用户名: 密码: 验证码:
基于CT实时观测的水—岩力学耦合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应力场、渗流场耦合系统是实际工程中经常遇到的问题,因
    此,研究水-岩相互作用的力学机制和岩石内部细观损伤演化过
    程及其破裂模式,从细观到宏观两方面揭示出水-岩相互作用的损
    伤扩展机理,揭示岩石的细观损伤过程及其破裂模式,揭示水-
    岩相互作用的内在力学机制,是解决重大工程和地质灾害防治的关
    键的基础科学课题,具有重要的科学意义及应用研究价值。
    利用SIEMENS SOMATOM plus 型X射线螺旋CT机和
    中低压多功能岩土渗流实验装置,以中等胶结程度、透水性较好
    的陕西铜川地区的砂岩为研究样本,在三轴应力状态下,对砂岩
    试样的应力与渗流相互作用的损伤全过程进行了三维实时CT动
    态观测。
    在第二章节里,对砂岩进行了干燥状态下的砂岩试样的宏观
    应力应变特性试验和不同渗透水压力作用下的砂岩试样的宏观应
    力应变特性试验。提出了围压对试样强度和变形的折减率与渗透
    水压力对试样强度和变形的折减率的基本概念及其数学表达式。
    在第三章节里,对砂岩试样进行了水-岩相互作用过程的三
    
    西安理工大学博士学位论文
    亩亩亩亩亩亩亩面亩亩亩亩亩亩亩亩亩亩亩亩百亩百面亩亩万亩亩亩亩亩亩百亩亩亩百面亩亩巨亩百亩百亩亩亩苹奋百声亩亩亩亩亩i
    维实时Cl,观测。对砂岩试样进行了实验过程中密度变化的数学分
    析,导出了在渗流状态下基于细观分析的砂岩试样密度损伤增量
    的数学表达式,研究分析了砂岩应力应变状态与Cl,数变化的相关
    关系、围压对Cl,数变化的影响以及渗透水压力与C江,数变化的相
    关关系。
     在第四章节里,进行了基于细观分析的砂岩隙宽宽度变化
    数学分析。提出了砂岩裂隙隙宽变化与Cl,数变化的相关关系;提
    出了基于Cl,数值的变化求解砂岩试样裂缝宽度的计算公式;提出
    了基于Cl,图像求解砂岩试样裂缝宽度的计算公式;给出了渗透水
    压力与砂岩裂缝宽度变化的相关关系及其数学表达式。研究结果
    表明除了应力能对岩石造成变形损伤外,渗透水压力也会对岩石
    造成变形损伤,而且渗流与应力状态的相互作用影响很大,渗透
    水压力对试样的强度和变形的影响是显著且十分灵敏的。
    关键词:CT实时观测,宏观应力应变,细观损伤分析,密度损伤
    增量,渗透水压力,裂隙隙宽变化,强度与变形折减率
The coupling system of stress field and seepage flow field is a common problem occurred in practical engineering. For this reason, it is necessary to study mechanical mechanism of water-rock interaction and evolution process of inside rock micro-damage as well as broken patterns, whereby the damage expansion mechanism of water-rock interaction, the process of rock micro-damage process and the broken patterns, as well as internal mechanical mechanism of water-rock inter-reactions are indicated from the micro- and macro-aspects. This is the research project in basic science for the solving of the key problems in priority engineering works and prevention and control of geological disasters, and is of the important scientific significance and practical application values.SIEMENS SOMATOM plus Type X-Ray screw CT machine and multi-purpose geo-tech seepage flow testing device with medium and low pressure are adopted in the tests. The sandstone with medium cementation and better permeated properties from Tongchuan area in Shaanxi can be served as research specimens. In the state of tri-axial stress, the 3-D real time CT dynamic observation and measurement of the stress of sandstone samples and the whole damaging process of seepage flow inter-actions are made.In sections of chapter 2, the tests of macro-stress and strain properties of sandstone samples in the state of dry sandstone as well as the macro-stress and strain properties of sandstone samples under the action of permeable water pressures are carried out, whereby the basic concept and mathematical equations for the confining pressure upon the strength of testing sample and depreciation-reduction rate of deformation as well as permeable water pressure
    
    upon sample strength and depreciation-reduction rate of deformation are suggested.In sections of chapter 3, the 3 -D real time CT observation and measurement of water-rock interactions are made of sandstone samples. Also, the mathematical analysis of density variation in sandstone sample is made in the testing process, whereby the mathematical equation is derived in the state of seepage flow and based on the micro-analysis of the increments of sandstone sample density damages. And at the same time, the correlative relations among sandstone stress and strain state and CT number variations as well as the correlative relations between the effect of confining pressure upon CT number variations and permeable water pressure and CT number variations are analyzed.In sections of chapter 4, the mathematical analysis of the width variations in sandstone porosity widths is made based on micro-analysis. Accordingly, the correlative relations between variations in crack width of sandstone cracks and CT number variations are advanced; the formula for calculating the crack width of sandstone sample cracks is suggested on the basis of CT number variations; the formula for calculating the crack width of sandstone sample cracks is presented on the basis of CT number images; and the correlative relations between the permeable water pressure and the width variations of sandstone cracks and the mathematical equation are given in this thesis. The research findings indicate that apart from that fact that stress can cause deformation damages to rocks, permeable water pressure can also can cause deformation damages to rocks; and that also, the inter-reactions between seepage flow and stress state may have great effect upon rocks. Accordingly, permeable water pressure force can have a remarkable and sensitive effect upon the strength and deformation of sandstone samples.
