用户名: 密码: 验证码:
松辽盆地徐家围子断陷火山岩储层综合预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以松辽盆地徐家围子断陷为例,依据火山岩岩石学和地球物理学的基本原理,按照多学科综合研究的思路,利用岩心、测井、地震等资料对火山岩储层的预测方法进行了深入的研究。提出了综合应用常规测井和成像测井资料进行火山岩岩性识别、针对火山岩的叠前深度偏移和非常规切片地震相目标处理、PLS 火山岩地震属性优化、构造趋势面分析、层间厚度百分数波阻抗切片等新方法新技术。这些新的方法和技术在一定程度上克服了常规方法的不足,将深层断陷火山岩的识别和火山岩储层的预测技术在一定程度上又向前推进了一大步。本文的研究成果,对进一步提高松辽盆地深层火山岩储层评价及预测水平,预测有利的油气聚集带,指导寻找新的有利勘探区块,提高钻探成功率,具有重要的意义;该方法的实现对其它断陷盆地火山岩储层的预测及评价具有理论指导意义。
The deep Mesozoic volcanic rocks in North Songliao Basin has become an important reservoir of deep natural gas, according to the previous exploration activities, and it also has better gas-exploration prospects, the gas prediction and control reserves have been provided.
    Because of the deep-buried volcanic rocks which lack of outcrops, many drillings can’t reach the volcanic rocks, some of drillings can drill through them, but no samples of the volcanic rocks can be gained, or the whole samples of the volcanic rocks can’t be collected. All of these lead to the very short of the samples of volcanic rocks. The residual cores of volcanic rocks in the drilling holes can’t provide the information about the volcanic lithologic distributions, period-times, circles, attitude, facies, structures, etc, in result with poor correspondence relations between the lithological characters and the physical properties of volcanic rocks, undefined distribution scope and facies division of volcanic rocks, unclear reservoir types of volcanic rocks and unclear origin of gas, etc. These issues will affect badly the gas exploration and the prospective appraisement of volcanic rocks in the deep Songliao basin and make deep volcanic reservoir predication and appraisement a major problem in oil-gas explorations.
    A few related predication methods have been applied at home and abroad focused on the volcanic reservoir predication, but they are all simple and with multi-solution and low predication accuracy. There are no successful methods to meet the current needs for reservoir explorations of volcanic rocks.
    In this paper, an all-round research on predication methods for volcanic rocks has been developed by using core, well-log and seismic data, based on the basic principle of volcanic lithology and geophysics, and the comprehensive research idea of multi-disciplines. Xujiaweizi Rift in Songliao Basin will be presented as a case in this paper. 一、Volcanic well log identification techniques The identification of volcanic lithology is the basis of volcanic reservoir research. Core analysis is the most efficient and direct method to identify the volcanic lithology in hydrocarbon-bearing basins. Because of the low coring-rate in drilling, however, well log data have to be used in the identification of volcanic lithology. 1. Well log response characteristics of volcanic rocks In this paper, according to the comparative analysis on many wells’logs in Xujiaweizi areas, the following laws of the response characteristics of volcanic well log in the studying areas have been summarized: (1) Lithology transits from base to acidity, and the radioactivity is more and more strong. In the studying areas, it shows that natural gamma value is low in basalt, medium in andesite and high in rhyolite; (2) Neutron well-log response reduces gradually from base to acidity, through neutrality. And in the studying areas, neutron well-log response shows that it’s 18P.U. in basalt, 6P.U. in dacite, and less than 3P.U. in rhyolite. Because of alteration, tuff formed into clay minerals to adsorb the formation water, that leads to a high neutron value, which is up to 24P.U.; (3) Density in density logging reduces gradually with decreasing Fe and Mg, from basic rocks to acidic rocks, through neutral rocks; (4) Tuff is characterized by high acoustic time (80ms/ft) and low resistivity(8-20 Ω.m). 2. Crossplot characteristics of volcanic rocks Logging data crossplot is the most efficient method to identify the volcanic
