用户名: 密码: 验证码:
水稻卷叶性状的遗传分析及卷叶基因的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻卷叶性状是超高产株型育种的重要形态指标之一,并在高产或超高产品种中得到充分的体现。卷叶性状对叶片光合生理、群体生态效应及经济性状的影响的研究表明,适度卷叶对塑造个体良好的株型、改善生育后期群体质量、提高产量具有良好的效应。
     目前发现的卷叶材料比较多,但叶片卷曲程度差异较大,也还没有关于卷叶基因精细定位和克隆的报道。因此,本研究选择了两种代表性的卷叶材料,剑叶分别表现为中度卷曲(91SP068)和高度卷曲(卷叶珍汕97B,JZB),并分别与平展叶品种奇妙香(QMX)配制杂交和回交组合,对F_2代和/或回交后代卷叶性状进行了遗传分析,同时对卷叶基因进行了精细定位。主要研究结果如下:
     1.卷叶基因rl_(t)的遗传分析及其精细定位
     为定位来自JZB的卷叶基因,利用其作为卷叶基因供体亲本,构建了QMX为背景的卷叶基因近等基因系,并以回交后代为材料开展研究:
     BC_4F_2和BC_4F_3代分离出3种剑叶卷曲类型,即卷叶、中度卷叶和平展叶,3种表型的植株个数分离比测验表明,符合1对主基因1:2:1的理论分离比例;而BC_5F_1群体中则分离出两种剑叶类型(中度卷叶和平展叶),分离比测验符合1:1的理论比例。两群体卷叶性状遗传分析说明JZB的卷叶性状受1对主基因的控制。而且,中度卷叶个体的剑叶卷曲形态和卷曲度(LRI)平均值均与平展叶接近,与卷叶相差较大,表明卷叶基因是隐性基因,命名为rl_(t)。
     基因定位基本路径为:首先,采用SSR标记和新开发的INDEL标记,通过BSA法在卷叶DNA池和平展叶DNA池间筛选多态性标记,并用MAPMAKER/EXP3.0构建遗传连锁图,然后,采用复合区间作图法(CIM)进行基因定位。其中,INDEL标记的开发,是以水稻粳稻品种日本晴克隆序列为基础,利用NCBI在线核酸比对工具,与籼稻品种9311基因组比对,发现核酸
Semi-rolled leaf is one of the most important morphological characters in plant breeding. Many high yield varieties or their hybrids were semi-rolled leaf cultivars, such as Peiai64s, E32, Lunhui422. A series of studies on effects of leaf rolling on photosynthetic physiology and yield trait all showed that semi-rolled leaf had some upstanding effects, for instance making leaf erect, optimizing canopy light transmission, increasing effective leaf area per unit land, improving the quality of population in late growth stage.However, leaf rolling in rice appeared to be a complex trait since different cultivars had different leaf rolling degrees. Some of them rolled slightly, some rolled moderate, and others rolled cylindrically. Furthermore, there were no reports about fine mapping or cloning of genes for leaf rolling until now.Therefore, two representative varieties were selected to study, one of which was 91SP068, a semi-rolled mutant from progenies of protoplasm culture of Mabelle, and the other was JZB, a NIL of Zhenshan97 carried a major gene for leaf rolling from Liugangjuanyej. The results of genetic analysis and fine mapping of genes controlling leaf rolling related to these two varieties were reported as following: 1. Fine mapping of a major gene rl(t) for leaf rollingFor genetic analysis of leaf rolling, three populations (BC4F2, BC5F1, BC4F3) were derived from a cross between QMX a non-rolled leaf variety as a recurrent parent, and JZB, as a donor parent carried genes for leaf rolling.In BC4F2 and BC4F3 populations, three apparent phenotypes of flag leaf were non-rolled, semi-rolled and rolled, which of them rolled leaf plants could be easily identified from the others. While in BC5F1 population, there were two phenotypes of flag leaf, semi-rolled leaf and non-rolled leaf. The segregation ratio of different phenotypes showed
    goodness of fit for the ratio of single Mendelian segregation (non-rolled leaf: semi-rolled leaf: rolled leaf ≈ 1:2:1 in BC4F2 and BC4F3; semi-rolled leaf: non-rolled leaf ≈1:1 in BC5F1). Genetic analysis indicated that rolled leaf of JZB was controlled by one major gene. In addition, the morphology and the leaf rolling index (LRI) of semi-rolled leaf plants were close to that of non-rolled leaf plants. Therefore, the gene from JZB was a recessive gene, termed rl(t)BC4F2 population with 241 plants was constructed to map gene for leaf rolling. First, twenty typical rolled leaf plants and twenty non-rolled leaf plants from BC4F2 were