引文
[1] 张晓春,杨挺青,缪协兴.岩石裂纹演化及其力学特性的研究进展,力学进展, 1999:29(1) :97-104
    [2] 吴紫旺,蒲毅彬,马巍等.冻土蠕变过程体积变化的CT分析。冰川冻土,1995, 17(增刊):41-46
    [3] Kawakata H. ACho,T.Yanagidani,and M.Shimada,1997. The observations of faulting in westerly granite under triaxial compression by X-ray CT scan. Int.J.Rock Mech.& Min.Sci.,34-3/4,paper No.151.
    [4] Hironori KAWAKATA, Akio CHO, Tamotsu KIYAMA, Takashi YANAGIDANI, Kinichiro KUSUNOSE, and Mitsuhiro SHIMADA, Three-dimensional Observations of Faulting Process in Westerly Granite under Uniaxial and Triaxial Conditions by X-ray CT Scan. Tectonophysics,313,293-305. 1999.
    [5] 陈平、张有天,裂隙岩体渗流与应力耦合分析,岩石力学与工程学报,vol.13 No.4 1994:299-308
    [6] 陈庆中等,应力场、渗流场、流场耦合系统问题,工程力学,vol.17 No.6 Dec.2000:53-58
    [7] 周远田,岩石应力与渗透率的关系,岩石力学与工程学报,第17卷第4期, 1998:393-399
    [8] Stephen Bronwn, Arvind Caprihan, Experimental observation of fluid flow channels in a single fracture, Journal of geophysical reserrch,vol.103,No.B3 Pages 5125-5132, March 10,1998
    [9] Richard T.CHEN,Anistropy of X Ray Absorption in a slate:Effects on the March Strain Determination, Journal of geophysical reserrch,vol.96,No.B4, Pages 6099-6105, April 10,1991
    [10] Stephen Bronwn,Ronaid L.Bruhn,Fluid permeability of deformable fracture networks, Journal of geophysical reserrch,vol.103,No.B2 Pages 2489-2500,February10,1998
    [11] W.Brent Lindquist and Arun Venkatarangan,John Dunsmuir,Teng-fong Wong,Pore and throat size distributions measured from synchrotron X-ray tomographicv images, Journal of geophysical reserrch,vol.105,No.B9,Pages 21509-21527,September 10,2000
    [12] 王育平、王永红,水-土相互作用对土体裂隙水流的影响,岩石力学与工程学 报,18(5) 1999:554-557
    [13] 周创兵等,双场耦合条件下裂隙岩体的渗透张量,岩石力学与工程学报,15
    
    ??(1996) ,338-344
    [14] 葛修润等,煤岩三轴细观损伤演化规律的CT动态试验,岩石力学与工程学报, 18(5) 1999:497-502
    [15] 肖洪天等,岩石裂纹流变扩展的细观机理分析,岩石力学与工程学报,18(6) 1999:623-626
    [16] 杨友卿等,岩石强度的损伤力学分析,岩石力学与工程学报,18(1) 1999:23-27
    [17] 郑少河等,三维应力作用下天然裂隙渗流规律的实验研究.岩石力学与工程学 报,18(2) 1999:133-136
    [18] 朱珍德等,裂隙水压力对岩体强度的影响,岩土力学,第21卷第1期,2000: 64-67
    [19] 张金才等,应力对裂隙岩体渗流影响的研究,岩土工程学报,第20卷,第2 期,1998:19-22
    [20] 赵阳升等,三维压力作用下岩石裂缝水渗流物性规律的实验研究,中国科学(E 辑)第29卷,第1期,1999:82-86
    [21] 王恩志、孙役、邓旭东.单裂隙非饱和渗透荷载分布规律,清华大学学报(自然 科学版)40(4) ,2000:70-72
    [22] 葛修润,任建喜,蒲毅彬,马巍,朱元林.岩石细观损伤扩展规律的CT实时试 验[J].中国科学(E辑),第30卷第2期,2000年4月:104-111
    [23] 任建喜,三轴压缩岩石细观损伤扩展特性CT实时检测[J].实验力学,第16卷 第4期,2001年12月:387-395
    [24] 杨更社,谢定义,张长庆,蒲毅彬,岩石损伤扩展力学特性的CT分析[J].岩 石力学与工程学报,第18卷第3期,1999年6月:250-254
    [25] 崔中兴,仵彦卿,党发宁,石砭峪水库供水洞渗流场与应力场数值耦合分析, 西安理工大学学报vol.17. No.2,2001:105-109
    [26] 仵彦卿,丁卫华等,压缩条件下岩石密度损伤增量的CT动态观测,自然科学 进展,10(9) ,2000:830-835
    [27] 丁卫华,仵彦卿等,受力岩石密度损伤增量及其数字图像,西安理工大学学报, Vol.16,No.1,2000年:045-048
    [28] 丁卫华,仵彦卿,蒲毅彬,廖全荣,CT技术应用于岩石实验动态观测的新进展,冰川 冻土,Vol.22,No.3,2000:218-222
