用户名: 密码: 验证码:
工字梁腹板在局部承压和剪力作用下的弹性屈曲及极限承载力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工字形截面梁在弯矩、剪力以及局部荷载单独或者联合作用下,腹板的部分板面会偏离原来的位置而发生波形凸曲。目前,吊车轮压荷载作用下工字梁腹板的局部屈曲鲜有研究,这主要是由于无法得到轮压荷载作用下承压应力在腹板内的分布规律。对于轮压荷载作用下工字梁腹板的承压应力计算,我国钢结构设计规范GB50017-2003比GBJ17-88更加偏离了国际上通行的计算方法,而这一方法实际上并未进行过研究。另外,目前研究工字梁腹板在局部荷载及剪力作用下的稳定时,都没有合理考虑翼缘的约束作用。本文采用有限元方法对包括吊车轮压荷载在内的局部荷载和剪力作用下工字梁腹板的弹性屈曲及极限承载力进行分析,以期合理考虑翼缘对腹板的约束作用。
     本文首先对有轨道的工字梁在轮压荷载作用下腹板的局部承压应力进行了参数分析。影响承压应力分布的主要因素为腹板的厚度以及轨道的抗弯刚度,翼缘自身的抗弯刚度也有一定的影响;吊车梁的跨度和高度以及梁的支座条件都对其影响很小。采用经典的弹性地基梁理论解释了腹板局部压应力与腹板厚度以及轨道惯性矩间的关系,并在此基础上得到了等效承压长度的计算公式。还得到承压应力沿腹板高度及沿梁纵向的变化规律,提出了近似的计算公式。
     采用有限元方法对局部荷载以及轮压荷载作用下不同边界条件的矩形板进行了分析,包括四边简支板、两边简支,两边固支板以及三边简支,一边固支的矩形板。得到了各种情况下矩形板屈曲系数的近似公式。
     对局部荷载和轮压荷载作用下工字梁模型进行了特征值屈曲分析。通过引入与翼缘扭转刚度和腹板弯曲刚度的比值有关的参数,将翼缘对腹板的约束程度进行量化。通过大量计算得到了能考虑翼缘转动约束的腹板屈曲系数的近似计算公式。
     分析了局部荷载作用在上翼缘时工字梁腹板的弹性屈曲系数,考虑了腹板宽高比、高厚比、荷载作用宽度等影响因素。在有限元分析结果的基础上,提出了建议公式。将计算得到的弹性屈曲系数代入已有的极限承载力公式,从而合理考虑了翼缘的约束作用。
Local buckling may occur in web plates in I-girders subjected to bending, shear and patch loading. The local buckling of web plates in I-girders under wheel loading has been rarely investigated, due to the unknown distribution of bearing stresses in the web plates. The recommended method for calculating bearing stresses on the edge of web plates in GB50017-2003 is deviated further from the accepted method in the world than that of GBJ17-88. In fact, no study has been carried out on this recommended method. On the other hand, although much has been done to study the stability of web plates under patch loading and shear, the rotational restraint from the flange to the web plate has not been reasonably accounted for. In order to evaluate this rotational restraint properly, the finite element method was utilized to analyze the elastic buckling and ultimate strength of web plates in I-girders under patch loading, wheel loading as well as shear forces.An extensive parametric study was conducted on the bearing stresses of web plates in crane runway I-girders under wheel loading. It was found that the most important factors influencing the stress dispersion are the web thickness and the inertia moment of the rail, while the inertia moment of the top flange has a minor influence. The depth and length of the girder and its boundary conditions have a negligible effect. Based on the theory of beams on elastic foundation and the numerical results, design equations are proposed to predict the bearing stresses on the edge of the web plates. The distribution of bearing stresses along the depth and the span of the girder was also obtained.The behavior of rectangular plates under patch loading and wheel loading, with all four edges being simply supported and two opposite edges being simply supported and fixed as well as three edges being simply supported and the rest edge being fixed, were analyzed with the finite element method. The regression formulae were obtained to determine elastic buckling coefficients of the forementioned rectangular plates.
