用户名: 密码: 验证码:
基于独立分量分析的旋转机械故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国家自然科学基金项目“基于独立分量分析的旋转机械故障诊断新方法的研究”(编号:50205025)和浙江省自然科学基金项目“基于盲源分离的机械噪声故障诊断技术研究”(编号:5001004)为基础提出,论文题目为“基于独立分量分析的旋转机械故障诊断方法研究”。本文提出了一个基于源分离的故障诊断新架构,探索了独立分量分析(ICA)理论方法在旋转机械故障诊断中的可能应用。全文主要内容如下:
     第一章:首先概述了故障诊断研究的多学科交叉发展历程,分析了现有故障诊断理论方法的不足之处。接着,总结了独立分量分析(ICA)理论方法及其应用的国内外研究现状,分析了ICA应用于机械故障诊断的可行性。由此,提出了一个基于源分离的故障诊断新架构。最后,给出了本论文的主要研究内容、技术路线及创新点。
     第二章:首先给出ICA模型及其模型估计性质,并从参照函数和优化算法两方面对一般ICA算法进行了概略总结。接着,对后续将用到的重要ICA(BSS)算法,特别是基于神经网络的自适应算法做了详细介绍。另外,还给出了基于带通滤波的改进BSS算法。验证改进算法的实验部分,将在第三章加以详细介绍。
     第三章:研究了基于BSS的机械振动、声源分离问题,包括前分析处理、BSS源分离及后分析处理等环节。其中,也包括改善ICA算法收敛性能的某些策略及解决ICA(BSS)自身不确定性问题的某些可能措施。由此,形成了一个机械源分离的整体解决方案。最后,通过实验对该方案的可行性和有效性进行了验证。
     第四章:特征提取是故障诊断的关键所在。本章从模式识别角度,研究了ICA应用背景下机械状态特征提取问题,给出了几种新颖有效的ICA基特征提取策略,并对某些传统特征提取方法如小波等进行了适当改进。
     第五章:在ICA特征提取基础上,研究了几种典型神经网络如基于误差反传的多层感知器、径向基函数网络和自组织映射网络,以及支持向量机分类器在机械故障模式识别与分类中的应用,并进行了大量的故障分类对比实验。
     第六章:在Matlab5.3编程环境下,开发了两个应用软件:BSS基机械源盲分离软件和ICA基故障诊断软件,作为整个论文、特别是第三、第四和第五章相关研究成果的总结。理想地,BSS基干扰消除技术、ICA基特征提取及模式分类方法,可以与通用的数字信号采集器共同整合为一个实用的机械状态监测与故障诊断系统。但是,其中有许多问题需要解决。例如,系统的数据通讯、接口以及实时性要求等。本章最后,利用实验台实测数据及ICA基诊断软件开展了故障诊断综合实验。
     第七章:对全文的研究内容进行了总结,并对未来可能的研究方向和内容做了初步探讨与展望。
Based on the "Research on New Method for Rotating Machine Faults Diagnosis Based on Independent Component Analysis" (National Nature Science Fund Project, No: 50205025), and the "Research on Technique for Fault Diagnosis with Mechanical Noise Based on Blind Source Separation" (Nature Science Fund Project of Zhejiang Province, No: 5001004), this dissertation with full title "Research on Methods for Fault Diagnosis of Rotating Machines Based on Independent Component Analysis" was written. In this dissertation, a new frame for fault diagnosis based on source separation was proposed, some possible applications of independent component analysis to fault diagnosis of rotating machines were explored. The details were studied as follows:Chapter one recited briefly the intercrossed development of diagnostics with other knowledge firstly. By analysing the existing problems in diagnostics. Then, ICA theory and its worldwide applications were summarized, and its feasibility used for mechanical faults diagnosis was analyzed. Thus, a new frame for mechanical faults diagnosis based on source separation was proposed. At last, the centre, implementation and novelty of this dissertation were brought forth.Chapter two gave out ICA model and its custom implementation from the point of view of contrast function and optimisation algorithm firstly. Then, some important ICA (BSS) algorithms, especially the adaptive algorithms based on artificial neural network that would be used in this dissertation were described in details. Also, the improved BSS algorithm based on band-pass was introduced, which would be tested by some experiments in Chapter three.Chapter three explored the subject of source separation of mechanical vibration and acoustic observations by sensors based on BSS, including such units as forward-analysis, BSS and backward-analysis. In this subject, some strategies for improving ICA (BSS) algorithm were also proposed. Thus, a feasible and integrated solution to mechanical source separation was given out. At last, this scheme was verified by experiments.Chapter four explored feature extraction, as the key to fault diagnosis, on the background of ICA from the viewpoint of pattern recognition. Several