    [29] Ding Weihua, Wu Yanqing et al., A real-time X-ray CT Detecting of Density Damage Increment of Rock under Compression Condition, The 10th International Conference of the International Association for Computer Methods and Advances in Geomechanics, Jan. 7-12, 2001, the University of Arizona, Tucson, Arizona, USA
    
    [30] 仵彦卿,柴军瑞,作用在岩体裂隙网络中的渗透力分析, 工程地质学报, No.1,2001
    [31] 丁卫华,仵彦卿,蒲毅彬,崔中兴,岩石细观损伤过程的CT动态观测,西安理 工大学学报,Vol.16,No.3,2000:274-279
    [32] Wu Yan-Qing & Zhang Zhuo-Yuan, Research on lumped parameter model of coupled seepage and stress field in fractured rock mass,1994, A. A. BALKEMA
    [33] Wu Yan-Qing, A generalized double porosity media model for coupled stress and seepage fields in fractured rock mass, 1997, A. A. BALKEMA
    [34] Wu Yan-Qing, On mechanical property of rock or soil masses by the action of seepage, 1998, A.A. BALKEMA
    [35] Tetsuro Hirono,Manabu Takahashi,Satoru Nakashima,In situ visualization of fluid flow image within deformed rock by X-ray CT,Engineering Geology 70(2003) 37-46.
    [36] 仵彦卿等,压缩条件下岩石密度损伤增量的CT动态观测,自然科学进展, 2000,10(9) :830-835
    [37] 谢和平,岩石混凝土损伤力学,徐州:中国矿业大学出版社,1990
    [38] 杨卫,细观力学和细观损伤力学,力学进展,1992,22(1) :1-9
    [39] 杨更社,张长庆.岩体损伤及检测.陕西西安:陕西科学技术出版社,1998
    [40] 蒲毅彬,朱元林,CT用于冻结土、岩及冰的无损动态测试研究,自然科学进 展, Vol.8,No.2,1998:251-253
    [41] Takashi IKEDA, Koichi KOTANI, Yuichiro MAEDA, et al., Preliminary study on application of X-ray CT scanner to measurement of void fractions in steady state two-phase flows. Journal of Nuclear Science and Technology, 1983, 20(1) :1-12
    [42] Robert A J, John S S, Louis M C, et al. Nondestructive measurements of fracture aperture in crystalline rock cores using X ray computed tomography. Journal of Geophysical Research, 1993, 98(B2) :1889-1900
    [43] Kawakata H, et al., Three-dimensional observations of faulting process in Westerly granite under uniaxial conditions by X-ray CT scan, Tectonophysics, 313,1999:293-305
    [44] Toshiyuki Kawamura. Nondestructive three dimensional density measurements of ice core samples by X ray computed tomography. Journal of Geophysical Research, 1990, 95(B8) :12407-12412
    [45] Bay B K, et al., Three-dimensional strain mapping using X-ray Tomography, Experimental Mechanics, Vol. 39,No. 3,1999:217-226
    
    [46] 凌建明.压缩荷载条件下岩石细观损伤特征的研究,同济大学学报,21(2) , 1993
    [47] 谢强,姜崇喜,凌建明著,岩石细观力学实验与分析,西南交通大学出版社, 1997
    [48] Lockner D. The role of acoustic emission in the study of rock fracture. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 30, No. 7, 1993:883-900
    [49] 刘力强等,三轴压缩下不同构造粗晶花岗岩的微破裂时空分布特征及其地震学 意义,科学通报,44卷11期,1999
    [50] Suzanne Raynaud, Denis Fabre, Frederic Mazerolle et al, Analysis of the internal structure of rocks and characterization of mechanical deformation by a non-destructive method:X-ray tomodensitometry, Tectonophysics, 159, 1989: 149-159
    [51] 余寿文、王西桥,损伤力学,清华大学出版社,1997年,P2-7.