    An eigenvalue buckling analysis was carried out on I-girders under patch loading and wheel loading with ANSYS. A parameter correlating the torsional stiffness of the flange and the flexural stiffness of the web was introduced to quantify the rotational restriction from the flange to the web plate. A formula with good accuracy was suggested to determine elastic buckling coefficients, which accounting for the rotational restraint reasonably.The investigation on elastic buckling coefficients of web plates in I-girders loaded by patch load on top flanges was carried out and the effects from parameters such as aspect ratio and slenderness of web plate, length of patch load were taken into account.The behavior of rectangular plates under shear, with all four edges being simply supported and two opposite edges being simply supported and fixed as well as three edges being simply supported and the rest edge being fixed, were also analyzed with ANSYS. An improved formula was suggested to evaluate the elastic buckling coefficients of the simple-fixed rectangular plates, and another formula for plates with three edges being simply supported and the rest edge being fixed was also brought forth.Based on numerical results of 690 I-girders, a formula accounting for the rotational restraint provided to the web plate by the flange was obtained to calculate the shear buckling coefficients of web plates. Subsequently, a method to predict the ultimate shear strength was suggested. It is worth noting that the effect from the rotational restraint on the elastic buckling strength and the contribution from the flange itself were both considered in the suggested method. The correlation between the experiments and the suggested method is good, especially for web plates with great aspect ratio or slenderness, for which the ultimate shear strength has not been predicted satisfactorily through currently available method.
引文
[1] 别列尼亚.,颜景田译.金属结构.哈尔滨:哈尔滨工业大学出版社.1988.
    [2] 陈绍蕃.钢结构稳定设计指南(第二版).北京:中国建筑工业出版社,2004a.
    [3] 陈绍蕃.钢结构.北京:中国建筑工业出版社,2004b.
    [4] 陈骥.钢结构稳定—理论与设计.北京:科学出版社,2003.
    [5] 陈海啸.T形截面梁的局部屈曲以及局部和整体弹塑性相关屈曲分析.浙江大学硕士学位论文.2004.
    [6] 丁阳,刘锡良.《钢结构设计规范》(GB50017-2003)焊接工字梁腹板的局部稳定和考虑屈曲后强度的计算.建筑结构学报,2002,23(3):52-59.
    [7] 刘鸿文.板壳稳定.杭州:浙江大学出版社,1987.
    [8] 蔺军.梁腹板在弯、剪及局压复合应力作用下的弹性及弹塑性屈曲分析.西安建筑科技大学硕士学位论文,2002.
    [9] 凌道盛,徐兴.非线性有限元及程序.杭州:浙江大学出版社,2004.
    [10] 李敏,强士中.应用动态松弛法分析大挠度弹塑性板的极限承载力.西南交通大学学报,1993,6:19-22.
    [11] 罗永峰,滕锦光,沈永兴,沈祖炎.结构非线性分析中求解预定荷载水平的改进弧长法.计算力学学报,1997,14(4):462-467.
    [12] 孙松林,王德信,谢能刚.接触问题有限元分析方法综述.水利水电科技进展,2001,21(31:18-21.
    [13] 滕锦光.确定结构分支点及跟踪平衡路径的改进弧长法.同济大学学报,1997,25(5):502-507.
    [14] 铁摩辛柯著S.,汪一麟译.材料力学(高等理论及问题).北京:科学出版社,1979.
    [15] 魏明钟.钢结构.武汉:武汉工业大学出版社,2000.
    [16] 吴玉峰,曹平周.H型钢吊车梁局部承压强度计算.钢结构工程研究,2002(4):7-12.
    [17] 夏志斌,姚谏.钢结构—原理与设计.北京:中国建筑工业出版社,2004.
    [18] 徐彬.梁腹板在纯弯与局压联合作用下的弹塑性屈曲.西安建筑科技大学硕士学位论文,2001.
    [19] 杨耀文,刘正兴.三维弹性接触问题的接触面单元法.力学学报,1996,28(5):613-619.
    [20] 张其林.索和膜结构.上海:同济大学出版社,2002.
    [21] 浙江大学等编.地基及基础(第二版).北京:中国建筑工业出版社,1991.
    [22] 周承倜.弹性稳定理论.成都:四川人民出版社,1981.