novel and effective strategies for feature extraction based on ICA were proposed, and some traditional methods for feature extraction such as wavelet were improved.Chapter five explored the application of several typical ANN including BP, RBF and SOM, and SVM classifier to pattern recognition and classification of mechanical faults. And, a lot of experiments for faults classification were made to test these classifiers.Chapter six developed applicable software for fault diagnosis: BSS based software for mechanical sources separation and ICA based software for fault diagnosis. Ideally, BSS based technique for interference removal, ICA based strategy for feature extraction and some typical methods for pattern classification can be integrated as a practical software-hardware system for fault diagnosis of machines, along with traditional Analogy-Digital Converter (ADC). However, some related problems such as data communication, interface and real-time running, etc. must be solved. At last, an experiment with data from the real world was made by means of the ICA-based software.At last, in the seventh chapter, all of the work in this dissertation was summed up, and the future
    
    researches on applications of ICA (BSS) were prospected.
引文
[1] 徐敏,设备故障诊断手册.西安:西安交通大学出版社.1998.
    [2] 陈进 机械设备振动监测与故障诊断.上海:上海交通大学出版社,1999.
    [3] 张贤达著.时间序列分析——高阶统计量方法.北京:清华大学出版社,1996.
    [4] 李志农.时序模型盲辨识在旋转机械故障诊断中的应用研究.浙江大学博士学位论文,2002.
    [5] 胡劲松.面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究.浙江大学博士论文,2003.
    [6] Alexander Ypma, Amir Leshem, Robert P. W. Duin. Blind separation of rotating machine sources: bilinearforms and convolutive mixtures. Neurocomputing-Special Issue on ICA/BSS, 2002.
    [7] R.H. Lyon, Machinery noise and diagnostics, Butterworths, Boston, 1987.
    [8] M.P.诺顿,工程噪声和振动分析基础.北京:航空工业出版社,1993.
    [9] Pierre Comon, Independent component analysis, A new concept?, signal processing 1994, 36:287-314.
    [10] C. Jutten, A. Herault. Blind separation of sources, Part Ⅰ : An adaptive algorithm based on neuromimetic architecture, signal processing 1991, 24:1-10.
    [11] J.F. Cardoso, A. Souloumiac, Blind beamforming for non-Gaussian signals, IEE Proceedings-E Vol 140,No. 6, DECEMBER 1993.
    [12] Aapo Hyvrinen. Survey on Independent Component Analysis, Laboratory of Computer and Information Science, Helsinki University of Technology. P.O.Box 5400, FIN-02015 HUT, Finland.
    [13] A. Bell and T. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7:1129-1159, 1995.
    [14] Howard Hua Yang, Shu-ichi Amari, Information-theoretic approach to blind separation of sources in non-linear mixture, signal processing 1998, 64:291-300.
    [15] Howard Hua Yang, Shu-ichi Amari, Adaptive Online Learning Algorithms for blind separation:Maximum Entropy and Minimum Mutual Information, Laboratory for Information Representation.
    [16] Aapo Hyvrinen, Erkki Oja. A fast fixed-point algorithm for independent component analysis. Laboratory of Computer and Information Science, Helsinki University of Technology. Rakentajanaukio 2C, 02150 Espoo, Finland.
    [17] Aapo Hyvrinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions of Neural Networks, Vol. 10, No. 3, May 1999.
    [18] Te-Won Lee. Nonlinear Approaches To Independent Component Analysis. The salk Institute, CNL, Institute for Neural Computation, University of California, San Diego, 10010 N. Torrey Pines Road La Jolla, California 92037, USA.