    [52] 中国地质学会工程地质专业委员会,中国工程地质50年,地震出版社,2000:25-35
    [53] 孙广忠.地质工程理论与实践.地震出版社,1996:1-3
    [54] Hudson,J.A, Practical Rock Engineering, Principal of rock engineering consultants,9, HK Polytechnic University,2001
    [55] 白以龙,柯孚久,夏蒙棼.固体中微裂纹系统统计演化的基本描述,力学学报, 1991,23(3) :290-297
    [56] 邢修三.损伤和断裂的统一.力学学报,1991,23(1) :123-126
    [57] 余大庆,钱济成.损伤理论及其应用,国防工业出版社,1993
    [58] 仵彦卿,张倬元.岩体水力学导论,成都:西南交通大学出版社,1995
    [59] 杨立中等,深层地下水渗流的研究,成都:成都科技大学出版社,1995
    [60] 胡伏生,杜强,万力,田开铭.岩体渗透结构与矿坑涌水强度关系.长春科技大学学 报,2000,30(2) :161-164
    [61] 陈蕴生等,非贯通节理介质细观损伤演化的CT分析,岩石力学与工程学报, 19(6) 2000:702-706
    [62] Louis C. Introduction a 1'hydraulique des roches (Introduction to rock hydraulics). Bulletin Bureau de Recherches Geologiques et Minieres 1974; Ⅲ-4: 283-356.
    [63] Gangi AF. Variation of whole and fractured porous rock permeability with con.ning pressure. Int J Rock Mech Min SciGeomech Abstr 1978;15:249-57.
    [64] Walsh JB, Grosenbaugh MA. A newmodel for analysing the effect of fractures on compressibility. J Geophys Res 1979;84:3532-6.
    [65] Witherspoon PA, Wang JSY, Iwai K, Gale JE. Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 1980;16(6) :1016-24.
    [66] Walsh JB. Effect of pore pressure and confining pressure on fracture permeability.
    
    ?? Int J Rock Mech Min Sci Geomech Abstr 1981;18:429-35.
    [67] Tsang YW, Witherspoon PA. Hydromechanical behaviour of a deformable rock fracture subject to normal stress. J Geophys Res 1986;86(B10) :9287-98.
    [68] Raven KG, Gale JE. Water .owin a natural rock fracture as a function of stress and sample size. Int J Rock Mech Min Sci Geomech Abstr 1985;22(4) :251-61.
    [69] Brown SR, Scholz CH. Closure of random elastic surfaces in contact. J Geophys Res 1985;90:5531-45.
    [70] Brown SR. Fluid flow through rock joints: the effect of surface roughness. J Geophys Res l987;92:1337-47.
    [71] Pyrak-Nolte LJ, Cook NGW. Fluid percolation through single fractures. Geophys Res Lett 1988;15(11) :1247-50.
    [72] Cook NGW. Natural joints in rock: mechanical, hydraulic and seismic behaviour and properties under normal stress. The First Jaeger Memorial Lecture, the 29th US Rock Mechanics Symposium, Minneapolis, 1988.
    [73] Olsson WA. The effects of slip on the flow of fluid through a fracture. Geophys Res Lett 1992; 19:541-3.
    [74] Olsson WA, Brown SR. Hydromechanical response of a fracture undergoing compression and shear. Int J Rock Mech Min Sci Geomech Abstr 1993;30(7) :845-51.
    [75] Ng KLA, Small JC. Behaviour of joints and interfaces subjected to water pressure. Comput Geotech 1997;20(1) :71-93.
    [76] Oron A, Berkowitz B. Flow in rock fractures: the local cubic lawassumptio n re-examined. Water Resour Res 1998;34(11) :2811-25.
