[D].中国地质大学博士论文,1996.
    71. 哈钦森R W. 层控矿床在地质历史中的地位[J]. 国外矿床地质.1988,(3):19-57.
    72. 韩发,R.W.哈钦森.大厂锡矿床--一个喷气--沉积型锡矿床[J],地学前缘,1994,1(3-4):233-235.
    73. 侯增谦,莫宣学等.“三江”古特提斯地幔热柱[J].地球学报,1996,17(4):362-375.
    74. 胡正国, 等, 东昆仑区域成矿规律初步研究[J]. 黄金科学技术.1998.Vol6,No5-6:6-10.
    75. 黄崇轲,白冶,等.中国铜矿床[M]. 北京:地质出版社,2001:663-678.
    76. 黄汲清,陈国铭,陈炳蔚.特提斯-喜马拉雅构造域初步分析[M].地质学报,1984,第58 卷,第1 期:1-17.
    77. 黄汲清.中国主要地质构造单位[M],北京:地质出版社,1994:26-27
    78. 季强.青海东昆仑中段早寒武世小壳动物群的发现及其地质意义[J].中国区域地质.1997,16(4).428-432.
    79. 姜春发, 王宗起, 李锦轶等. 中央造山带开合构造[M] 北京: 地质出版社,2000:137-144.
    80. 姜春发,杨经绥,冯秉贵,等.昆仑开合构造[M].北京:地质出版社,1992,59-78.
    81. 姜春发.中央造山带主要地质构造特征[J].地学研究,1993,No27:103-108.
    82. 姜枚,吕庆田,史大年,等.用天然地震探测青藏高原中部地壳、上地幔结构[J],地球物理学报,1996,39(4)470-482.
    83. 解玉月. 昆中断裂东段不同时代蛇绿岩特征及形成环境[J]. 青海地质,1998,7(1):27-35
    84. 克利夫佐夫A V.成矿分析和预测理论的方法及对象:现状和展望[J].地质科学译丛,1995,1 3(4)
    85. 克鲁托夫F.A..钴矿床[M].中国工业出版社,1965:65-173.
    86. 匡俊,孙丰月等.青海东昆仑肯得可克钴铋金矿地质特征及矿床成因初探[J],吉林大学学报.2003, VOL33.Sup.
    87. 匡俊.东昆仑成矿带钴矿床特征及形成作用探讨.吉林大学硕士学位论文,2002
    88. 李秉伦.矿物包裹体气体成分的物理化学参数图解[J].地球化学,1986,(2):126-137
    89. 李福东,张汉文,宋治杰,等.鄂拉山地区热水成矿模式[M].西安:西安交通大学出版社,1993,9-49.
    90. 李光岑,林宝玉.昆仑山东段几个地质问题的探讨[J].见:青藏高原地质文集,1982,第1 号:28-52.
    91. 李厚民,沈远超,胡正国等.青海东昆仑驼路沟钴(金)矿床地质特征及成因探讨[J].地质与勘探,2001,27(1)):65-69
    92. 李立. 中国大陆地壳上地幔电性特征[J]. 地球物理学报,1996,39 增刊,130-138.
    93. 李日俊,贾承造,郝杰,等.东昆仑铁石达斯群中发现放射虫动物群[J].科学通报.2000,45(2).205-208.
    94. 李廷栋.青藏高原隆升的过程和机制[M].地球学报,1995(1):1-9.
    95. 李晓波.成矿作用与地球动力学,当代地质科学前沿[M].武汉:中国地质大学出版社.1993.49-54.
    96. 李晓波.大陆动力学.见:《走向二十一世纪的中国地球科学》调研组编. 走向二十一世纪的中国地球科学[M].郑州:河南科学技术出版社,1995,108-115.
    97. 李英,李连生.多孔状硅岩与热水沉积矿床[J].矿物岩石地球化学通讯,1990,(1):24-25.
    98. 李英,祁思敬.中国北方超大型热水沉积硫化物矿床成矿模式[J]. 矿物岩石地球化学通报,1997,Vol. 16No. 3:155-158
    99. 刘风山,石准立.国外岩浆热液成矿理论研究现状与进展[J].地质科技情报.1994,Vol.13,No:75-80
    100.刘家军, 郑明华. 硅岩的新成因--热水沉积作用[J]. 四川地质学报.1991,12(4):11,251-254.