    [23] GB50205,中华人民共和国国家标准:钢结构工程施工质量验收规范.北京:中国计划出版社,2001.
    [24] GB50017,中华人民共和国国家标准:钢结构设计规范.北京:中国计划出版社,2003.
    [25] CECS102,中国工程建设标准协会标准:门式刚架轻型房屋钢结构技术规程.北京:中国计划出版社, 2003.
    [26] AISC, Load and Resistance Factor Design Specification. for Structural Steel Buildings, 1999.
    [27] Ajam W., Marsh C. Simple model for shear capacity of webs. Journal of Structural Engineering, 1991, 117(2): 410-422.
    [28] Alfutov N. A., Balabukh L. I. On the possibility of solving plate stability problems without a preliminary determination of the initial state of stress. Applied Mathematics and Mechanics, PMM, 1967, 31: 730-736.
    [29] Alfutov N. A., Balabukh L. I. Energy criterion of the stability of elastic bodies which does not require the determination of the initial stress-strain rate. Applied Mathematics and Mechanics, PMM, 1968, 32:726-731.
    [30] Baker G, Pavolic M. N. Elastic stability of simply supported rectangular plates under locally distributed edge forces. Journal of Applied Mechanics. 1982.49(3): 177-179.
    [31] Basler K. Strength of plate girders in shear. Journal of Structural Division, ASCE, 1961a, 87(7): 151-180.
    [32] Basler K. Strength of plate girders under combined bending and shear. Journal of Structural Division, 1961b, 87(7): 181-197.
    [33] Bergfelt A. Studies and tests on slender plate girders without stiffeners-shear strength and local web crippling. Proceedings, IABSE Colloquium, London, 1971, 67-83.
    [34] Boresi A. P., Sidebottom O. M. Advanced Mechanics of Materials. (高等材料力学).汪一麟,汪一骏译.北京:科学出版社,1987.
    [35] Bose B. Design Resistance of unstiffened column web subject to transverse compression in beam-to-column joints. Journal of Constructional Steel Research, 1998, 45(1): 1-15.
    [36] Bradford M. A. Improved Shear strength of webs designed in accordance with the LRFD specification. Engineering Journal, 1996, 33(3): 95-100.
    [37] Brown C. J. Elastic stability of plates subjected to concentrated loads. Computers and Structures, 1989, 33(5): 1325-1327.
    [38] BS5950, Structural use of steelwork in building, Part Ⅰ, Code of practice for design: Rolled and welded sections, 2000.
    [39] Budiansky B., Connor R. W. Buckling stresses of clamped rectangular flat plates in shear. National Advisory Committee for Aeronautics (NACA), 1948, Note No. 1559.
    [40] Bulson P. S. The stability of flat plates. Elsevier, New York, 1970.
    [41] Calladine C. R. A plastic theory for collapse of plate girders under combined shearing force and bending moment. Structural Engineer, 1973, 51(4): 147-154.
    [42] Carskaddan P. S. Shear buckling of unstiffened hybrid beams. Proceedings of ASCE, Structural Division, 1968 94(8): 1965-1990.
    [43] Chern C., Ostapenko A. Ultimate strength of plate girder under shear. Fritz Engineering Laboratory. 1969, Report No. 328.7, Leigh University.
    [44] Chin C. K., Al-Bermani F. G. A. and Kitipornchai S. Stability of thin-walled members having arbitrary flange shape and flexible web. Engineering Structures, 1992, 14(2): 121-132.
    [45] Chin C. K., Al-Bermani F. G. A. and Kitipornchai S. Finite element method of buckling analysis of plate structures,
    ??Journal of Structural Engineering. 1993. 119(4): 1048-1068.
    [46] Clarke, A.B. Coverman S.H. Structural Steelwork: limit state design. Chapman & Hall, London, 1987.
    [47] Cooke N., Moss P.J. and Walpole W.R. Strength and serviceability of steel girders webs. Journal of Structural Engineering, 1983, 109(3): 785-807.
    [48] Cooper P.B., Lew H.S. and Yen B.T. Welded constructional alloy steel plate girders. Proceedings of ASCE, Structural Division, 1964, 90(1): 1-36.