    [77] Power WL, Durham WB. Topography of natural and artificial fractures in granitic rocks: implications for studies of rock friction and fluid migration. Int J Rock Mech Min Sci 1997;34(6) :979-89.
    [78] Nicholl MJ, Rajaram H, Glass RJ, Detwiller R. Saturated flow in a single fracture: evaluation of the Reynolds equation in measured aperture fields. Water Resour Res 1999;35(11) :3361-73.
    [79] Yeo IW, de Freitas MH, Zimmerman RW. Effect of shear displacement on the aperture and permeability of a rock fracture. Int J Rock Mech Min Sci 1998;35(8) :1051-70.
    [80] Indraratna B, Ranjith PG, Gale W. Single phase water flow through rock fractures. Geotech Geol Eng 1999;17:211-40.
    [81] Pyrak-Nolte LI, Morris JP. Single fracture under normal stress:the relation between fracture specific stiffness and fluid flow. IntJ Rock Mech Min Sci 2000;37:245-62.
    [82] Olsson R, Barton N. An improved model for hydromechanical coupling during shearing of rock joinls. Int J Rock Mech Min Sci 2001;38:317-29.
    [83] Nootishad J, Ayatollahi M.S, Witherspoon P.A. Finite Element Method for Coupled stress and Fluid Flow Analysis in Fractured Rock Masses. Int J Rock Mech Min Sci. Geomech.Abstr 1982,19:185-193
    [84] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in
    
    ?? jointed rock masses. Water Resour Res 1986;22(13) :1845-56.
    [85] Nolte, D.D. and LJ. Pyrak-Nolte. Stratified Continuum Percolation: Scaling Geometry of Hierarchical Cascades. Physical Review A, 1991,44:6320-6333
    [86] Barton NR, Bandis SC, Bakhtar KStrength, Deformation and Conductivity Coupling of Rock Joints. International Journal of Rock Mechanics and Mining Sciences 1985; 22-3:121-140.
    [87] 刘继山.单裂隙受正应力作用时的渗流公式.水文地质工程地质,1987,(2) :22-27
    [88] 刘继山.结构面力学参数与水力参数耦合关系及其应用.水文地质工程地 质,1988,2:7-12
    [89] 李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土 工程学报,1995,17(3) :13-19
    [90] 伍法权.统计岩体力学原理.中国地质大学出版社.武昌,1993
    [91] 仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质,1995,6:30-35
    [92] 许学汉,煤矿突水预报研究.地质出版,北京1991。
    [93] 赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1996
    [94] 王嫒,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与 工程学报,1999,19(2) :177-181
    [95] 盛金昌,速宝玉,王嫒等.裂隙岩体渗流弹塑性应力耦合分析[J].岩石力学与工程学 报,1999,19(3) :304-309
    [96] 杨延毅,周维垣.裂隙岩体的渗流损伤耦合分析模型及其工程应用[J].水利学 报,1991,(5) :19-27
    [97] 杨太华,曾德顺.三峡船闸高边坡裂隙岩体的渗流损伤特征[J].中国地质灾害与防 治学报,1997,8(2) :13-18
    [98] 郑少河,朱维申.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报, 2001,20(2) :156-159
    [99] Hubbert M K, Willis D G. Mechanics of hydraulic fracturing. Trans[J]. trans. AIME. 1957, 210:153-166.
    [100] 冷雪峰,杨天鸿,国怀专等.单孔岩石水压致裂过程的数值模拟分析[J].世界有色 金属,2002,10:32-34
    [101] 黄荣撙.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981,5:62-73
    [102] 陈治喜,陈勉,金衍等.水压致裂法测定岩石的断裂韧性[J].岩石力学与工程学 报,1997,16(1) :59-64
    [103] Clifton R J, Simonson E R, Jone A H, Green S J. Determination of the critical stress intensity factor KlC from internally pressured thick-walled vessels. Experimental Mechanics, June 1976,233-238
    [104] 刘允芳.水压致裂法三维地应力测量[J].岩石力学与工程学报,1991,10(3) :246-256
    [105] 刘允芳.水压致裂法地应力测量的校核和修正[J].岩石力学与工程学 报,1998,17(3) :297-304
    [106] 李方全,刘鹏.原地应力测量对某核废料处置场场地评价的应用[J].岩石力学与工
    
    ?? 程学报,1993,12(12) :55-62
    [107] Truby L S, Keck R G, Withers R J. Data gathering for a comprehensive field fracturing diagnostic project: A case study: SPE/1ADC Paper 27 516, Present at the SPE/IADC Drilling Conference, Dallas, Texas, Feberary, 1994:18-20
    [108] Li Y. Study of hydraulic fracturing process: Applications in resource development and environment protection. Proceedings of the Second Academic Conference of Young Scientist (CAST ) in Beijing, China, July 24-26. Resource and Environmental Science Volume (Chinese Science and Techno logy Publisher), 1995:100-108
    [109] 李应平.微震分析水压致裂的破裂过程[J].地震学报,1996,18(3) :292-300
    [110] Niitsuma H, Nakatsuka K, Takahaashi H, et al. Long-distance acoustic emission monitoring of hydraulically induced subsurface cracks in nigorikaea geothermal field[M]. Japan[ s. n. ]. 1985, 14:539-551.