    101. 刘建明,叶杰,徐九华,姜能,应汉龙.初论华北东部中生代金成矿的地球动力学背景--以胶东金矿为例[J].地球物理学进展.2001,Vol16,No1: 39.
    102.卢德源,陈纪平.青藏高原北部沱沱河--格尔木一带地壳深部结构.地质论评,1987,33(2):122-128
    103.罗照华,邓晋福,曹永清,等.青海省东昆仑地区晚古生代--早中生代火山活动与区域构造演化[J].现代地质,1999,13(1):51-56
    104.莫宣学,路风香,沈上越,等.三江特提斯火山作用与成矿[M].北京:地质出版社,1993;7-18.
    105.纳尔德雷特A.J .加拿大布拉多地区沃伊塞湾镍-铜-钴矿床地质,国外地质科技[J].1997,(2):1-7.
    106.潘彤,等. 青海东昆仑肯德可克钴金铋矿床成矿条件及成矿机理初探[J].矿物岩石地球化学通报. 2004, VOL23.Sup:18-22.
    107.潘彤,马梅生,康祥瑞.东昆仑肯德可克及外围钴多金属找矿突破的启示[J]中国地质,2001,28(2):17-20.
    108.潘彤,孙丰月.青海东昆仑肯得可克钴铋金矿成矿特征及找矿方向[J],地质与勘探.2003, VOL39.NO1:18-22.
    109.潘彤, 我国钴矿矿产资源及其成矿作用[J]. 矿产与地质,2003,VOL17.NO.4:516-517.
    110.潘彤等.区域地球化学中大面积、低浓度分带异常评价以督冷沟铜钴矿发现为例[J].地质地球化学2003, VOL16.NO3:39-42.
    111.潘裕生,周伟明,许荣华,等.昆仑山早古生代地质特征与演化.中国科学(D 辑), 1996,26(4):302-307.
    112.庞存廉,方胜,夏元祁.巴颜喀拉山东段及邻区大地电磁测深成果地质解释[J].青海地质,1996,5(1):73-81.
    113.裴荣富,吴良士.金属成矿省的地质历史演化和成矿年代学研究进展[J].矿床地质,1993,12(3):285-286.
    114.裴荣富.深部构造作用与成矿[M].北京:地质出版社,1991,14-18.
    115. 裴荣富.中国矿床模式[M].北京:地质出版社,1995:67-68.
    116.祁思敬,李英.秦岭泥盆系铅锌成矿带[M].北京:地质出版社,1993;1-240.
    117.祁思敬,李英等著.秦岭热水沉积型铅锌(铜)矿床[M].北京:地质出版社,1993.
    118. 祁思敬.区域成矿学研究现状与发展趋势[J]. 西安工程学院学报Vol. 21,No.1,1999:44-48
    119.祁思敬. 区域成矿学研究现状与发展趋势[J]. 西安工程学院学报.1999,21(1),44-48
    120.钱壮志,李厚民,胡正国等.东昆仑中带闪玢岩脉与金矿成矿关系[J].西安工程学院报,1999,Vol21,No1:1-4.
    121.秦德先,田毓龙.广西大厂长坡锡矿床地质及成因[J].有色金属矿产与勘探.1998.7(3):146-151.
    122.青海地质矿产局.青海省区域地质志[M].北京:地质出版社.1991,56-540
    123.青海省地球化学勘查队,1/50 万区域化探总结(内部资料),1989.
    124.青海省地质调查院.青海省驼路沟钴矿普查设计(内部资料).2003.
    125.青海省地质局.埃坑德勒斯特1:20 万区域地质调查报告。1982。
    126.青海省地质局第一地质队,青海省格尔木市肯德可克铁矿区铁矿详细普查地质报告(内部资料),1982
    127.青海省有色地勘局.青海东昆仑铜钴矿资源潜力评价立项申报(内部资料).2004.
    128.任纪舜,姜春发,张正坤等.中国大地构造及其演化[M].北京:科学出版社,1983:47-52.