selected to build rolled leaf and non-rolled leaf DNA bulk, respectively. Then, eight polymorphic markers located on chromosome 2 were screened from 500 SSR markers and 15 developed insert/delete (INDEL) markers by bulked segregation analysis (BSA), and a genetic linkage map was constructed by MAPMAKER/EXP3.0. QTL analysis was achieved by composite interval mapping conducted with WinQTLcart2.5. Based on the segregation data of BC4F2 population, rl(t) was primarily mapped between two markers INDEL112 and RM3763, away 1.0 cM from INDEL112 . Furthermore, the result of progeny test of some BC4F2 plants was consistent with the mapping result.To fine map rl(t), one BC4F3 population with 855 plants was generated from a semi-rolled leaf plant in BC4F2, which genotypes of marker flanking rl(t) were heterozygote. In addition, new INDEL markers were developed by blasting the sequence of PAC covering rl(t) of the japonica variety Nipponbare (http://rgp.dna.affrc.go.jp/) to that of the indica variety 93-11 online, and four of them showed polymorphism between two bulks. These four markers with other four markers screened in preliminary mapping were then used to survey the total of 191 rolled leaf plants in BC4F3. Their linkage relationship showed that two markers of them, INDEL112.6 and INDEL113, were inserted into the region between markers INDEL112 and RM3763. Of 191 rolled leaf plants, there was only 1 recombinant between INDEL113 and rl(t) , 5 recombinants between INDEL112.6 and rl(t), and far away from INDEL112.6 and ENDEL113, more recombinants occurred, indicating that
引文
[1] 廖伏明.中国超级稻单季稻第2期目标提前一年实现.杂交水稻,2004,19(6):50.
    [2] 袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1~6.
    [3] Khush G S. Kinoshita T. Rice karyotype, marker genes, and linkage groups. Rice Biotechnology, 1991, 83~108.
    [4] Mori K, Kinoshita T, Takalaashi M. Linkage relationships of genes for some mutant characters of rice kept in Kyushu University. Genetical studies on rice plant, LV, 1973, 8(4): 377~385.
    [5] Ideta O, Yoshimum A, Ashikari M, Iwata N. Integration of conventional and RFLP linkage maps in rice. Ⅲ. Chromosomes 5, 7, 8 and 12. RGN, 1994a, 11: 116~117.
    [6] Yoshimura A, Ideta O, Matsumoto T, Tsunematsu T, Iwata N. Integration of conventional and RFLP linkage maps in rice l on chromosomes 1, 2, 3 and 4. Japan J Breed, 1992a, 42(Suppl. 1): 168~169.
    [7] Yoshimura A, Ideta O, Iwata N. Linkage map of phenotype and RFLP markers in rice. Plant molecular biology. 1997, 35: 49~60.
    [8] Iwata, N. , H. Satoh and T. Omura Linkage studies in rice. New genes belonging to the 11th linkage group. Japan J Breed, 1979 29(Suppl. 2): 182~183.
    [9] Thakur R. Linkage relationship of long palea in rice. RGN, 1984, 1: 110.
    [10] 顾兴友,顾铭洪.一种水稻卷叶性状的遗传分析.遗传,1995,17(5):20~23.
    [11] 沈革志,王新其,殷丽青,王江,李琳,张景六.T-DNA插入水稻群体中卷叶突变体R1-A2的遗传分析.实验生物学报,36(6):459~464.
    [12] 李仕贵,马玉清,何平,黎汉云,陈英,周开达,朱立煌.一种未知的卷叶基因的识别和定位.四川农业大学学报,1998,16(4):391~393.
    [13] 郭龙花,钱前.栽培稻抗旱性的田间评价方法.中国稻米,2003(2):26~27.
    [14] Courtoisl B, McLaren G, Sinha P K, Prasad K, Yadav R, Shen L. Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding, 2000, 6: 55~66.
    [15] 张正斌,山仑.小麦抗旱生理指标与叶片卷曲度和蜡质关系研究.作物学报,1998,24(5):608~612.
    [16] 张凤路,杨志良,Kirubid.耐旱性玉米筛选的形态指标研究.河北农业大学学报,2003,26(3):608~612.
    [17] Turner N C. Further progress in crop water relation. [J]. Advances in agronomy, 1997, 58(1): 293~339.