    [111] 吴景浓.室内岩石水压致裂三轴试验研究[J].岩土工程学报,1986,8:61-69
    [112] 杨天鸿,唐春安,刘红元等.水压致裂过程分析的数值试验方法[J].力学与实 践,2001,23 (5) :51-54
    [113] 冷雪峰,唐春安,杨天鸿等.岩石水压致裂过程的数值模拟分析[J].东北大学学报 (自然科学版),2002,23(11) :1104-1107
    [114] Yale D P,Lyons S L ,Qin G. Coupled geomechanics fluid flow modeling in petroleum reservoirs:coupled versus uncoupled response [A].Pacific Rocks[C]. rotterdam :Balkema ,2000. 137-144.
    [115] Griffith AA.The phenomena of rupture and flow in solids. Phil Trans,1920,221A:163-198
    [116] Cook,N.GW.,The failure of rock,Int.J.Rock Mech. Min. Sci.,1965,2,389-403
    [117] Brace, W. F. and E. G. Bombolakis., A not on brittle crack growth in compression. J. Geophys. Res., 1963,68,3709-3713
    [118] Hoek,E. and Brown, E.T., Underground excavations in rock,1980:105-106
    [119] McClintock, F.A,Walsh,J.B. Friction on Griffith crack in rocks under pressure, 4th U.S. Nat. congress Appl. Mech.(PRO>),1961,1015-1021
    [120] Salamon, M.D.G, Elastic moduli of a stratified rock mass, international Journal of Rock Mechanises and Mining Seience.Abstra,1968,5:519-527
    [121] Nolen-Hoeksema,R.C and Gordon R.B. Optical detection of crack patterns in the opening mode fracture of marble. Int. J. Rock Mech. Min. Sci. Germech. Abstr.1987, 24:135-144
    [122] wong.T.F. Micromechanics of faulting in westerly granite. Int. J. Rock Mech. Min.Sci. Geomech. Abstr.l982,19:49-64
    [123] Priest,S.D., Hudson,J.A. Discontinuity spacings in Rock. Int. J. Rock Mech. Min.Sci. Geomech. Abstr.1976,13:135-148
    [124] Hudson,J.A. and Priest,S.D. Discontinuities and Rock Mass Geometry. Int. J. Rock Mech. Min.Sci. Geomech.Abstr.1979,16:339-362
    [125] 吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工 程学报,1996. 15(1) :55-61
    
    [126] Singh B. Continuum characterization of jointed rock masses.Part 1-the constitutive equations. Int J Rock Mech Min SciGeomech Abstr 1973;22(4) :197-213.
    [127] Gerrard CM. Equivalent elastic moduli of a rock mass consisting of orthorhombic layers. Int J Rock Mech Min Sci Geomech Abstr 1982;19:9-14.
    [128] Fossum AF. Effective elastic properties for a random jointed rock mass. Int J Rock Mech Min Sci Geomech Abstr 1985;22(6) :467-70.
    [129] Wei ZQ, Hudson JA. The influence of joints on rock modulus. Proceedings of the International Symposium Rock Engineering in Complex Rock Formations. Beijing, China: Science Press, 1986. p. 54-62.
    [130] Yashinaka R, Yamabe T. Joint stiffness and the deformation behaviour of discontinuous rock. Int J Rock Mech Min Sci Geomech Abstr 1986;23(1) :19-28.
    [131] Wu FQ. A 3D model of a jointed rock mass and its deformation properties. Int J Min Geol Eng 1988;6:169-76.
    [132] Mukarami H, Hegemier GA. Development of a non-linear continuum model for wave propagation in jointed media: theory for single joint set. Mech Mater 1989;8:199-218.
    [133] Chen EP. A constitutive model for jointed rock mass with orthogonal sets of joints. J Appl Mech Trans ASME 1989;56:25-32.