    lithology in hydrocarbon-bearing basins. In the crossplot, the division and distribution areas of lithology can be found visually, and volcanic lithology also can be identified clearly. In the research, based on the detail lithologic designation results of deep volcanic rocks from 30 wells (144 blocks) in Xujiaweizi areas, which were analyzed in the labs of Beijing Geology University, the log data from 17 wells drilled newly in the resent years, and the lithologic designation from Daqing Oilfield Exploration & Development Research Institute, a complete analysis on measured logging data response characteristics has been performed, and a crossplot chart of natural gamma-neutron density difference has been also built. The volcanic lithology has been divided into 5 types. The coincidence rate of the chart practiced in 18 wells in deep Xujiaweizi areas, such as Xushen 6#, etc, is up to 81.3%. 3. Volcanic lithology identification techniques by using imaging well-log Volcanic lithology is complex in deep Xujiaweizi, it has developed from acidity to mid-base. At present, more than 10 types of lithology can be found there. Volcanic lithology can be divided in general by using conventional logging data and it can be confirmed and sub-divided accurately further, combining with volcanic texture and structural features reflected from imaging logging data, and it can be also identified for more than 10 types. It's impossible to identify all the lithologic standard geologic models, because imaging logging data are the integrated response of the resistivity and the reflected acoustic wave properties of down-hole geologic bodies, and the data have multi-solvability. In the research, based on the calibration imaging logging data of standard geologic lithologic model-base, 5 types of standard logging model images have been built, focused on the texture and structural features of rocks. 4. Volcanic lithology identification techniques using conventional and imaging logging data At first, lithology is confirmed based on rock acidity, using conventional logging data; and then, the lithology is confirmed based on rock texture and structural features,
    using imaging logging data; at last, the lithology is confirmed based on the principle which is unified with geologic designation, combining conventional logging data with imaging logging data. At present, 10 types of volcanic lithology can be identified, using the methods presented above. In the volcanic lithology identification performed in 36 wells in the studying areas, the coincidence rate is up to 83%. 二、Volcanic seismic reflection features analysis and identification techniques In this paper, according to the theoretical research by reducing geologic model design, the resolution capability of seismic reflection explorations to the deep volcanic rocks has been concluded with different wavelet frequency, and the resolution capability of seismic data to deep volcanic reservoir has also concluded under the current seismic exploration technique conditions. Meanwhile, in order to predict and characterize the distribution of deep volcanic bodies accurately, more volcanic-targeted processing techniques have been applied, such as pre-stack depth migration processing, non-conventional slicing seismic facies processing, etc., and the host location of volcanic rocks and its space arranging laws have been predicted more accurately. 三、Volcanic seismic features parameters extraction and optimized appraisement techniques This paper presents partial least-square optimization method to volcanic seismic attributes at the first time. The research shows that the seismic attribute optimization results from the partial least-square principal component analysis methods are nearly the same to which from conventional analysis methods, when the factors affected the reservoir physical prediction parameters are less; the partial least-square optimization method shows more advantages than the principal component analysis methods and show more strong adaptability, when there’s so much noise in initial seismic data. At the same time, 52 types of extracted seismic attributes have been optimized by using the partial least-square optimization method, and 4 types of seismic attribute