    [18] 余守武,谢建坤,万勇,胡标林.水稻抗旱性相关性状的QTLs定位研究进展.分子植物育种,2004,2(3):391~400.
    [19] Courtois B, McLaren G, Sinha P K, Prasad K, Yadav R, Shen L. Mapping QTLs associated with drought avoidance in upland rice. Molecular Breeding, 2000, 6: 55~66.
    [20] Price A H, Townend J, Jones M P, Audebert A, Courtois B. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa Plant. Molecular Biology, 2002, 48: 683~695.
    [21] Guo L B, Qian Q, Zeng D L, Dong G J, Teng S, Zhu L L. Genetic dissection for leaf correlative traits of rice (Oryza Sativa L.). Acta Genetica Sinica, 2004, 31 (3): 275~280.
    [22] Micol L J, Hake S. The development of plant Leaves. Plant Physiology, 2003, 131: 389~394.
    [23] Timmermans B M, Kidner C, Martienssen R. Development of leaf shape. Plant Biology, 2001, 4: 38~43.
    [24] Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S. A Knottedl-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell, 1994, 6: 1859~1876.
    [25] Long J A, Moan E I, Medford J I, Barton M K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996, 379: 66~70.
    [26] Smith L G, GREENE B, Vett B, Hake S. A dominant mutation in the maize homeo-box gene, Knotted-l, causes its ectopic expression in leaf cells with altered fates. Development, 1992, 116: 21~30.
    [27] Byrne M, Barley R, Curtis M, Arroyo J, Dunham M, Hudson A, Martienssen R. Asymmetric leaves mediates leaf patterning and stem cell function in Arabidopsis. Nature, 2000, 408: 967~971.
    [28] Byrne M, Simorowski J, Martienssen A R. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development, 2002, 129, 1957~1965.
    [29] Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M. KNOX homeo-domain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev, 2001, 15: 581~590.
    [30] Ito Y, Eiguchi M, Kurata N. KNOX homeobox genes are sufficient in maintaining cultured cells in an undifferentiated state in rice. Genesis, 2001, 30: 231~238.
    [31] Matsuoka M., Ichikawa H, Saito A, TadaY, Fujimura T, Kano-Murakami Y. Expression of a rice homeobox gene causes altered morphology of transgenic plants. Plant Cell, 1993, 5: 1039~1048.
    [32] Sato Y, Hong S K, Tagiri A, Kitano H, Yamamoto N, Nagato Y, Matsuoka M. A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis. Proc Natl AcadSci USA, 1996,93:8117~8122.
    [33] Sato Y, Sentoku N, Nagato Y, Matsuoka M. Two separable functions of a rice homeobox gene, OSH15, in plant development. Plant MolBiol, 1998,38,983~998.
    [34] Scanlon M J, Schneeberger R G, Freeling M. The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development, 1996, 122: 1683~1691.
    [35] Scanlon M J, Chen K D, McKnight C I. The narrow sheath duplicate genes: sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development. Genetics, 2000,155: 1379~1389.
    [36] Scanlon M J, Freeling M. Clonal sectors reveal that a specific meristematic domain is not utilized in the maize mutant narrow sheath. Dev Biol 1997,182: 52~66.
    [37] Scanlon M J. NARROW SHEATH1 functions from two meristematic foci during founder-cell recruitment in maize leaf development. Development, 2000, 127: 4573~4585.
    [38] Berleth T, Sachs T. Plant morphogenesis: long-distance coordination and local patterning. Curt Opin Plant Biol, 2001, 4: 57~62.
    [39] Timmermans M C, Hudson A, Becraft P W, Nelson T. ROUGHSHEATI-12: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science, 1999, 284: 151~153.
    [40] Timmermans M C P, Schultes N P, Jankovsky J P, Nelson T. Leafbladelessl is required for dorsoventrality of lateral organs in maize. Development, 1998, 125: 2813-2823.
    [41] Waites R, Hudson A. Phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development, 1995, 121:2143~2154.
    [42] Waites R, Selvadurai H R, Oliver I R, Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsovenwality of lateral organs in Antirrhinum. Cell, 1998, 93: 779~789.
    [43] Tsiantis M, Schneeberger R, Golz J F, Freeling M, Langdale J A. The maize rough sheath2 gene and leaf development programs in monocot and dieot plants. Science, 1999, 284: 154~156.
    [44] Siegfried K R, Eshed Y, Baum S F, Otsuga D, Drews G N, Bowman J L. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 1999, 126: 4117~4128.