    [19] Luis B.Almeida, ICA of Linear and Nonlinear Mixtures Based on Mutual Information (Linear and Nonlinear ICA Based on Mutual Information), IST and INESC-ID, Lisbon, Portugal.
    [20] Penny, W. D.; Everson, R. M.; Roberts, S. J, Hidden Markov Independent Component Analysis, Based on a workshop held after the 1999 International Conference on Artificial Neural Networks (ICANN)
    [21] Lappalainen, H.; Honkela, A, Bayesian Non-Linear Independent Component Analysis by Multi-Layer Perceptrons, Based on a workshop held after the 1999 International Conference on Artificial Neural Networks(ICANN)
    [22] Andrzej Cichocki, Robust neural networks with on-line learning for blind identification and blind separation of sources, IEEE transactions on dircuits and systems-1:Fundamental Theory and Applications .VOL 43,NO. 11 ,NOVEMBER 1994.
    
    [23] Lai, P. L.; Charles, D.; Fyfe, C, Seeking Independence Using Biologically-Inspired ANN's, Based on a workshop held after the 1999 International Conference on Artificial Neural Networks (ICANN)
    [24] J.G. Daugman. Entropy reduction and decorrelation in visual coding by oriented neural receptive fields. IEEE Trans, on Biomedical Engineering, 36:107-114, 1989.
    [25] B.A. Olshausen, and DJ. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381: 607-609, 1996.
    [26] A. Hyvarinen, E. Oja, P. Hoer, and J. Hurri. Image feature extraction by sparse coding and independent component analysis. In Proc. Int. Conf. on Pattern Recognition (ICPR'98), pages 1268-1273, Brisbane, Australia, 1998.
    [27] J. Karhumen, A. Hyvarinen, R. Vigario, J. Hurri, and E. Oja. Applications of neural blind separation to signal and image processing. In Proc. IEEE Int. Conf. on Acoustics, speech and Signal processing (ICASSP'97), pages 131-134, Muich, Germany, 1997.
    [28] J. H. van Hateren, and A. van der Schaaf. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Royal Society sen B, 265:359-366, 1998.
    [29] S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. onPAMI, 11:674-693, 1989.
    [30] B.A. Pearlmutter, and L.C. Parra. A context-sensitive generalization of ICA. In Proc. ICONIP'96, pl51-157,HongKong,1996.
    [31] H.-L. Nguyen Thi and C. Jutten. Blind source separation for convolutive mixtures. Signal Processing, 45:209-229, 1995.
    [32] K. Torkkola. Blind separation of delayed sources based on information maximization. In Proc. ICASSP'96, pages 3509-3512, Atlanta, Georgia, 1996.
    [33] Jong Hwan Lee, Ho-Young Jung, Te-Won Lee, Soo-Young Lee, Speech feature extraction using ICA, Brain Science Research Center and Department of Electrical Engineering, Korea Advanced Institute of Science and Technology
    [34] Porrill, J.; Stone, J. V.; Berwick, J.; Mayhew, J.; Coffey, P., Analysis of Optical Imaging Data Using Weak Models and ICA, Based on a workshop held after the 1999 International Conference on Artificial Neural Networks (ICANN)
    [35] Vigario, R.; Sarela, J.; Oja, E., Searching for Independence in Electromagnetic Brain Waves, Based on a workshop held after the 1999 International Conference on Artificial Neural Networks (ICANN)
    [36] Hansen, L. K, Blind Separation of Noisy Image Mixtures, Based on a workshop held after the 1999 Internationa] Conference on Artificial Neural Networks (ICANN)
    [37] Kolenda, T; Hansen, L. K.; Sigurdsson, S, Independent Components in Text, Based on a workshop held after the 1999 International Conference on Artificial Neural Networks (ICANN)
    [38] Petteri Pajunen and Mark Girolami, Implementing decisions in binary decision trees using independent component analysis, Lab. of Computer and Information Science, Helsinki University of Technology
    [39] Alexander Ypma, David M. J. Tax and Robert P. W. Duin. Robust machine fault detection with independent component analysis and support vector data description. Pattern Recognition Group, Dept. of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.
    [40] G. Gelle, M. Colas and G. Delaunay, Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis, Mechanical Systems and Signal Processing (2000) 14(3), 427-442.