    parameters which are sensible to volcanic rocks; the method is applied in Xingshan area, Xujiaweizi, based on a processing analysis on the 4 types of attribute, the accuracy of volcanic prediction is improved which provides a stable base to the following volcanic reservoir predictions. 四、Integrated prediction techniques for volcanic reservoirs 1. ‘Four-Property’relation research on volcanic rocks In this paper, relations between volcanic lithology, facies, electricity, hydrocarbon-bearing capability and reservoir physical properties in the studying areas have been built, based on the ‘Four-Property’relation research on volcanic reservoirs. ‘Four-Property’relation shows that physical properties of volcanic rocks are controlled by volcanic lithology evidently, the close relations between the hydrocarbon-bearing capability of volcanic rocks and the physical properties and lithology of volcanic rocks have been also found. Fracture development and fracturing of structural high-points are very important to improve the volcanic reservoirs, and they can link up primary pores, developed fracture is a better reservoir space itself. In the research, the pore permeation parameters have been half-classified quantitatively, based on the practical geological conditions, which provides a geological basis to the building of interpretation model of volcanic reservoir parameter logging next. 2. Prediction techniques for crater developing zones The identification of craters and the prediction of crater developing zones are very important to the exploration and development of volcanic reservoirs. To the oil & gas exploration and production companies at home and abroad, the distribution area of craters is the exploration target for a long time. The crater controls the distribution of facies zones of volcanic rock-bodies, and is always the developing area of favorable volcanic reservoirs and the high producing area of hydrocarbons. The seeking for crater developing zones is significant in volcanic explorations. In this paper, crater developing zones have been identified using structural trend surface analysis techniques at the first time, combining with various seismic volume
    slices, and the distribution and the space arranging laws of the craters in the testing areas have been also predicted efficiently. 3. Prediction techniques for the plane distribution of volcanic facies Volcanic rocks of Yingcheng formation in Xingcheng-Fengle area, Xujiaweizi, developed mainly in Yingyi segment. In this paper, based on the analysis of volcanic seismic reflection features and volcanic facies presented above, waveform clustering analysis and spectrum imaging techniques have been applied in the research to predict the plane distribution features of volcanic facies in the studying areas, and better results have been gained. 4. Integrated prediction techniques for volcanic reservoirs In this paper, after figuring out the factors which affect the volcanic reservoirs in the studying areas, 'Four-Property' relation of volcanic rocks, and the arranging laws of crater and volcanic facies, a path-breaking research has been performed focused on the prediction issues for volcanic reservoirs, using model annealing inversion method. The research shows that model annealing is a global optimization technique, and the model annealing method can overcome the disadvantages of conventional optimization methods, and it can gain the global optimization solution. According to model annealing algorithm, the model annealing inversion method constrained by broadband can transform given conditions into concrete constraints to control the inversion. Thus, using model annealing method, the seeking issues for global optimization can be solved, and the accuracy and convergence rate of inversion can be also improved at the same time, through using constraints reasonably. 