    [45] Kerstetter R A, Bollman K, Taylor R A, Bomblies K, Poethig R S. KANADI regulates organ polarity in Arabidopsis. Nature, 2001, 411: 706~709.
    [46] Eshed Y, Izhaki A, Baum S F, Floyd S K, Bowman J L. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development, 2004, 131: 2997~3006.
    [47] McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. Role of PHABULOSA and PHA VOLUTA in determining radial pattemingin shoots. Nature, 2001, 411: 709~713.
    [48] Talbert P B, Adler H T, Parks D W, Comai L. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development, 1995, 121: 2723~2735
    [49] McConnell J R, Emery J, Eshed Y, Bao N, Bowman J, Barton M K. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411: 709~713.
    [50] Ratcliffe O J, Riechmarm J L, Zhang J Z. INTERFASCICULAR FIBERLESSl is the same gene as REVOLUTA. Plant Cell, 2000, 12: 315~317.
    [51] McConnell JR, Barton MK: Effect of mutations in the PINHEAD gene of Arabidopsis on the formation of shoot apical meristems. Dev Genet, 1995, 16: 358~366.
    [52] Bohmert K, Camus I, Bellini C, Bouchez D, Caboch M, Benning C. AGOl defines a novel locus of Arabidopsis controlling leaf development. EMBO J, 1998, 17: 170~180.
    [53] Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton M K. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTEl gene. Development, 1999, 126:469~481.
    [54] Kidner C A, Martienssen R A. Spatially restricted microRNA directs leaf polarity through ARGONAUTEl. Nature, 2004, 428, 81~84.
    [55] Nishimura A, Ito M, Kamiya N, Sato Y, Matsuoka M. OsPNHl regulates leaf development and maintenance of the shoot apical meristem in rice. The Plant Journal, 2002, 30(2): 189~201.
    [56] Nelson J M, Lane B, Freeling M. Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf's dorsoventral axis. Development, 2002, 129, 4581~4589.
    [57] Juarez M T, Kui J S, Thomas J, Heller B A, Timmermans M C P. MicroRNAmediated repression of rolled leafl specifies maize leaf polarity. Nature, 2004, 428: 84~88.
    [58] Smith L G, Greene B, Veit B, Hake S. A dominant mutation in the maize homeobox gene, Knotted-l, causes its ectopic expression in leaf cells with altered fates. Development, 1992, 116: 21~30.
    [59] Postma-Haarsma A D, Rueb S, Scarpella E, den Besten W, Hoge J H, Meijer A H. Developmental regulation and downstream effects of the knox class homeobox genes Oskn2 and Oskn3 from flee. Plant Molecular Biology, 2002, 48: 423~41.
    [60] Sentoku N, Sato Y, Matsuoka M. Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev Biol, 2000, 220: 358~364.
    [61] Chuck G, Lincoln C, Hake S. Knatl induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell, 1996, 8: 1277~1289.
    [62] Schneeberger R, Tsiantis M, Freeling M, Langdale J A. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development, 1998, 125: 2857~2865.
    [63] Juarez M T, Twigg R W, Timmermans M C P. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131: 4533~4544.
    [64] Lenhard M, Jurgens G, Laux T. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development, 2002, 129, 3195~3206.
    [65] Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843~854.
    [66] Gflffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy S R, Bateman A. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res, 2005, 33: 121~124.
    [67] Axtell M J, Bartel D P. Antiquity of microRNAs and their targets in land plants. Plant cell (Published online), 2005, 10.1105/tpc.105.032185: 1~16.
    [68] Dugas D V, Bartel B. MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol, 2004, 7, 512~520.
    [69] Cerutti L, Mian N, Bateman A. Domains ha gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci, 2000, 25: 481~482.
    [70] Chen X M. microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303: 2022~2026.
    [71] Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P. MicroRNAs in plants. Genes Dev, 2002,16: 1616~1626.
    [72] Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P. Prediction of plant microRNA targets. Cell, 2002,110:513~520.
    [73] Llave C, Kasschau K D, Rector M A, Carrington J C. Endogenous and silencingassociated small RNAs in plants. Plant Cell, 2002a, 14: 1605~1619.
    [74] Llave C, Xie Z, Kasschau K D, Carrington J C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science, 2002,297:2053~2056.
    [75] Sunkar, Girke T, Jain P K, Zhu J K. Cloning and Characterization of microRNAs from Rice. Plant Cell Preview, Published online, 2005:10.1105/tpc. 105.031682.