    129.芮宗瑶. 海底喷气沉积矿床研究新进展[M], 国外矿床地质,1989,(2):1-5.
    130.邵洁连.金矿找矿矿物学[M].北京:中国地质大学出版社,1990
    131.佘钦范,楼海,胡中栋.格尔木--额济纳旗地学断面岩石圈结构的磁分析[J],地球物理学报, 1995,38 增刊(Ⅱ),58-70.
    132.沈显杰,等.青藏高原南北地体地幔热结构差异的大地热流证据[J].中国地质科学院院报,1990(21):203-214.
    133.孙崇仁.青海省岩石地层[M].武汉:中国地质大学出版社,1997:14-98.
    134.孙丰月,金魏,李碧乐,等.关于脉状热液金矿床成矿深度的思考[J].长春科技大学学报,2000,30(增刊):27-30
    135.孙丰月等.新疆--青海东昆仑成矿规律和找矿方向综合研究(内部资料).2003,1-146.
    136.孙继源,等.中条山裂谷铜矿床[M].北京:地质出版社,1995,49-100.
    137.田毓龙,秦德先等.喷流热水沉积矿床研究的现状与进展[J].昆明理工大学学报,1999,VoL. 2 4No:150-156.
    138.涂光炽.中国层控地球化学(第二卷)[M],北京:科学出版社,1989:75-78.
    139.王臣. 青藏高原北部板块构造地球物理特征[J]. 青海地质,1991,(2):1-3.
    140.王登红. 与黑色岩系有关的矿床研究进展[J]. 地质地球化学.1997,No2,85-88.
    141.王鸿祯,莫宣学.中国地质构造述要[J].中国地质,1996(8):4-9.
    142.王世称,陈永清.成矿系列预测的基本原则及特点[J].地质找矿论丛.1994,9(4) :79-85
    143.王守伦.矿床成因研究的一些新动向——第七届国际矿床成因学术讨论会概况[J],地质科技情报,1988,7(2 总27):71-74.
    144.王秀璋,梁华英.层状钠长石岩的基本特征及成因分析[J].矿物岩石,2001,21(2):16-21.
    145.王云山,陈基娘.青海省及毗邻地区变质地带及变质作用,地质专报-岩石矿物地球化学第6 号[M],北京:地质出版社,1987:268.
    146.王云山.东昆仑山逢合带及基底构造对比研究(研究报告).1992.
    147.王泽九,吴功建,肖序常,格尔木--额济纳旗地学断面多学科综合调查研究概况[J].地球物理学报,1995,38(sup):1-2.
    148.邬介人,于浦生等.海相火山--沉积建造区铜、多金属成矿系列及铁矿-铜矿床的勘查前景[J].地质与勘探,2000,36(6):15-19.
    149.吴功建, 等. 青藏高原亚东--格尔木地学断面[J]. 地质学报,1989,62(4):285-296.
    150.吴志亮,李峰著.热水沉积成岩成矿作用-以阿尔泰泥盆纪火山沉积盆地为例[M]],北京:地质出版社,1996.
    151.肖序常,汤耀庆,高延林.再论青藏高原的板块构造[J].中国地质科学院院报,1986(4):7-20
    152.谢格洛夫A D.地洼区成矿[M].北京:冶金出版社,1985
    153.新疆地质矿床局.阿其克库勒湖地区区域地质调查报告及地质矿产图,1982.
    154.新疆地质矿床局.新疆维吾尔自治区区域地质志[M].北京:地质出版社,1993 .1-25
    155.徐强,潘桂棠,许志琴,杨经绥.东昆仑地区晚古生代到三叠纪沉积环境和沉积盆地演化[J]. 特提斯地质.1998,22.76-90.
    156.徐文艺,张德全,阎升好,等.东昆仑地区矿产资源大调查进展与前景展望[J].中国地质, 2001.28(1):25-29.
    157.徐勇,祝新友.昆仑造山带钴矿找矿前景初步评价[J].有色金属矿产与勘查,1999.8(6):396-399.
    158.许荣华,Harris N,Lewis C,等.拉萨至格尔木的同位素地球化学.见:青藏高原地质演化[M].北京:科学出版社.1990.282-302.