5. Distribution laws of volcanic reservoirs and volcanic gas reservoirs In this paper, using density inversion to predict volcanic porosity and using two attribute analysis methods to predict the hydrocarbon-bearing capability of volcanic reservoirs, a research on the distribution laws of volcanic reservoirs and volcanic gas reservoirs has been performed in the testing area ( Xingcheng-Fengle area ) based on the research findings presented above. The results show: in the testing area, volcanic reservoirs have developed better in the explosive facies and the eruptive facies near
引文
1. 安丰全,李从信等.利用测井资料进行裂缝的定量识别. 石油学报,1998,37(3):171-176
    2.蔡先华. 松辽盆地南部长岭断陷火山岩分布成藏规律.石油地球物理勘探,2002.41(3):363-366
    3. 常波涛,单玄龙等. 松辽盆地北部升平-汪家屯火山岩油气藏研究. 长春科技大学学报,2000,30(增刊):25-28
    4. 车卓吾.测井资料分析手册. 北京:石油工业出版社,1995:315-319
    5. 陈建文,王德发,张晓东,李长山. 松辽盆地徐家围子断陷营城组火山岩相和火山机构分析图.地学前缘,2000,7(4):371—379
    6. 陈岩. 克拉玛依油田一区石炭系火山玄武岩油藏剖析.新疆石油地质,1988,9(29): 17--31
    7. 陈振岩,李军生等. 辽河坳陷火山岩与油气关系.石油勘探与开发,1996,23(3):1-5
    8. 陈钢花,范宜仁,代诗华. 火山岩储层测井评价技术.中国海上油气(地质), 2000, 14(6):422-428
    9. 陈树民.陆相断陷盆地地质体几何形态及属性刻划:理论与应用(博士论文). 2001:1-135
    10. 崔勇,栾瑞乐,赵澄林. 辽河油田欧利坨子地区火山岩储集层特征及有利储集层预测. 石油勘探与开发,2000.21(5):47-51
    11. 代诗华,姜淑云等. 准葛尔盆地石西油田火山岩储集层的测井描述.新疆石油地质,1997, 18(2):125—129
    12. 邓攀等. 火山岩储层构造裂缝的测井识别及解释. 石油学报. 2002,23(6):32-36
    13. 邓新华. 层序地层学导向.地球科学-中国地质大学学报. 1993,18(4):78-82
    14. 董冬. 火山岩储集层中的一种重要储集空间-气孔.石油勘探与开发,1991,18(1):89-93
    15. 杜贤樾,肖焕钦.渤海湾盆地火成岩油气藏勘探研究进展.复式油气田, 1998,23(4):1-4
    16. 杜世通、王永刚等.探索用地震资料研究油藏参数的技术.石油地震勘探技术交流会论文集—下册,石油工业出版社,1993
    17. 高林.地震解释技术的重头戏:地震属性研究,SEG 第69 届年会论文概要.石油工业出版社,2000
    18. 高君,刘金平,陈秀娟. 火山岩体的地震识别技术及其应用.大庆石油地质与开发, 2000.19(4):44-47
    19. 高瑞祺等.大庆探区油气勘探新进展,石油工业出版社,1994
    20. 高知云,章谦澄.黄骅盆地新生代火山岩与油气.大港油田勘探丛书.北京:石油工业出版社,1999
    21. 高印军,郭春东,余忠等.综合解释技术在孔南地区火成岩油藏研究中的应用.石油勘探与开发,2000,27(3):81-83
    22. 葛文春. 大兴安岭中生代火山岩的地球化学特征及其大地构造背景. 地学前缘,1995,2(4):115-119
    23. 郭占谦.火山活动与沉积盆地的形成和演化.地球科学,1998,23(1): 59-64
    24. 郭齐军,刘来祥.火山岩储集层的研究.石油实验地质,1997, 19(4):337-339
    25. 何樵登等.地震勘探原理和方法.地震出版社,1986。
    26. 何琰,伍友佳,吴念胜. 火山岩油气藏研究. 大庆石油地质与开发, 1999,18(6):6-14
    27. 洪峰,宋岩.松辽盆地天然气聚集带特征及其控制因素探讨.石油勘探与开发, 1997,24(3):5-10
    28. 洪有密等. 测井原理及综合解释. 北京:石油工业出版社,1994
    29. 胡见义,黄第藩,徐树宝,甘克文,薛叔浩,应凤祥.中国陆相石油地质理论基础. 1991, 北京:石油工业出版社, 164-234
    30. 黄海平,卢松年.石油储层地球化学的原理及应用.地学前缘,1995,2(4):207-212
    31. 黄金贵译.地壳深部地带天然气地球化学性质与含油气性的关系.石油地质信息,1996(3):1-9
    32. 黄隆基等.火山岩测井评价的地质和地球物理基础. 测井技术,1997, 21(5):341-344
    33. 贾文玉、田素月等.成像测井技术与应用.北京.石油工业出版社,2000 年8 月
    34. 贾丽,刘国全.枣园油田火成岩识别及储集层特征研究.复式油气藏, 1998,19(4):36-37
    35. 蒋建平,康贤等.火山岩相和火山机构分析及层物性参数展布的相控模型[J] ,成都理工学院学报,1995,22(1):12-17
    36. 金伯禄,张希友.长白山火山地质研究. 长春:东北朝鲜民族教育出版社,1994
    37. 康冶. 升平气田营城组火山岩储层分布预测.大庆石油地质与开发. 2002.21(3):22-24
    38. 康冶. 升平气田白垩系营城组火山岩储层特征与预测.世界地质. 2002.21(2):130-134
    39. 李长山,陈建文,游俊,王德发,邓浚茂. 火山岩储层建模初探.地学前缘,2000,7(4): 381—389
    40. 李承楚等.地震勘探新技术,北京:石油工业出版社,1999
    41. 李善军等.碳酸盐岩地层中裂缝孔隙度的定量解释. 测井技术,1997,21(5):205-214
    41. 李石,王彤.火山岩. 北京:地质出版社,1980
    42. 李明,邹才能,刘晓. 松辽盆地北部深层火山岩气藏识别与预测技术.石油地球物理勘探, 2002,37(5):417-424
    43. 李希宗. 层序地层学问题讨论. 中国海上油气(地质),1994,8(3):65-69
    44. 李艳丽,王国军,曹国银. 针对火山岩预测的目标处理与火山岩储层预测新技术.石油地球物理勘探,2002.37(5):541-546
    45. 李彦民,李艳丽,赵微林. 火山岩储集层定量预测方法的探讨.石油地球物理勘探, 2002,37(2):175-179
    46. 林如锦,徐克定. 浙闽粤东部中生代火山岩分布区油气远景探讨.石油学报,1995,16 (4):23-31
    47. 刘光鼎、李幼铭、吴永刚.陆相油储地球物理导论,科学出版社,1998
    48. 刘惠民,肖焕钦,韩荣花. 火成岩油藏相模式及储集层研究。复式油气藏,1998,23(4): 40—43