    [76] Wang J F, Zhou H, Chen Y Q, Luo Q J, Qu L H. Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Research, 2004, 32(5):1688~1695.
    [77] Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120:15~20.
    [78] Vaucheret H, Vazquez F, Cre' te' P, Bartel D P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant. Development. Genes Dev, 2004, 18: 1187~1197.
    [79] Bartel D P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004,116:281~297.
    [80] Mallory A C, Bartel D P, Bartel B. microRNA- irected egulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell Preview, published online April 13, 2005,10.1105/tpc. 105.031716.
    [81] Jones-Rhoades M J, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell, 2004,14,787~799.
    [82] Sunkar R., Zhu J K. Novel and stress regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16, 2001~019.
    [83] Sunkar R, Girke T, Jain P K, Zhu J K. Cloning and Characterization of microRNAs from Rice. Plant Cell, published online April 1, 2005; 10.1105/tpc. 105.031682.
    [84] Mallory A C, Reinhart B J, Jones-Rhoades M W, Tang D, Zamore P D, Barton M K, Bartel D P. MicroRNA conrol of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO, 2004, 23: 3356~3364.
    [85] Kidner C A, Martienssen R A. Spatially restricted microRNA directs leaf polarity through ARGONAUTEl. Nature, 2004, 428: 81~84.
    [86] Carrington J C, Ambros V. Role of microRNAs in plant and animal development. Science, 2003, 301(18): 336~338.
    [87] Kidner C A, Martienssen R A. Spatially resricted microRNA directs leaf polarity through ARGONAUTEl. Nature, 2004, 428: 81~84.
    [88] Vaucheret H V F, Crete V P, Bartel D P. The action of ARGONAUTEl in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 2004, 18: 1187~1197.
    [89] Song J J, Liu J, Tolia N H, Schneiderman J, Smith S K, Martienssen R A, Hannon G J, Joshua-Tor L. The crystal structure of the argonaute PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nature Struct Biol, 2003, 10, 1026~1032.
    [90] Xie Z, Kasschau K D, Carrington J C. Negative feedback regulation of Dicer-Like 1 in Arabidopsis by microRNA-guided mRNA. Curr Biol, 2003, 13: 784~789.
    [91] Engstrom E M, Izhaki A, Bowman J L. Promoter Bashing, microRNAs, and Knox Genes. New insights, regulators, and targets-of-regulation in the establishment of lateral organ polarity in Arabidopsis. Plant Physiology, 2004, 135: 685~694.
    [92] 黄育民,陈启锋,李义珍.我国水稻品种改良过程库源特征的变化.福建农业大学学报,1998,27(3):271~278.
    [93] 朱德峰,严学强.提高水稻品种产量潜力的农艺学和生理学观点.西南农业学报,1998,11(水稻栽培专辑):141~147.
    [94] 凌启鸿,张洪程,苏祖芳.稻作新理论-水稻叶龄模式.北京:科学出版1994.
    [95] 杨惠杰,李义珍,黄育民,郑景生.超高产水稻的产量构成和库源结构.福建 农业学报,1999,14(1):1~5.
    [96] Richards RA Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 2000(51): 447~458.
    [97] Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since the release of IR8 and thechallenge of increasing rice yield potential. Crop Sci, 1999, 39: 1552~1559.
    [98] 扬守仁.水稻理性株型育种的理论和方法初论.中国农业科学,1984(1):6~13.
    [99] Khush G S. Varietal needs for different environments and breeding strategies. Muraliharan K S, Siddiq E A. New frontiers in rice research. Directorate of rice research, Hyderabad, India, 1990, 68~75.
    [100] 周开达,马玉清,刘太清.杂交水稻亚种间重穗型组合德育-杂交水稻高产育种的理论与实践[J].四川农业大学学报,1995,13(4):403~407.
    [101] 周开达,汪旭东,李仁贵,李平.亚种间重穗型杂交稻研究[J].中国农业科学,1997,30(5):91~93
    [102] 袁隆平.杂交水稻超高产育种[J].杂交水稻,2000,15(培矮64S研究及其应用论文选编):31~33.
    [103] 沈福成.水稻卷叶性状遗传初探.贵州农业科学,1983,(3):9~12.
    [104] 朱德峰,林贤青,曹卫星.不同叶片卷曲度杂交水稻的光合特性比较.作物学报,2001,27(3):329~333.
    [105] 陈宗祥,陈刚,胡俊,戴留春,陶国英,潘学彪,Rl_(t)卷叶基因在杂交稻中的遗传表达及效应研究.作物学报,2002,28(6):847~51.