    [49] Davies A.W., Bhogal A.S. and Roberts T.M. Shear strength of welded aluminium alloy plate girders. Proc. Instn Civ. Engrs Structrs & Bldgs, 1998, 128(8): 308-314.
    [50] Davies A.W., Griffith D.S.C. Shear strength of steel plate girders. Proc. Instn Civ. Engrs Structs & Bldgs, 1999, 134(5): 147-157.
    [51] Dewolf J.T., Pelliccione J.F. Cross-bracing Design. Journal of the Structural Division, 1979, 105(7): 1379-1391.
    [52] Dogaki M., Kishigami N. and Yonezawa H. Ultimate strength analysis of plate girder webs under patch loading. Proceedings ICSAS, Singapore, May, 1991.
    [53] Elgaaly M. Web design under compressive edge loads. Engineering Journal, AISC, 1983, 20(4): 153-171.
    [54] Elgaaly M., Nunan W.L. Behavior of rolled section web under eccentric edge compressive loads. Journal of Structural Engineering, 1989, 115(7): 1561-1578.
    [55] Elgaaly M. Post-buckling behavior of thin steel plates using computational models. Advances in Engineering Software, 2000, 31 (8-9): 511-517.
    [56] Eurocode3. Design of steel structures. Part 1.1, General rules and rules for building. ENV, 1993-1-1: 1992.
    [57] Evans H.R. An appraisal, by full-scale testing, of new design procedures for steel girders subjected to shear and bending. Proc. Instn Civ. Engrs, Part 2, 1986, 81(6): 175-189.
    [58] Evans H.R., Moussef S. Design Aid for plate girders. Proc. Instn Civ. Engrs, Part 2, 1988, 85(3): 89-104.
    [59] Fujii T. On an improved theory for Dr. Basler's theory. Proc. 8th congress, IABSE, New York, September 1968: 477-487.
    [60] Fujii T., Fukumoto Y., Nishino F. and Okumura T. Research works on ultimate strength of plate girders and Japanese provisions on plate girder design. Proc. Colloquium on design of plate and box girders for ultimate strength, IABSE, London, 1971: 21-48.
    [61] Galambos T.V. Guide to Stability Design Criteria for Metal Structures, 5th Edn. John Wiley & Sons, 1998.
    [62] Gaylord E.H. Discussion on "Strength of plate girders in shear". Journal of Structural Division, ASCE, 1962, 88(2): 151-154.
    [63] Girkmann K. Stability of webs of flat girders taking account of concentrated loads, IABSE, Final Report, 1936: 607-611.
    [64] Graciano C, Lagerqvist O. Critical buckling of longitudinally stiffened webs subjected to compressive edge loads. Journal of Constructional Steel Research, 2003, 59: 1119-1146.
    [65] Granholm C.A. Tests on girders with thin web plates, Report 202. Institutionen for Byggnadsteknik, Chalmers Tekniska Hogskola, Goteborg, 1960-61.
    [66] Granath P., Lagerqvist O. Behavior of girder webs subjected to patch loading. Journal of Constructional Steel
    ??Research. 1997. 50(1): 49-69.
    (67] Granath P. Serviceability limit state of I-shaped steel girders subjected to patch loading. Journal of Constructional Steel Research. 2000. 54: 387-408.
    [68] Granath P.. Thorsson A.and Edlund B. I-shaped steel girders subjected to bending moment and traveling patch loading. Journal of Constructional Steel Research. 2000, 54: 409-421.
    [69] Graciano C, Edlund B. Nonlinear FE analysis of longitudinally stiffened girder webs under patch loading. Journal of Constructional Steel Research. 2002. 58: 1231-1245.
    [70] Graciano C. Edlund B. Failure mechanism of slender girder webs with a longitudinal stiffener under patch loading. Journal of Constructional Steel Research. 2003. 59: 27-45.
    [71] Graciano C. Johansson B. Resistance of longitudinally stiffened I-girders subjected to concentrated loads. Journal of Constructional Steel Research, 2003, 59: 561-586.
    [72] Graciano C, Lagerqvist O. Critical buckling of longitudinally stiffened webs subjected to compressive edge loads. Journal of Constructional Steel Research. 2003, 59: 1119-1146.