    49. 刘金平张向君董建平朱建伟. 波动方程显式短算子三维正演模拟吉林大学学报(地球科学版) 2004 年第34 卷第1 期: 138-141
    50. 刘金平王世清王红燕谢广玲. 叠前噪音衰减技术在高分辨率处理中的应用大庆石油学院学报2003 年第27 卷第4 期: 12-14
    51. 刘金平刘云武高君谢春来. 岩性圈闭储层描述技术及应用石油地球物理勘探2003 年第38 卷第5 期: 531-534
    52. 刘金平冉清昌高君. 松辽盆地北部深部油气与多种资源勘探战略研究中国石油勘探2002 年第7 卷第4 期: 9-14
    53. 刘为付,刘双龙等. 莺山断陷侏罗系火山岩储层特征.大庆石油地质与开发. 1999,18 (4):9-11
    54. 刘文灿,孙善平,李家振. 大别山北麓晚侏罗世金刚台组火山岩地质及岩相构造特征. 现代地质,1997,11(6):237—243
    55. 刘文岭、李刚、夏海英. 地震波形特征分析定量描述方法.大庆石油地质与开发.1999, 18(2):44-45
    56. 刘文岭、牛彦良、李刚等. 多信息储层预测地震属性提取与有效性分析方法.石油物探, 2002,41(1):100-106
    57. 刘祥,向天元. 中国东北地区新生代火山和火山碎屑堆积物资源与灾害. 长春:吉林大学出版社,1997,32(4):1—8
    58. 刘雪军等. 利用非地震综合勘探技术研究火山岩圈闭.全国火山岩油气藏勘探开发技术研讨会论文集,2002:198-203
    59. 刘泽容,信全麟,王永杰等. 山东惠民凹陷西部第三纪火山岩油藏形成条件与分布规律. 地质学报,1998,62(3):210-222
    60. 刘震. 储层地震地层学,北京:地质出版社,1997
    61. 刘招君等,陆相层序地层学导论与应用,石油工业出版社,2002
    62. 吕晓光等.应用神经网络模型进行孔隙度和渗透率参数预测[J],大庆石油地质与开发, 1996,15(3):27-31
    63. 栾文贵,李幼铭.我国地球物理反演问题研究的某些进展. 地球物理学报, 1990,33(2):501~508
    64. 罗静兰,石发展等. 风化店火山岩岩相、储集层与油气的关系. 石油学报,1996,17(1):32—39
    65. 罗静兰,曲志浩,孙卫等.风化店火山岩成因、储集孔隙类型及其火山岩相与油气的关系.石油学报,1996,17(1):32-39
    66. 马劲风,赵圣亮等. 风化店地区火山岩分辨率和振幅的影响因素.西北大学学报(自科版),1997,27(1):85—88
    67. 牛彦良,熬志富,姜岩等. 地震特征参数的统计分析方法及应用. 大庆石油地质与开发,1993,12(3):1-4
    68. 欧阳健等. 石油测井解释与储层描述,北京:石油工业出版社,1994
    69. 庞彦明等. 实用开发地震. 北京:石油工业出版社,2001
    70. 潘宝芝,李舟波,汪宏年. 提高测井曲线纵向分辨率的方法.长春地质学院学报,1997, 27(2):197—201
    71. 潘葆芝等. 分维数及其在测井地质解释中的应用. 测井在油藏描述中的应用. 石油工业出版社,1992: 213-219
    72. 彭真明、安鸿伟等,演化神经网络学习方法及其应用,石油地球物理勘探,2001,21(2): 193—197
    73. 綦敦科,吴海波,陈立英.徐家围子火山岩气藏储层测井响应特征.测井技术. 2002,26 (1):52-54
    74. 綦敦科,齐景顺,王革. 徐家围子地区火山岩储层特征研究.特种油气藏.2002,9(4): 30-33
    75. 邱家骧. 国际地科联火成岩分类学分委会推荐的火山岩分类简介[J].现代地质,1991,5 (4):457-468
    76. 邱家骧,陶奎元,赵俊磊等. 火山岩[M]. 地质出版社,1996:1-58
    77. 裘亦楠. 油气储层评价技术. 石油工业出版社,1997
    78. 任作伟,金春爽. 辽河坳陷洼609 井区火山岩储集层的储集空间特征.石油勘探与开发, 1999,26(4):54-57
    79. 沈财余. 叠前深度偏移处理方法和实例. 石油物探,1998,37(2): 88-98
    80. 邵正奎,孟宪禄,王洪艳. 松辽盆地火山岩地震反射特征及其分布规律.长春科技大学学报,1999,29(1):33-36
    81. 沈财余等. 测井约束地震反演解决地质问题能力的探讨. 石油地球物理勘探,2002,37 (4):372-376
    82. 宋维海等. 松辽盆地中生代火山岩油气藏特征.石油与天然气地质. 2003, 24(1):12-17
    83. 石油测井情报协作组.测井新技术应用:成像测井、核磁共振测井、岩电测井.北京.石油工业出版社,1998 年3 月
    84. 唐建人,刘金平,谢春来. 松辽盆地北部徐家围子断陷的火山岩分布及成藏规律.石油地球物理勘探,2001.21(3): 342-345
    85. 唐阶廷. 二连盆地阿北安山岩储层特征.石油与天然气地质. 1988,9(4):389—400
    86. 陶奎元. 火山岩相构造学. 南京:江苏科学技术出版社,1994:12—31
    87. 陶奎元. 中国东部火山岩带特性与碰撞-伸展复合动力学框架.火山地质与矿产,1994, 15(3):49—52
    88. 王德滋,周新民. 火山岩岩石学.北京:科学出版社,1982
    89. 王璞君,陈树民等. 松辽盆地火山岩相与火山岩储层的关系. 石油与天然气地质. 2003,24(1):18-24
    90. 王璞君,王树学,曲永宝,任延广. 松辽盆地火山事件研究—营城组火山岩特征(J). 长春科技大学学报,29(增刊):55—61
    91. 王连山等. 测井约束三维地震反演在琥珀营油田滚动开发中的应用.物探化探计算技术, 2003,25(2):157—163
    92. 王忠东,陈宝树. 应用井周声波成像测井识别辽河古潜山地层裂缝. 国外测井技术, 1997,40(增刊):15-19
    93. 魏斌等. 徐家围子断陷火山岩岩性的测井识别技术.特种油气藏.2003,10(1):73-75
    94. 魏嘉等. 利用地震资料进行储层参数横向预测. 石油物探,1998,19(37):82-91
    95. 魏涛,田洪,赵立新. CBLL 测井在火成岩地层中的应用. 测井技术,1997,21(1):32-38
    96. 吴崇筠,薛叔浩,杜永林,钱凯. 中国含油气盆地沉积学, 北京:石油工业出版社, 1993:115-406
    97. 吴永甫编译.火山碎屑岩:潜在的油气储集层.油气勘探译丛,1988,21(5):28-31
    98. 吴伟,张秀荣等.徐家围子断陷火山岩圈闭含气性的综合评价. 大庆石油学院学报. 2002,26(2):5-8
    99. 徐丽英等.地震技术在辽河油田黄沙坨地区火山岩油藏勘探中的应用.全国火山岩油气藏勘探开发技术研讨会论文集,2002:169-173
    100. 萧德铭. 大庆岩性油藏勘探,石油工业出版社,1999
    101. 谢家莹,蓝善先,张德宝,周茂,赵宇,许乃政. 运用火山地质学理论研究竹田头火山机构. 火山地质与矿产,2000,21(2):87—95
    102. 谢家莹,陶奎元等. 中国东南大陆中生代火山地质及火山—侵入杂岩.北京:地质出版社, 1996:40—71
    103. 徐怀大等. 地震地层学解释基础. 中国地质大学出版社,1991
    104. 徐丽英等.地震技术在辽河油田黄沙坨地区火山岩油藏勘探中的应用.全国火山岩油气藏勘探开发技术研讨会论文集,2002:169-173
    105. 闫春德,余芳权. 江汉盆地火山岩气孔发育规律及其储集性能.江汉石油学院学报, 1996, 18(2):1—6
    106. 阎新民. 应用计算机进行准葛尔盆地火山岩裂缝识别.石油地球物理勘探,1994,29(增刊2):139—143
    107. 杨立强. 测井约束地震反演综述. 地球物理学进展,2003,18(3):530-534
    108. 杨峰平等. 松辽盆地杏山地区火山岩储层分布地震地质综合预测研究. 特种油气藏. 2003,10(1):95-98
    109. 杨光薛林福刘振彪刘金平. 松辽盆地深部地震剖面解释与深部地质研究石油与天然气地质2001 年第22 卷第4 期: 326-330
    110. 杨勤勇,徐丽萍. 地震勘探技术新进展. 勘探地球物理进展,2002, 25(1):5-10
    111. 杨茂新. 松辽盆地断陷期火山岩的形成及成藏条件. 大庆石油地质与开发. 2002,21 (5):15-17
    112. 杨子建. 大地电磁测深法在火山岩覆盖区的应用.石油地球物理勘探,1997,32(增1): 165-175