    [106] 陈宗祥,胡俊,陈刚,潘学彪.Rl_(t)卷叶基因对杂交稻经济性状的影响.作物学报,2004,30(5):465~469.
    [107] 郎有忠,张祖建,顾兴友,杨建昌,朱庆森.水稻卷叶性状生理生态效应的研究Ⅰ.叶片姿态、群体构成及光分布特征.作物学报,2004,30(8):806~810.
    [108] 郎有忠,张祖建,顾兴友,杨建昌,朱庆森.水稻卷叶性状生理生态效应的研究Ⅱ.光合特性、物质生产与产量形成.作物学报,2004,30(9):883~887.
    [109] 莫惠栋.数量性状遗传基础研究的回顾与思考-后基因组时代数量遗传领域的挑战.扬州大学学报(农业与生命科学版),2003,24(2):24~31.
    [110] Thoday J M. Location ofpolygenes. Nature, 1960, 191: 368~370.
    [111] Lander E S and Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121: 185 ~199.
    [112] Haley C S, Knott S A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 1992, 69: 315~324.
    [113] Xu S.A comment on the simple regression method for interval mapping. Genetics, 1995,141: 1657~1659.
    [114] Zeng Z B. Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci. Proc Natl Acad Sci USA, 1993, 90: 10972~10976.
    [115].Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457~1468.
    [116] JANSEN R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135:205~211.
    [117] Kao C H, Zeng Z B.General formulas for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics, 1997, 53: 359~371.
    [118] Kao C H, Zeng Z B and Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics, 1999,152: 1203~1216.
    [119] Horvat S and Medrano J F. Interval mapping of high growth (hg), a major locus that increases weight gain in mice. Genetics, 1995,139:1737~1748.
    [120] Cornforth T W, Long A D. Inferences regarding the numbers and locations of QTLs under multiple-QTL models using interval mapping and composite interval mapping. Genet Res., 2003 ,82(2): 139~49.
    [121] Vieira C, Pasyukova E G, Zeng Z B, Hackett J B, Lyman R F and Mackay T F C. Genotype-environment interaction for quantitative trait loci affecting lifespan in Drosophila melanogaster. Genetics, 2000,154: 213~227.
    [122] Weber K,Eisman R,Higgins S,Kuhl L,Patty A, Sparks J andZeng Z B. An analysis of polygenes affecting wing shape on chromosome three in Drosophila melanogaster. Genetics, 1999,153: 773~786.
    [123] Wang S C and Zeng Z B. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC. 2001-2004, (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).
    [124] Wu K S, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellite in rice. Mol Gen Genet, 1993,241: 225~235.
    [125] McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z K, Xing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) .DNA Research, 2002,9:199~207.
    [126] Stephen E L, Mark J D, Eric S. L. MAPMAKER/EXP Version 3.0. Constructing genetic linkage maps with Mapmaker/Exp Version 3.0: A tutorial and reference manual. Whitehead institute for biomedical research technical report, January, 1993.
    [127] Chen M S, Presting G, Barbazuk W B, Goicoechea J L, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman M A, Tomkins J P, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh N K, Tyagi A K, Soderlund C, Dean R A, Wing R A. An integrated physical and genetic map of the rice genome. Plant Cell, 2002, 14: 537~545.
    [128] Zhao Q, Zhang Y, Cheng Z K, Chen M S, Wang S Y, Feng Q, Huang Y C, Li Y, Tang Y S, Zhou B, Chen Z H, Yu S L, Zhu J J, Hu X, Mu J, Ying K, Hao P, Zhang L, Lu Y, Zhang LS, Liu Y L, Yu Z, Fan D L, Weng Q J, Chen L, Lu T T, Liu X H, Jia P X, Sun T G, Wu Y R, Zhang Y J, Lu Y, Li C, Wang R, Lei H Y, Li T, Hu H, Wu M, Zhang R Q, Guan J P, Zhu J, Fu G, Gu M H, Hong G F, Xue Y B, Wing R, Jiang J M, Han B. A fine physical map of the rice chromosome 4. Genome Res, 2002,12(5): 817~823.
    [129] Ohmido N, Akiyama Y, Fukui K. Physical mapping of unique nucleotide sequences on identified rice chromosomes. Plant molecular biology, 1998, 38: 1043~1052.