    [41] A. Govindan and G. Deng. Independent component analysis applied to Electrogram classification during Atrial Fibrillation. School of Electronic Engineering, La University, Melbourne Vic-3083, Australia.
    [42] P. Fabry, Ch. Serviere, Blind separation of noisy harmonic signals using only second order statistics, FRANCE.
    
    [43] Lucas Parra and Clay Spence, Convolutive Blind Separation of Non-Stationary Sources, IEEE Transactions on Speech and Audio Processing, Vol. 8, No. 3, MAY 2000.
    [44] M. Schervish. Theory of Statistics. Spinger, 1995.
    [45] M. Herrmann and H. Yang. Perspectives and limitations of self-organizing maps in blind separation of sources. In Progress in Neural Information Processing (ICONIP-96) (S. Amari et al., eds.), Springer, 1996.
    [46] Petteri Pajunen. Blind separation of binary sources with less sensors than sources. Laboratory of Computer and Information Science, Helsinki University of Technology
    [47] Alexander Jourjine, Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures, Siemens Corporate Research, 755 College Road East Princeton, NJ 08540, USA
    [48] R. Balan, A. Jourjine, and J. Rosca. A particular case of the singular multivariate AR identification and BSS problems. In 1 st International Conference on Independent Component Analysis, Assuis, France, 1999
    [49] P. comon, Blind channel identification and extraction of more sources than sensors. In SPIE Conference, pages 2-13, San Diego, July 19-24 1998.
    [50] L. De Lathauwer, P. Comon, B. De Moor and J. Vandewalle. ICA algorithms for 3 sources and 2 sensors. K.U.LEUVEN, E.E.Dept. (ESAT), SISTA/COSIC, Kard. Mercierlaan 94, B-3001 Leuven (Heverlee), Belgium. Lab. I3S, 2000 route des Lucioles, Sophia-Antipolis, F-06410 Biot, France.
    [51] J. F. Cardoso, Beate Hvam Laheld. Equivariant adaptive source separation. IEEE Transaction on Signal Processing, Vol. 44, No. 12, DECEMBER 1996.
    [52] J. P. Nadal and N. Parga. Non-linear neurons in the low noise limitra factorial code maximizes information transfer. Network, 5: 565-581, 1994.
    [53] J. F. Cardoso. Infomax and maximum likelihood for source separation, IEEE Letters on Signal Processing, 4:112-114, 1997.
    [54] D. T. Pham, P. Garrat, and C. Jutten. Separation of a mixture of independent sources through a maximum likelihood approach. In Proc. EUSIPCO, pages 771-774, 1992.
    [55] S. Amari, A. Cichocki, and H. H. Yang. A new learning algorithm for blind source separation. In Advances in Neural Information Processing 8, p757-763. MIT Press, Cambridge, MA, 1996.
    [56] Aapo Hyvarinen. New approximations of differential entropy for independent component analysis and projection pursuit. In Advances in Neural Information Processing Systems 10, p273-279. MIT Press, 1998.
    [57] L. Tong, R. Liu, V. Soon, Y. Huang. Indeterminacy and identifiability of blind identification. IEEE Tran. On CS, 1991, 38: 499-509.
    [58] J. Karhunen, J. Joutsensalo. Representation and separation of signals using nonlinear PCA type learning. Neural Networks, 7(1): 113-127, 1994.
    [59] J. Karhunen, J. Joutsensalo. Generalizations of principal component analysis, optimization problems, and neural networks. Neural Networks, 8(4):549-562, 1995.
    [60] J. Karhunen, E. Oja, L. Wang, R. Vigario, and J. Joutsensalo. A class of neural networks for independent component analysis. IEEE Trans, on Neural Networks, 8(3):486-504, 1997.
    [61] E. Oja. The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17(l):25-46, 1997.
    [62] J. F. Cardoso. Eigen-structure of the fourth-order curnulant tensor with application to the blind source separation problem. In Proc. ICASSP90, p2655-2658, Albuquerque, NM, USA, 1990.
    [63 ] J. F. Cardoso. Iterative techniques for blind source separation using only fourth-order cumulants. In Proc. EUSIPCO, PAGES 739-742, Brussels, Belgium, 1992.