    113. 杨新明. 闵桥油田火山岩油藏储层特征. 江苏油气,1993,4(3):24-31
    114. 杨文采. 地球物理反演的理论与方法,地质出版社,1997
    115. 伊培荣,彭峰等. 国外火山岩油气藏特征及其勘探方法. 特种油气藏,1988,5(2): 65-70
    116. 袁秉衡. 应用地震技术研究储层. 北京:石油工业出版社,1992
    117. 于志钧,赵学东. 石油数学地质.北京:石油工业出版社,1982
    118. 余家仁. 隐伏火山岩体岩相解释及储集性能研究.石油勘探与开发,1995,22(3):24-29
    119. 余芳权. 江陵凹陷金家场构造的火山岩储集层. 石油勘探与开发, 1990,17(2):56-62
    120. 运华云. 商7401 井区裂缝性火成岩储集层测井评价.复式油气藏,1998,21(4):25-29
    121. 张鼎,彭亚民主编. 火成岩石学. 北京:地质出版社,1984
    122. 张戈,陈振岩等. 火山岩发育区的砂岩储层特征研究及在油气勘探中的应用.特种油气藏,1996,3(4):1-3
    123. 张殿成,何德友,尚广弟. 松辽盆地汪家屯东火山岩储层预测.石油物探,2000,39(2):36-43
    124. 张国杰. 阿尔善地区火成岩解释方法探讨-测井资料的地质应用. 北京:石油工业出版社,1981
    125. 张庆国,徐冬燕,沈玮.风化店火山岩油藏测井解释方法研究.测井技术,1995,20(4):256-260
    126. 张坤,刘峰,程秀芹. 松辽盆地南部火山岩及其在成藏过程中的作用.大庆石油地质与开发,2002.21(3):16-18
    127. 张向君、李勤学、崔凤林等,模糊神经网络油气预测,石油物探,1998,37(2):49-55
    128. 张向君、管叶君、崔凤林等,双重神经网络预测储层及油气. 石油地球物理勘探,1997,32(5):717—723
    129. 张晓东,霍岩,包波. 松辽盆地北部地区火山岩特征及分布规律.大庆石油地质与开发,2000,19(4):10-12
    130. 张招崇等. 辽西义县盆地火山岩的基本特征及其成因探讨. 现代地质,1994,8(4):441-450
    131. 赵澄林,孟卫工,金春爽等. 辽河盆地火山岩与油气. 石油工业出版社,1999
    132. 赵国连,张岳桥等. 大庆火山岩地震反射特征与综合预测技术.石油勘探与开发,2002,21(5):44-46
    133. 赵海玲. 火山岩储层,现代地质,1998,12(1):62-66
    134. 赵建,高福红. 测井资料交汇图在火山岩岩性识别中的应用. 世界地质. 2003,22(2):136-140
    135. 赵立旻等.青龙台地区火山岩成藏特征研究及储层预测.特种油气藏,2001,8(1):53-56
    136. 周自立. 山东滨南油田早第三纪玄武岩油藏的形成条件.石油与天然气地质,1998,9 (2):133—139
    137. 赵良孝,补勇.碳酸盐岩储层测井评价技术.北京:石油工业出版社,1994
    138. 朱海龙,地震资料可视化解释的研究应用现状,石油物探译丛,1999, 18(5):1-11
    139. 朱文广等编著. 地震资料储层预测方法,北京:石油工业出版社,1995
    140. 庄博.火山岩储集层的地震识别方法探讨——以罗家地区为例.复式油气藏,1998, 15(4):27-31
    141. 綦敦科等. 徐家围子地区火山岩储层特征研究.特种油气藏,2002,9(4):30-34
    142. Allen P A, Allen J R. Basin analysis principles and application[M].Oxford London. Blackwell scientific publication, 1990.
    143. Adam Gersztenkorn and Kurt J.Marfurt,1999,Eigenstructure-based coherence Computations as an aid to 3-D structural and stratigraphicmepping,Geophysics,64(5): 1468-1479.
    144. Addy, S. K., Attribute analysis in Edwards limestone in Lavaca county, Texas:Annual Meeting Abstracts, Society Of Exploration Geophysicists, 1997:737-740
    145. Adler, F., Attribute Analysis Using Locally Scaled Regression : 61st Mtg. Eur. Assoc. Expl Geophys., Extended Abstracts, European Association Of Geophysical Exploration,1998, Session: P139
    146. Arts, R. and Ampilov, Y., Enhancement of a Flat Spot From Seismic Data Using Multi-Attribute Analysis: 61st Mtg. Eur. Assoc. Expl Geophys., Extended Abstracts, European Association Of Geophysical Exploration, ,1999, Session:5010
    147. Bahorich, M.and Farmer, S.,1995,3D seismic discontinuity for faults and stratigraphic features: the coherence cube, The Leading Edge 14:1053~1058.
    148. Bahorich, M. S. and Bridges, S. R., The seismic sequence attribute map (SSAM): 62nd Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1992: 227-230
    149. Barton, K., Delineation of oil and gas fields in Bredasdorp Basin, offshore south Africa, using seismic attribute mapping, seismic inversion and AVO techniques: Annual Meeting Abstracts, Society Of Exploration Geophysicists, 1997: 631-634
    150. Bednar, J.B.,1998, Least squares dip and coherency attributes, Theleading Edge 17(6): 775~782.
    151. Be.,I I,吴智勇. 火山碎屑岩层序中的一种新型储集岩. 江汉石油学院学报,1991(3):1—7
    152. Bednar, J.B.,1998, Least squares dip and coherency attributes, The leading Edge 17(6): 775~782.
    153. Biondo L.Biondi and Clement Kostov,1989,High-resolution velocity spectra using eigenstructure methods, Geophysics, 54(7): 832-842.
    154. Brenneke, J.C.,1995, Analysis of fault traps, World Oil 21(6):63~71.
    155. Brown, A.R., Interpreter’s Corner -Seismic attributes and their classification: The leading Edge, 1996, 15(10): 1090
    156. Buchanan,R.,Marke,P.A.B. and Ruijtenberg,P.A.,1988,Applications of 3D seismic to detailed reservoir delineation. Society of Petroleum Engineers International Meeting Proceedings,91~97.