    [134] Singh M. Applicability of a constitutive model to jointed block mass. Rock Mech Rock Eng 2000;33(2) :141-7.
    [135] Wu FQ, Wang SJ. A stress-strain relation for jointed rock masses. Int J Rock Mech Min Sci 2001;38:591-8.
    [136] Papamichos E. Constitutive laws for geomaterials. Oil Gas Sci Technol-Rev IFP 1999;54(6) :759-71.
    [137] Hoek E. Strength of jointed rock masses. 1983 Rankine Lecture.G(?)eotechnique 1983;33(3) :187-223.
    [138] Hoek E, Brown ET. Underground excavations in rock. London,UK: Institute of Mining and Metallurgy, 1982.
    [139] Hoek E, Brown ET. Practical estimates of rock mass strength.Int J Rock Mech Min Sci 1997;34(8) :1165-86.
    [140] Owen DRJ, Hinton E. Finite elements in plasticity: theory and applications. Swansea, UK: Pineridge Press, 1980.
    [141] Withjack, E.M., 1988. Computerised tomography for rock property determination and fluid flow visualisation. Society of Petroleum Engineers Formation Evaluation, 696-704.
    [142] Klobes, P., Riesemier, H., Meyer, K., Goebbels, J.. Rock porosity determination by combination of X-ray computerized tomography with mercury porosimetry. Fresenius[J]. Journal of Analytical Chemistry, 1997,357,543-547
    [143] Doi, N., Kato, O., Sakagawa, Y., Akaku, K, Uchida, T. Characterisation of fracture
    
    ??and rock property of the Kakkonda granite by FMI and other loggings[J]. Journal of the Geothermal Research Society Japan, 1998,20, p34
    [144] Ohtani, T., Nakashima, Y., Muraoka, H.Three dimensional miarolitic cavity distribution in the Kakkonda granite from borehole WD-1a using X-ray computerised tomography[J]. Engineering Geology,2000,56,l-9
    [145] Wildenschild D, Hopmans JW, Waz CMP, Rivers ML, Rikard D, and Christensen BSB.Using X-ray computed tomography in hydrology: systems, resolutions, and limitations[J]. Journal of Hydrology, 2002,267:285-297
    [146] Goodwin AK, O'Nell MA, and Anderson WF. The use of X-ray computer topography to investigate particulate interactions within opencast coal mine back fills[J]. Engineering Geology, 2003,70:331-341
    [147] Kim MK, Lade PV. Single hardening constitutive model for frictional materials. Comput Geotech 1988;5:307-24.
    [148] Sterpi D. An analysis of geotechnical problems involving strain softening effects. Int Numer Anal Meth Geomech 1999;23:1427-54.
    [149] Wu C, Hao H, Zhou Y. Fuzzy-random probabilistic analysis of rock mass response to explosive loads. Comput Geotech 1999; 25:205-25.
    [150] Zhu W, Li L. Optimizing the construction sequence of a series of underground opening using dynamic construction mechanics and a rock mass fracture damage model. Int J Rock Mech Min Sci 2000;37:517-23.
    [151] Kaliakin VN, Li J. Insight into deficiencies associated with commonly used zero-thickness interface elements. Comput Geotech 1995;17:225-52.
    [152] Day RA, Potts DM. Zero thickness interface elements-numerical stability and applications. Int J Numer Anal Methods Geomech 1994;18(10) :689-708.
    [153] Lee JS, Pande GN. A newjoint element for the analysis of media having discrete discontinuities. Mech Cohes-Frict Mater 1999;4:487-504.
    [154] Goodman RE, Taylor RL, Brekke TL. A model for the mechanics of jointed rock. J Soil Mech Div ASCE 94, SM3,1968. p. 637-59.
    [155] Goodman RE. Methods of geological engineering in discontinuous rocks. San Francisco: West Publishing Company, 1976.
    [156] Bandis S, Lundsen AC, Barton NR. Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr 1983;20(6) :249-68.
    [157] Barton N, Bandis S, Bakhtar K. Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 1985;22(3) :121-40.
    [158] ITASCA Consulting Group, Inc. UDEC Manual, 1992.
    [159] Dong JJ, Pan YW. A hierarchical model of rough rock joints based on micromechanics. Int J Rock Mech Min Sci 1996;33(2) :111-23.
    [160] Desai CS, Ma Y. Modeling of joints and interfaces using the disturbed state concept. Int J Numer Anal Methods Geomech 1992;16:623-53.