    [73] Grimm T.R., Gerdeen J.C. Instability analysis of thin rectangular plates using the Kantorovich method. Journal of applied mechanics, ASME. 1975,42(3): 110-114.
    [74] Hendry A.W. The stress distribution in a simply supported beam of I-section carrying a central concentrated load. Proceeding, Society for Experimental Stress Analysis, 1950, 7(2): 91-102.
    [75] Hendrick A., Murray T.M. Column web compression strength at end-plate connections. Engineering Journal, 1984, 21(3): 511-526.
    [76] Herzog M.A.M. Ultimate static strength of plate girders from tests. Journal of the Structural Division, 1974, 100(5): 849-864.
    [77] Herzog M.A.M. Web crippling with bending and shear of thin-walled plate girders. Journal of Constructional Steel Research, 1992, 22: 87-97.
    [78] Hoglund T. Simply supported thin plate I-girders without web stiffeners subjected to distributed transverse load. Proc. Colloquium on design of plate and box girders for ultimate strength, IABSE, London, 1971: 85-97.
    [79] Hoglund T. Shear buckling resistance of steel and aluminium plate girders. Thin-Walled Structures, 1997, 29(1-4):13-30.
    [80] Hussein R. Discussion on "Collapse of plate girders under edge loading". Journal of the Structural Division, ASCE, 1981, 108(6): 1449-1450.
    [81 ] ISO/TC167/SC1, Steel structures, material and design, 1992.
    [82] Johansson B., Lagerqvist O. Resistance of plate edges to concentrated forces. Journal of Constructional Steel Research, 1995, 32(2): 69-105.
    [83] Johansson B., Maquoi R. and Sedlacek G New design rules for plated structures in Eurocode 3. Journal of Constructional Steel Research, 2001, 57(3): 279-311.
    [84] Khan M.Z., Walker A.C. Buckling of plates subjected to localized edge loadings. The Structural Engineer, 1972,50(6): 225-232.
    [85] Khan M.Z., Johns K.C. Buckling of web plates under combined loadings. Journal of Structural Division, ASCE,
    ??1975, 101(10): 2079-2092.
    [86] Khan M.Z.. Johns K.C. and Hayman B. Buckling of plates with partially loaded edges. Journal of Structural Division, ASCE, 1977, 103(3): 547-558.
    [87] Komatsu S. Ultimate strength of stiffened plate girders subjected to shear. Proc. Colloquium on design of plate and box girders for ultimate strength, IABSE, London, 1971: 49-65.
    [88] Kuhn P., Peterson J.P. and Levin L.R. A summary of diagonal tension, Part I: method of analysis. NACA. Technical Notes 2661,2662, May 1952.
    [89] Kutmanova I., Skaloud M. Ultimate limit state of slender steel webs subject to (i) constant and (ii) repeated partial edge loading. Journal of Constructional Steel Research, 1992, 21: 147-162.
    [90] Lagerqvist O. Patch loading: resistance of steel girders subjected to concentrated forces. Doctoral Thesis, Lulea University of Technology, Sweden, 1994.
    [91] Lagerqvist O., Johansson B. Resistance of I-girders to concentrated loads. Journal of Constructional Steel Research, 1996, 39(2): 87-119.
    [92] Lee S.C., Davidson J.S. and Yoo C.H. Shear buckling coefficients of plate girders web Panels. Computers and Structures, 1996, 59(5): 789-795.
    [93] Lee S.C., Yoo C.H. Strength of plate girder web panels under pure shear. Journal of Structural Engineering. ASCE, 1998, 124(2): 184-194.
    [94] Lee S.C., Yoo C.H. Experimental study on ultimate shear strength of web panels. Journal of Structural Engineering. ASCE, 1999, 125(8): 838-846.
    [95] Longbottom E., Heymay J. Experimental verification of the strength of plate girders designed in accordance with the revised British Standard 153:tests on full scale model plate girders. Proc. Instn Civ. Engrs, Part 3, 1956, 5: 462-486.