    159.许志琴,杨经绥,陈方远.阿尼玛卿缝合带及“俯冲碰撞”动力学见:张旗主编蛇绿岩与地球动力学研究[M]北京:地质出版社,1996,185-189.
    160.许志琴,张建新,徐惠芬等.中国主要大陆山链韧性见剪切带及动力学[M].北京:地质出版社, 1997,294.
    161.许志琴、扬经绥、姜枚.青藏高原北部的碰撞造山及深部动力学-中法地学合作研究新进展[J].地球学报,2001,22(1):5-10.
    162.薛春纪,马国良.秦岭泥盆纪热水沉积环境和海底热液沉积岩[J].矿物岩石地球化学通讯,1991,(1):46-55.
    163.薛春纪,祁思敬,郑明华,刘建明.热水沉积研究及相关科学问题[J].矿物岩石地球化学通报. 2000,19(3),155-163.
    164.薛春纪,祁思敬.南秦岭泥盆纪同生热水沉积环境的沉积学及地球化学信息[J].西北地质,1995,16 (4):325-332 .
    165.薛春纪.沉积岩中海底热液沉积矿床岩石学方法[A].中国科学院矿床地球 化学开放研究实验室.矿床地质与矿床地球化学研究新进展[C].兰州:兰州大
    学出版社,1990.8-12.
    166.薛春纪.秦岭泥盆纪热水沉积[M].西安:西安地图出版社,1997:10-52.
    167.薛春纪.秦岭泥盆纪热水沉积环境及热水沉积成岩成矿学研究[M].成都:成都理工学院图书馆,1998.
    168.扬经绥,柴耀楚,等.东昆仑万宝沟群中的基性火山岩特征及其成因探讨[J].岩石矿物学杂志,1987(2):121-130.
    169.扬言辰,冯本智等.吉林老岭大横路式热水成积叠加改造型钴矿床[J].长春科技大学学报.2001(1):40-44.
    170.杨金中,沈远超,李光明,等.新疆东昆仑鸭子泉蛇绿岩的基本特征及其大地构造意义[J].现代地质1999,13(3):309-314.
    171.杨金中,沈远超,刘铁兵.新疆东昆仑祁漫塔格群火山岩建造成因分析[J].新疆地质.2000,18(2):105-112.
    172.杨铭君,叶磊,等.柴达木盆地周边的几个金矿区遥感构造和地球物理场特征[J].矿产与地质, 1998,12(5):342-348
    173.殷鸿福, 张克信, 等. 中央造山带的演化及其特点[J]. 地球科学.1999,23(5):437-442.
    174.殷鸿福,张克信.东昆仑造山带的一些特点[J].地球科学--中国地质大学学报,1997,22(4): 339-342
    175.於崇文.成矿作用动力学理论体系和方法论[J].地学前缘,1994,1(3-4)
    176.袁万明,莫宣学,王世成,张雪亭.东昆仑金成矿作用与区域构造演化的关系[J].地质与勘探2003, 39 (3) :5-8
    177.袁万明,莫宣学.东昆仑早石炭世火山岩的地球化学特征及其构造背景[J].岩石矿物学杂志.1998,17(4):289-295
    178.翟裕生, 等. 同生断层对层控超大型矿床的控制. 中国科学,(D集),1998,28(3):15.
    179.翟裕生,秦长兴.关于成矿系列与成矿模式[M].矿床学参考书(下册).北京:地质出版社,1987.214-221
    180.翟裕生, 熊永良. 关于成矿系列的结构[J]. 地球科学,1987,12(4):375-380
    181.翟裕生,姚书振,林新多等.长江中下游铁、铜等成矿规律研究[J].矿床地质,1992 ,11 (1) :1-12
    182.翟裕生.成矿系列研究[J].现代地质,1992,6(3):301-308.
    183.翟裕生.中国区域成矿特征及若干值得重视的成矿环境[J].中国地质,2003,30(4):337-341.
    184.张德全,等.东昆仑地区综合找矿预测与突破(内部资料),2002.
    185.张德全,丰成友,李大新,等.柴北缘--东昆仑地区的造山型金矿床[J].矿床地质,2001.20(2):137-146.
    186.张复新, 喷流岩及其识别与找矿[J], 地质科技情报,1988,7(3 总

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700