    [161] Desai CS. Hierarchical single surface and the disturbed state constitutive models with emphasis on geotechnical applications. In: Saxena KR, editor. Geotechnical engineering: emerging trends in design and practice. Rotterdam: Balkema, 1994. p. 115-54.
    [1
    
    [162] Lee HS, Cho TF. Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mech Rock Eng 2002;35(4) :299-318.
    [163] Lespinasse M, Sausse J. Quanti.cation of fluid flow: hydromechanical behaviour of different natural rough surfaces. J Geotech Explor 2000;69-70:483-6.
    [164] Greenwood JA, Williamson JBP. Contact of nominally .at rough surfaces. Proc R Soc London A 1966;295:300-19.
    [165] Greenwood JA, Tipp JH. The contact of two nominally .at rough surfaces. Proc Inst Mech Eng Part C 1971;185:625-33.
    [166] Fu H, Li L, Liu B, Hou Z, Lux KH. Application of fractal theory in analyzing character of joints and cracks inside a rockmass. EJGE (Electron J Geotech Eng), 2001, Paper No. 2001-6.
    [167] 黄志鹏,郭应忠,朱可善.单轴岩所下岩石声发射与损伤变量关系试验研究[J].岩 石力学与工程学报,1999,17(增刊):784-787
    [168] 赵明阶,吴德伦.单轴加载条件下岩石声学参数与应力的关系研究[J].岩石力学与 工程学报,1999,18(1) :50-54
    [169] 刘力强,马胜利,马瑾等.岩石构造对声发射统计特征的影响[J].地震地 质,1999,21(4) :377-386
    [170] OhnakaM, MogiK. Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure[J]. J Geophys Res, 1982,87: 3873-3884
    [171] 李林.岩石声发射特性的研究[J].化工矿山技术,1995,24(2) :37-40
    [172] 刘东燕,朱可善,胡本雄.含裂隙岩石受压破坏的声发射特性研究[J].地下空 间,1998,18(4) :210-215
    [173] 雷兴林,马瑾,楠濑勤一郎等.三轴压缩下粗晶花岗岩长石声发射三维分布及其分 形特征.地震地质,1991,13(2) :97-114
    [174] Scholz C. Experimental study of the fracturing process in brittle rock. J. of Geophysical Research, 1968,73:1447-1454
    [175] 陈(?),吴晓东,张福勤.岩石热开裂的实验研究.科学通报.1999,44(8) :880-882
    [176] _Kranz, R. L Microcracks in rocks: a review. Tectonophysics 1983,100:,449-480
    [177] Robert, L. K. crack-crack and crack-pore interactions in stressed granite. of Rock mechanics and Mining Science, 1979,16:37-47
    [178] Simmons, G., Richter, D. Microcracks in rocks. In: Strens, R. G. J. (ed.), The physics and chemistry of minerals and rocks. 1976: 105-137
    [179] 凌建明.压缩荷载条件下岩石细观损伤特征的研究[J].同济大学学报,1993,21 (2) :219-226
    [180] 张梅英,袁建新,李廷芥等.单轴压缩过程中岩石变形破坏机理[J].岩石力学与工 程学报,1998,17(1) :1-8
    [181] 吴立新,王金庄,孟顺利.煤岩损伤扩展规律的及时压缩SEM研究[J].岩石力学与 工程学报,1998,17(1) :9-15
    [1
    
    [182] 黄明利,唐春安,朱万成.岩石单轴压缩下破坏失稳过程SEM即时研究[J].东北大 学学报(自然科学版),1999,20(4) :426-429
    [183] Kawakata H., Cho A., and T.Kiyama et al. Three-dimensional observations of faulting process in Westerly granite under uniaxial conditions by CT X-ray Scan. Tectonophysics, 1999,313:293-305
    [184] Bay B.K., Smith T.S., Ryhrie D.P. et al. Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Experemental mechanics,1999,39:217-226
    [185] 杨更社.岩石细观损伤力学特性及本构关系的CT识别[J].煤炭学报,2000, 25(12) :102-106
    [186] 任建喜,葛修润,蒲毅彬.岩石破坏全过程的CT细观损伤演化机理动态分析 [J].西安公路交通大学学报,2000,200) :12-15
    [187] 仵彦卿,丁卫华.单轴条件下砂岩三维破裂过程的CT观测[J].工程地质学报, 2002. 10(1) :93-97
    [188] 丁卫华,仵彦卿,蒲毅彬等.CT技术应用于岩石实验动态观测的新进展[J].冰川 冻土,2000. 3(9) :218-222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700