    [96] Lyse I., Godfrey H.J. Investigation of web buckling in steel beams. Transactions, ASCE, 1934, Paper No. 1907: 675-706.
    [97] Mandal S.N. The collapse behavior of tapered beams. Doctoral thesis, University of Nottingham, 1978.
    [98] Mann A.P., Morris L.J. Limit design of extended end-plate connections. Journal of the Structural Division, ASCE, 1979,105(3): 511-526.
    [99] Markovic N., Hajdin N. A contribution to the analysis of the behavior of plate girders subjected to patch loading. Journal of Constructional Steel Research, 1992,21: 163-173.
    [100] Marsh C, Ajam W. and Ma Huy-Kinh. Finite element analysis of postbuckled shear webs. Journal of Structural Engineering, 1988, 114(7): 1571-1587.
    [101] Maquoi R., Skaloud M. Stability of plates and plated structures, General Report. Journal of Constructional Steel Research, 2000, 55(1): 45-68.
    [102] Moriawaki Y., Takinoto T. and Mimura Y. Ultimate strength of girders under patch loading. Transactions, JSCE, 1985, 15: 187-190.
    [103] Narayanan R., Rockey K.C. Ultimate load capacity of plate girders with webs containing circular cut-outs. Proc. Instn Civ. Engrs, Part 2, 1981, 71: 845-862.
    [104] Porter D.M.. Rockey K..C. and Evans H.R. The collapse behavior of plate girders loaded in shear. Structural Engineer, 1975. 53(8): 313-326.
    [105] Roberts T.M.. Rockey K.C. Methode pour predire la charge de ruine d'une poutre a ame mince soumise a une charge semi-repartie dans le plan de (?)ame. Construction Metallique. 1978. 3: 3-13.
    [106] Roberts T.M.. Rockey K.C. A mechanism solution for predicting the collapse loads of slender plate girders when subjected to in-plane patch loading. Proceedings, Instn Civ. Engrs. Part 2, 1979, 67(3): 155-175.
    [107] Roberts T.M., Chong C. K. Collapse of plate girders under edge loading. Journal of the Structural Division, ASCE, 1981. 107(8): 1503-1509.
    [108] Roberts T.M Slender plate girders subjected to edge loading. Proceedings, Instn Civ. Engrs, Part 2, 1981, 71(9): 805-819.
    [109] Roberts T.M., Markovic N. Stocky plate girders subjected to edge loading. Proceedings, Instn Civ. Engrs, Part 2, 1983, 75(9): 539-550.
    [110] Roberts T.M. Patch loading in plate girders. Plate Structures-Stability and Strength. Narayanan R. editor, Elsevier Applied Science Publishers Ltd., London, England, 1983, 77-102.
    [111] Roberts T.M., Newark A.C.B. Strength of webs subjected to compressive edge loading. Journal of Structural Engineering, 1997, 123(2): 176-173.
    [112] Roberts T.M., Davies A.W., Newark A.C.B. and Bhogal A.S. Strength of aluminium alloy plate girders subjected to patch loading. Proc. Instn Civ. Engrs Structs & Bldgs, 1998, 128(11): 376-384.
    [113] Roberts T.M., Shahabian F. Ultimate resistance of slender web panels to combined bending shear and patch loading. Journal of Constructional Steel Research, 2001, 57: 779-790.
    [114] Rockey K.C, Bagchi D.K. Buckling of plate girder webs under partial edge loadings. International Journal of Mechanical Science, 1970, 12: 61-76.
    [115] Rockey K.C, Elgaaly M. Failure of thin-walled members under patch loading. Journal of the Structural Division, 1972, 98(12): 2739-2752.
    [116] Rockey K.C, Skaloud M. The ultimate load behavior of plate girders loaded in shear. Structural Engineer, 1972, 50(1): 29-48.
    [117] Rockey K.C, Evans H.R. and Porter D.M. A design method of predicting the collapse behavior of plate girders. Proceedings of the Institution of Civil Engineers, Part 2, 1978, 65(3): 85-112.
    [118] Rockey K.C, Valtinat G and Tang K.H. The design of transverse stiffeners on webs loaded in shear-an ultimate load approach. Proc. Instn Civ. Engrs, Part 2, 1981. 71: 1069-1099.