    [64] J. F. Cardoso and P. Comon. Independent component analsis, a survey of some algebraic methods. In Proc. 1SCAS96, volume 2, pages 93-96, 1996.
    [65] J. F. Cardoso. Source separation using higher order moments. In Proc. ICASSP 89, pages 2109-2112, 1989.
    
    [66] P. J. Hube. Projection pursuit, The Annals of Statisticd. 13 (2): 435-475, 1985. [67] M. C. Jones, R. Sibson. What is projection pursuit? J. of the Royal Statistical Society, ser.A, 150: 1-36, 1987.
    [68] A. Hyvarinen, E. Oja. Simple neuron models for independent component analysis. Int. Journal of Neural Systems, 7(6):671-687, 1996.
    [69] N. Delfosse, P. Loubaton. Adaptive blind separation of independent sources: a deflation approach. Signal Processing, 45: 59-83, 1995.
    [70] Z. Malouche, O. Macchi. Extended anti-Hebbian adaptation for unsupervised source extraction. In Proc. 1CASP'96, pages 1664-1667, Atlanta, Georgia, 1996.
    [71] A. Hyvarinen. A family of fixed-point algorithms for independent component analysis. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP'97), PAGES 3917-3920, Munich,Germany, 1997.
    [72] A. Cichocki, R. E. Bogner, L. Moszczynski, and K. Pope. Modified Herault-Juten algorithms for blind separation of sources. Digital Signal Processing, 7:80-93,1997.
    [73] A. Cichocki, R. Unbehauen, L. Moszczynski, and E. Rummert. A new on-line adaptive algorithm for blind separation of source signals. In Proc. Int. Symposium on Artificial Neural Networks ISANN-94, qages 406-411, Tainan, Taiwan, 1994.
    [74] Beate Laheld and J. F. Cardoso. Adaptive source separation with uniform performance. In Proc. EUSIPCO, pages 183-186, Edinburgh, 1994.
    [75] T. W. Lee, M. Girolami, T. J. Sejnowski. Independent component analysis using an extended infomax algorithm for mixed sub-gaussian sources. Neural Computation, pages 609-633, 1998. 11.
    [76] J. F. Cardoso. Entropic contrasts for source separation. In S. Haykin, editor, Adaptive Unsupervised learning. 1999.
    [77] E. Oja. Nonlinear PCA criterion and maximum likelihood in independent component analysis. In proc.Int,Workshop on Independent Component Analysis and Separation (ICA'99), pi43-148, Aussois, France, 1999.
    [78] Aapo. Hyvarinen, E. Oja, Independent component analysis by general nonlinear Hebbian-like learning rules. Signal Processing, 64(3):301-313, 1998.
    [79] Alexander Ypma, Learning methods for machine vibration analysis and health monitoring, Doctor Thesis. ISBN: 90-9015310-1.
    [80] Hicham Bousbia-Salah, Adel Belouchrani and Karim Abed- Meraim, Blind separation of non stationary sources using joint block diagonalisation, Electrical Engineering Department ENP.
    [81] G. B. Giannakis, Y. Inouye and J. M. Mendel, "Cumulant-based identification of multichannel moving-average processes", IEEE Trans, on Automat. Contr, vol.34. pp783-787, Jul. 1989.
    [82] S. Van Gerven and D. Van Copernolle. Signal separation by symmetric adaptive decorrelation: Stability, convergence and uniqueness, IEEE Transaction on Signal Processing 43, 1995.
    [83] Petteri. Pajunen, Aapo Hyvarinen, and Juha Karhunen. Nonlinear Blind Source Separation by Self-Organizing Maps. Helsinki University of Technology, Lab. Of Computer and Information Science, Rakentajanaukio 2 C, FIN-02150, Espoo, Finland.
    [84] L.De Lathauwer, B.De Moor, and J. Bandewalle. A technique for higher-order-only blind source separation. In Proc. ICON1P, Hong Kong, 1996.
    [85] D. Yellin and E.Weinstein. Multichannel signal separation: Methods and analysis. IEEE Trans, on Signal Procssing, 44:106-118,1996.