    [130] Yuan Q, Liang F, Hsiao J, Zismann V, Benito M I, Quackenbush J, Wing R, Buell R. Anchoring of rice BAC clones to the rice genetic map in silico. Nucleic Acids ges, 2000, 28: 3636~3641.
    [131] Wu J Z, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J, Fujii F, Shomura A, Ando T, Kono I, Waki K, Yamamoto K, Yano M, Matsumoto T, Sasald T. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14: 525~535.
    [132] Yan K S, Yan S, Farooq A, Han A, Zeng L, Zhou M M. Structure and conserved RNA binding of the PAZ domain. Nature, 2003, 426: 468~474.
    [133] Zeng Y, Yi R, Cullen B R. MicroPNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Nat Acad Sci, 2003, 100: 9779~9784.
    [134] Hutvagner, G. and Zamore, P. D. A microRNA in a multipletumover RNAi enzyme complex. Science, 2002, 297: 2056~2060.
    [135] 莫惠栋.质量-数量性状的遗传分析Ⅰ.作物学报,1993,19(1):1~6.
    [136] Martin G B, Williams J G K, Tanksley S D. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and nearisogenic lines. Proc Natl Sci. USA, 1991, 88: 2336~2340.
    [137] Goivannoni I L, Wing R A, Ganaland M W. Isolation of moleculars from specific chromosomal interval using DNA pools from existing mapping population. Nucl AcidRes, 1991, 19: 6553~6555.
    [138] Li Y H, Qian Q, Zhou Y H, Yan M X, Sun L, Zhang M, Fu Z M, Wang Y H, Han B, Pang X M, Chert M S, Li J Y. BRITTLE CULMl, which encodes a COBRA-Like protein, affects the mechanical properties of rice Plants. The Plant Cell, 2003, 15: 2020~2031.
    [139] 程祝宽,赵庆华,于恒秀.水稻实生苗及腋芽苗试管快速繁殖技术的研究.江苏农学院学报,1995,16(1):21~25.
    [140] 王关林,方宏筠.植物基因工程(第二版).科学出版社,2002,742~744.
    [141] McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B, Maghirang R. Li Z K, X.ing Y Z, Zhang Q F, Kono I, Yano M, Fjellstrom R, DeClerck G; Schneider D, Cartinhour S, Ware D, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) (Complement). DNA Research, 2002, 9:199~207.
    [142] Stephen E L, Mark J D, Eric S. L. MAPMAKEP/EXP Version 3.0. Constructing genetic linkage maps with Mapmaker/Exp Version 3.0: A tutorial and reference manual. Whitehead institute for biomedical research technical report, January, 1993.
    [143] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Modshima H, Kinoshita T.. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14(1): 1~13.
    [144] Li S G, Ma Y Q, He P, Li H Y, Chen Y, Zhou K D, Zhu L H. Genetic analysis and mapping the flag leaf roll in rice(Oryza Astiva L.). Journal of Sichuan Agricultural University, 1998, 16(4): 391~393.
    [145] Chen M S, Presting G, Barbazuk W B, Goicoechea J L, Blackmon B, Fang G; Kim H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman M A, Tomkins J P, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh N K, Tyagi A K, Soderlund C, Dean R A, Wing R A. An integrated physical and genetic map of the rice genome. Plant Cell, 2002, 14: 537~545.
    [145] Souer E, von Houwelingen A, Kloos D, Mol J, Koes R. The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85: 159~170.
    [146] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Gene involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9: 841~857.
    [147] Zhu J. Mixed model approaches of mapping genes for complex quantitative traits. Journal of Zhejiang University (Natural science), 1999, 33(3): 327~335.
    [148] Yi N J, Xu S H, Allison D B. Bayesian Model Choice and Search Strategies for Mapping Interacting Quantitative Trait Loci. Genetics, 2003, 165: 867~883.
    [149] 莫惠栋.数量性状基因定位的回归方法Ⅱ两侧标记回归分折.江苏农业研究,1999,2c(2):60~74.
    [150] Matsuda H, Iwaisaki H. A mixed model method to predict QTL-cluster effects using trait and marker information in a multi-group population. Genes Genet Syst, 2001,76:81~88.
    [151] Matsuda H, Iwaisaki H. Prediction of additive genetic effects for the QTL-cluster on the basis of data on surrounding markers in outbred populations. JAppl Gene, 2002,43,193~207.
    [152] Meuwissen THE, Goddard M E. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics, 2000,155:421~430.
    [153] Nakamichi R, Ukai Y, Kishino H. Detection of closely linked multiple quantitative trait loci using a genetic algorithm. Genetics, 2001,158,463~475.