    [119] Roberts T.M., Shahabian F. Ultimate resistance of slender web panels to combined bending shear and patch loading. Journal of Constructional Steel Research, 2001, 57(7): 779-790.
    [120] Salmon C.G, Johnson J.E. Steel Structures: design and behavior. Harper & Row Publishers, New York, 1980.
    [121] Shahabian F., Roberts T.M. Buckling of slender web plates subjected to combinations of in-plane loading. Journal of Constructional Steel Research, 1999, 51: 99-121.
    [122] Shahabian F., Roberts T.M. Combined shear-and-patch loading of plate girders. Journal of Structural Engineering, 2000, 126(3): 316-321.
    [123] Sharp M. L., Clark J. W. Thin aluminum shear webs. Journal of Structural Division, 1971, 97(4): 1021-1038.
    [124] Shimizu S., Yabana H. and Yoshida S. A new collapse model for patch-loaded web plates. Journal of Constructional Steel Research, 1989, 13:61-73.
    [125] Shimizu S., Horii S. and Yoshida S. The collapse mechanism of patch loaded web plates. Journal of Constructional Steel Research, 1989, 14:321-337.
    [126] Smith T. R. G., Sridharan S. A finite strip method for the buckling of plate structures under arbitrary loading. International Journal of Mechanical Science, 1978, 20: 685-693.
    [127] Smith T. R. G., Gierlinski J. T. Buckling of stiffened webs by local edge loads. Proceedings, ASCE, 1982,108(6): 1357-1366.
    [128] Southwell R. V., Skan S. W. Proceeding of Royal Society. London, Ser. 1924, A105: 582.
    [129] Srivastava A. K. L., Datta P. K. and Sheikh A. H. Buckling and vibration of stiffened plates subjected to partial edge loading. International Journal of Mechanical Science, 2003, 45: 73-93.
    [130] Stein M., Neff J. Buckling stresses of simply supported rectangular flat plates in shear. National Advisory Committee for Aeronautics (NACA), 1947, Note No. 1222.
    [131] Sulyok M., Galambos T. V. Evaluation of web buckling test result on welded beams and plate girders subjected to shear. Engineering Structures, 1996, 18(6): 459-464.
    [132] Timoshenko S. P., Gere J. M. Theory of elastic stability, 2nd Edn. McGraw-Hill, New York, 1961.
    [133] Tryland T. Hopperstad O. S. and Langseth M. Steel girders subjected to concentrated loading-Validation of numerical simulations. Journal of Constructional Steel Research, 1999, 50:199-216.
    [134] Tryland T. Langseth M. and Hopperstad O. S. Nonperfect aluminum beams subjected to concentrated loading. Journal of Structural Engineering, 1999, 125(8): 900-909.
    [135] Tryland T. Hopperstad O. S. and Langseth M. Finite-element modeling of beams under concentrated loading. Journal of Structural Engineering, 2001, 127(2): 176-185.
    [136] Tryland T. Clausen A. H. and Remseth S. Effect of material and geometry variations on beam under patch loading. Journal of Structural Engineering, 2001, 127(8): 930-939.
    [137] Ungermann D. Bemessungsverfahren fur vollwand-und kastentrager unter besonderer berucksichtigung des stegverhaltens, Heft 17, Stahlbau, RWTH Aachen, Aachen, 1990.
    [138] Wagner H. Flat sheet metal girder with very thin metal web. National Advisory Committee for Aeronautics (NACA), 1931, Tech. Memo. Nos, 604, 605, 606.
    [139] White R. N., Cottingham W. S. Stability of plates under partial edge loadings. Proceedings, ASCE, 1962, 85(5): 67-86.
    [140] Wilson J. M. On specification for strength of iron bridges. Transactions, ASCE. 1886, 15:401-403 and 489-490.
    [141] Witteveen J., Stark J. W. B. et al. Welded and bolted beam-to-column connections. Journal of the Structural Division, ASCE, 1982, 108(2): 433-455.
    [142] Zetlin L. Elastic instability of flat plates subjected to partial edge loads. Proceedings, ASCE, 1955, 81(1), No.795.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700