    157. C.E.佩顿编,牛毓荃等译.地震地层学,石油工业出版社,1980
    158. Catherine lewis 著,张翠兰译,邵祝华校. 用于油藏监测的地震属性:应用正演模拟的可行性研究. 石油物探译丛,1997,(6):78-92
    159. Cas R A F, Wright J V. Volcanic successions modern and ancient.LonDon:Allen&Unwin,1987: 59—333.
    160. Christian Castaldi 等著,张仪宁译. 用地震属性描述油藏特性: Peciko 油田(印尼) 的一个实例. 石油物探译丛,1997,(6):69-73
    161. Cynthia T.Kalkomey 著,杨勤勇译. 用地震属性预测油藏特性的潜在风险. 石油物探译丛,1997,(6):74-77
    162. Chen, Q. and Sidney, S., Advances in seismic attribute technology: Annual Meeting Abstracts, Society Of Exploration Geophysicists, 1997:730-733
    163. Chen, Q. and Sidney, S., Seismic attribute technology for reservoir forecasting and monitoring: The Leading Edge, 1997, 16(5): 445,447-448,450,453-456
    164. Cooke, D., Ball, V., Muryanto, T., O'Donnell, G. and Sena, A., What is the best seismic attribute for quantitative seismic reservoir characterization?: Annual Meeting Abstracts, Society Of Exploration Geophysicists, 1999: 1588-1591
    165. Cooke, D., Techniques for improving seismic attribute versus well-log property cross plots with synthetic and real data examples from Prudhoe Bay Field: Annual Meeting Abstracts, Society Of Exploration Geophysicists, 1999: 69-72
    166. Dalley, R.M., Gevers, E.C.A.,Stampfli, G.M., Davies, D.J.,Gastal-di, C.N., Ruijtenberg, P.A.and Vermeer, G.J.O., 1989, Dip and azimuth displays for 3D seismic interpretation, First Break 7:86-95.
    167. Davis D K, Alnom W R, Bonis S B, Hunter B E. Deposition and diagenesis of Teriary-Holocene volcaniclstics, Guatemala, In: Scholle P A, Schluger P R, eds. Aspects of Diagenesis. Society of Economic Paleontologists and Mineralogists Special Publication, 1979(26):281-306
    168. Diet, J.P., Evans, W.S., Blackwelder,B., canales,L.,Dubose,J., Morris,D.S.and Beasley,C.J.,1996, Seismic technology:new trends for new demands, Journal of Petroleum Technology 48:22-30.
    169. Dix,C.H, 1955 , Seismic velocities from surface measurements, Geophysics, (20): 68-86.
    170. Dorn, G.A., Cole, M.J.and Jubman, K.M.,1995, Visualization in 3D seismic interpretation, The leading Edge 14:1045-1049.
    171. Donelick, M., Bahorich, M. and Farmer, S., Prediction of gas-oil and oil-water contacts in Norwegian block 30/8 by means of seismic attribute mapping -A new tool for the interpreters' arsenal: 55th Mtg. Eur. Assoc. Expl Geophys., Abstracts, 1993, Session:A012
    172. Duncan G.and Beresford G.,1992,Attenuation of coherent noise using automatic direction median filtering, Exploration Geophysics,23:127-132.
    173. Eggink,J.W.,Riegstra,D.E.and Suzanne,P.,1996,Using 3D seismic to understand the structural evolution of the UK Central North Sea,Petroleum Geoscience 2:83~96.
    174. FMI FRACVIEW/FLIP.裂缝参数计算原理.斯仑贝谢,1997
    175.Grant Heiken, Kenneth Wohletz. Fragmentation processes in explosive volcanic eruptions. In: Richard V, Fisher and Smith G A,eds. Society for Sedimentary Geology Special Pubilication. 1991, 45:19-26
    176. Georgia Pe-Piper & Hatzipanagoton . The pliocene volcanic rocks of Crommyonia, western Creece and their implications for the early evolution of the South Aegean arc[J]. 1997,Geological.Mag. 134(1),P55-56,Cambridge University Press.
    177. Hawlander H M. Diagenesis and resevoir potential of volcanogenic sandstones-Cretaceous of the Surat Basin,Australia[J].SedimentaryGeology,1990,66(3/4):181-195
    178. Hardage, B. A., Carr, D. L., Lancaster, D. E., Simmons, J. L., et al, 3-D seismic imaging and seismic attribute analysis ofgenetic sequences deposited in low-accommodation conditions : Geophysics, 1996, 61(5): 1351-1362
    179. Hesthammer, J. and Fossen, H.,1997a, Seismic attribute analysis in structural interpretation of the cullfaks Field, Northern North Sea, Petroleum Geoscience 3:13-26.
    180. Hesthammer, J.and Fossen, H.,1997b, The influence of seismic noise in structural interpretation of seismic attribute maps, First Break 15:209-219.
    181. Hoetz, H.L.J.G. and Watters, D.G., 1992, Seismic horizon attribute mapping for the Annerveen Gasfield, the Netherlands,First Break 10:41-51.
    182. Hoshi Kazuoyoshi,Kato Susumu.Alteration and reservoir property Of Miocene volcanic rock reservoir in the Yuryhara oil field, AkitaPrefecture, Japan. In: 29th Annual international geological congress,abstract,1992,29(3):809
    183. Humter B E, Davies D K. Distribution of volcanic Sediments in the Gold coastal province-significance to petroleum geology. Transactions, Golf Coast Association of Geological Societies, 1979, 29(1): 147-155
    184. Hutchins, A., Monk, D.J., Morris, D., Gamwell, T., Best, R., Koger, D.and Neri, P.,1995, What's new in geophysical/geological data application,World Oil 218:73~93.
    185. Jansa L F, Pe-Piper G. Middle Jurassic to Early Cretaceous igneous rocks along eastern North American continental Margin. AAPG Bull. 1988,4:24-31
    186. Jones,G.and Knipe,R.J.,1996, Seismic attribute maps;application to structural interpretation and fault seal analysis in the North Sea Basin,First Break 14:449-461.