    [154] Ronin Y I, Korol A B, Nevo E. Single- and multiple-trait mapping analysis of linked quantitative trait loci: some asymptotic analytical approximations. Genetics, 1999,151:387~396.
    [155] Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E V D, Cong B, Liu J P, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85~88.
    [156] Yuval E, Dani Z. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 1995, 141: 1147~1162.
    [157] Yamamoto T, Ian H X, Sasaki T, Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny[J]. Genetics, 2000,1(54): 885~891.
    [158] Kojima S, Takahashi Y, Kobayashi Y. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hdl under short-day condition[J]. Plant Cell Physio, 2002,43:1096~1105.
    [159] Yamamoto T, Kuboki Y, Lin S Y, Sasaki T, Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. TheorAppl Genet, 1998, 97: 37~44.
    [160] Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T.Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473~2484.
    [161] 喻树迅,袁有禄.数量性状遗传研究的新进展.棉花学报,14:180~184.
    [162] Peter Hedden. The genes of the Green Revolution. Trends in genetics, 2003, 19(1): 5~9
    [163] Spielmeyer W, Ellis M H, Chandler P M. Semidwarf (sd-l), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. PNAS, 2002, 99(13): 9043~9048.
    [164] 赵祥强,梁国华,周劲松,严长杰,曹小迎.顾铭洪矮泰引-3中半矮秆基因的分子定位.遗传学报,2005,32(2):189~196.
    [165] 顾铭洪,潘学彪,李欣,董桂春.一种籼稻新矮源的分离和遗传鉴定.中国农业科学,1988,21(1):33~40.
    [167] Liang G. H, Cao X Y, Zhao X Q, Yan C J, Yi C D, Gu M H. Fine mapping of a semidwarf gene sd-g in rice (Oryza sativa L.). Chinese Science Bulletin, 2004, 49(8): 778~783.
    [168] Jiang G H, Liang G H, Zhai W X, Gu M H, Lu R L,Xu J C, Zhu L H. Genetic mapping of a new semidwarf gene, sd-t(t), in indica rice and estimating of physical distance of the mapping region. Science in China(series C), 2002, 32(3): 139~199.
    [169] Nagato Y, Yoshimura A C. Report of the committee on gene symbolization, nomenclature and linkage groups. Rice Genetics Newsletter, 1998, 15: 19~20.
    [170] 曹钢强,朱军,何慈信,高用明,吴平.水稻穗长上位性效应和 QE互作效应的QTL遗传研究.浙江大学学报(农业与生命科学版),2001,27(1):55~61.
    [171] Fijneman R J A, Vries S S D, Jansen R C, Demant E Complex interactions of new quantitative trait loci, Slucl, Sluc2,Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat Genet, 1996, 14: 465~467.
    [172] Fijneman R J A, Jansen R C, Valk M V A, Demant E High frequency of interactions between lung cancer susceptibility genes in the mouse: mapping of Sluc5 to Sluc14. Cancer Res, 1998, 58:4794~4798.
    [173] Wolf J B, Brodie E D, Wade M J, Epistasis and the Evolutionary Process. 2000, Oxford University Press, New York.
    [174] Nagaraju J, Kathirvel M, Kumar R R, Siddiq E A, Hasnain S E. Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proc Natl Acad Sci USA, 2002, 99: 5836~5841.
    [175] McCouch S R, Chen X, Panaud O, Temnykh S, Xu Y, Cho Y G, Huang N, Ishii T, Blair M. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol, 1997, 35: 89~99.
    [176] Ni J J, Colowit M P,Mackill D J. Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Sci, 2002, 42: 601~607.
    [177] Wu J, Maehara T, Shimokawa T, Yamamoto S, Hamda C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002, 14: 525~535.
    [178] Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F. Control of tillering in rice. Nature, 2003, 422: 618~621.
    [179] Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530~7535.
    [180] Jander G, Norris S R, Rounsley S D, Bush D F, Levin I M, Last R L. Arabidopsis map-based cloning in the post-genome era. Plant Physiol, 2002, 129: 440~450.
    [181] Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L, Li X, Yu Q B, Liu, H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N. Development of genome-wide DNA polymorphism database for map-based cloning of rice penes. Plant Physiology, 2004, 135: 1198~1205.
    [182] 金千瑜,欧阳由男,禹盛苗,许德海,张国平.土壤干旱胁迫对不同水稻品种叶片卷曲的影响.中国水稻科学,2003,17(4):349~354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700