    187. Kartanegara A Lukman,Baik R Nyak,Ibrahim M Anditya. Volcanics oilbearing in Indonesia. Annual Meeting Abstract-American Associationof Petroleum Geologist and Society of Economic Paleontologist andMineralogists, 1996,5:73
    188. Krehbiel, S. C., Trivariate attribute displays: The Leading Edge, 1999, 18(11): 1248, 1250, 1252-1253, 1256-1257
    189. Keith Hirsche 等著,高林译. 地质统计学的应用和滥用,石油物探译丛, 1997,(6):58-61
    190. Lajoie J. Facies model 15: Volcaniclastic rocks. Geoscience anada, 1979, 6(3):129-139
    191. Lajoie J, Stix J. Volcaniclastic rocks. Walker R G, James N P, eds. Facies Models Response to Sea Level Change. Waterloo, Ontario: Geological Association of Canada, 1992:101-118
    192. Lesli J. wood 等著,赵剑敏等译.综合地震属性和层序地层学方法分析阿根廷San Jorge 盆地的储层形态,石油物探译丛,2001,(2)69-73
    193. Luo Jinglan, Zhang Chengli, Qu Zhihao. Volcanic reservoir rocks: a case study of the cretaceous fenghuadian suite, Huanghua Basin, Eastern China. Journal of Petroleum Geology, 1999,22(4):397-415
    194. Marfurt,K.J. et al, 1998, 3-D seismic attributes using a semblance-based coherency algorithm,Geophysics,63:1150-1165.
    195. Mark E M, John G M. Volcaniclastic deposits: implications for hydrocarbon exploration. In: Richard V, Fisher, Smith G A, eds. Sedimentation in volcanic settings. Society for Sedimentary Geology, Special Publication 1991,45:20-27
    196. M.格劳尔等著,谢剑鸣译. 地震岩性学. 石油工业出版社,1987
    197. MinZhang. Patassic volcanic rocks in NE China: GeochemicalConstraints on mantle source and magma genesis. Journal of petrology,1995,23(6):1275-1304
    198. M.Turhan Taner and Fulton Koehler,1969,Velocity spectra-digital computer derivation and applications of velocity functions, Geophysics, 34(6): 859-881.
    199. Nicholle Carter 等著,李霞等译. 用探边和相干技术对Hibernia 3D 地震资料进行断层成像. 石油物探译丛,2001,(3):21-24
    200. Oron G J. Volcanic environments. Reeding H G eds. Sedimentary Environments: Processes, Facies and stratigraphy. 3rd ed. London: Blackwell Science, 1996: 485-567
    201. Ostrander,W.J.,1984,Plane-wave reflection coefficients for gas sandsat nonnormal angles of incidence, Geophysics, 49:1637-1648.
    202. Pearson, R. and Hart, B., Convergence of 3-D seismic attribute-based reservoir property prediction and geologic interpretation as a risk reduction tool: A case study from a Permian intraslope basin: Annual Meeting Abstracts, Society Of Exploration Geophysicists, 1999: 896-899
    203. Quincy Chen and Steve Sidney, 1997, Seismic attribute technology for reservoir forecasting and monitoring, The Leading Edge 16(5):325-329
    204. Quincy Chen and Steve Sidney, 1997, Advances in Seismic Attribute Technology, Society of Exploration Geophysicists Expanded Abstracts:259-272
    205. Raeuchle, S. K., Hamilton, D. S. and Uzcategui, M., Integrating 3-D seismic imaging and seismic attribute analysis with genetic stratigraphy: Implications for infield reserve growth and field extension, Budare field, Venezuela: The Leading Edge, 1997, 16(9): 1338-1339
    206. Ratcliff,D.W.and Weber,D.J.,1997, Geophysical imaging of subsalt geology,The Leading Edge 16:115~142.
    207. R.E.谢里夫,L.P.吉尔达特,勘探地震学(第二版).石油工业出版社, 1999
    208. Reinaldo J.Michelena et al,1998, Similarity analysis:A new tool to summarize seismic attributes information, The Leading Edge,17(4):545-548.
    209. Samu J Rogers et al. 用神经网络法由测井资料确定岩性.罗继红译,国外测井技术,1993,8(2):57-63
    210. Sandra K.Raeuchle 等著,朱成宏译.3D 地震图像、地震属性分析与成因地层的综合:委内瑞拉Budare 油田地下油气储量增长和油田范围拓展的指示.石油物探译丛,1998,(4):47-52
    211.Secmann U, Schere M. Volcaniclastics as potential hydrocarbon reservoirs. Clay Minerals, 1984,19(9):457-470.
    212.Shan Xuanlong. Volcanism and Oil & Gas In Northeast China. Journal of geoscientific research in Northeast Asia.,2000,3(2):131-136
    213. Shan Xuanlong, Liu Wanzhu, Wangpujun. Mesozoic Volcanic rock and itsimplication in the east China and Korea peninsula. 中韩第六届地质学术论文集,1999:6-11
    214. Taner,M.T.,Koehler,F.,and Sheriff,R.E.,1979,Complex seismic trace analysis, Geophysics, 44(6):1041-1063.
    215. Telford,W.M., Geldart,L.P.,Sheriff,R.E. and Keys,D.A.,Applied Geophysics,Cambridge University Press,1976.
    216. Thomas, R., White, R. and Castoro, A., Quantitative controls on 3-D seismic processing for prestack attribute analysis: The Leading Edge, 1998, 17(11):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700