    [86] J. Leuridan, D. Roesems and D. Otte. Use of principal component analysis for correlation analysis between vibration and acoustical signals. ISATA 87, 1987.
    [8
    
    [87] 伯晓晨,李涛,刘路.Matlab工具箱应用指南——信息工程篇.北京:电子工业出版社,2000.
    [88] 王国强,实用工程数值模拟技术及其在ANSYS上的实践.西安:西北工业大学出版社,2000.
    [89] Murty S. Kompella. A technique to determine the number of incoherent sources to the response of a system. Mechanical System and Signal Processing (1994) 8 (4), 363-380.
    [90] S.M. Price and R. J. Bernhard. Virtual coherence: A digital signal processing technique for incoherent source identification. Proceedings of the Fourth IMAC 1256-1262, 1986.
    [91] J. Leuridan, D. Roesems and D. Otte. Use of principal component analysis for correlation analysis between vibration and acoustical signals. ISATA 87, 1987.
    [92] J.S. Bendat and A. G. Piersol. Engineering applications of correlation and spectral analysis. New York, John Wiley, 1980.
    [93] G. Strang. Linear Algebra and its Applications, San Diego: Harcourt Brace Jovanovich, 1988.
    [94] B.G. Batchelor. Pattern Recognition Ideas in Practice. New York and Lonton, Plenum Press.
    [95] 黄振华,吴诚一.模式识别.杭州:浙江大学出版社,1991.
    [96] 盛骤,谢式千,潘承毅.概率论与数理统计[M] .杭州:浙江大学出版社,1993:121-122.
    [97] This dataset was acquired in the Delft "Machine diagnostics by neural networks" project with help from TechnoFysica B.V., The Netherlands and can be downloaded freely at the following web address: http://www.ph.tn.tudelft.nl/~ypma/mechanical.html.
    [98] R.W. Barker, G. Klutke and M.J. Hinich, Monitoring rotating tool wear using higher-order spectral feature, Journal of engineering for industry, 115:23-29, February 1993.
    [99] A. Belouchrani, K. Abed Meraim, J. -F. Cardoso, and E. Moulines. A blind source separation technique based on second order statistics. IEEE Trans.on S.P., 45(2):434-44, 1997.
    [100] V. Capdevielle, Ch. Serviere, and J. Lacoume. Blind separation of wide-band sources in the frequency domain, In Proc. ICASSP-95, VOLUME 3, PAGES 2080-2083, Detroit, Michigan, USA, May 9-12 1995.
    [101] L. Molgedey and H. G. Schuste. Separation of a mixture of independent signals using time delayed correlations. Phys. Rev.Lett., 72:3634-3636, 1994
    [102] L. Tong, V. Soo, R. Liu, and Y. Huang. Amuse. A new blind identification algorithm. In proc. ISCAS, New Orleans, USA, 1990.
    [103] E. Weinstein, M. Feder, and A. V. Oppenheim. Multi-channel signal separation by decorrelation. IEEE Trans. on SAP, 1:405-413, 1993.
    [104] 中国电子学会仪器仪表学会信号处理学会《振动数字信号处理程序厍》编委会,振动数字信号处理程序库.北京:科学出版社,1988.
    [105] 黄文虎.设备故障诊断原理技术及应用.北京:机械工业出版社,1993.
    [106] 张贤达,保铮,非平稳信号分析与处理.北京:国防工业出版社,1998.
    [107] 杨叔子,吴雅,机械故障诊断的时序方法.西安:西安交通大学出版社,1989.
    [108] 杨叔子,吴雅,时间序列分析的工程应用.武汉:华中理工大学出版社,1989.
    [109] E. Sorouchyari. Blind separation of sources, Part Ⅲ: Stability analysis, Signal Processing 1991, 24:21-29.
    [110] Allan Kardec Barros, Andrzej Cichocki, Noboru Ohnishi. Extraction of statistically dependent sources with temporal structure. Depto. Eng. Eletrica. Universidade Federal do Maranhao, Av. Dos Portugueses, Sao Luis, MA, Brazil. 65000-000.
    [111] Andrzej Cichocki, Tomasz Rutkowski, Allan Kardec Barros, Sang-Hoon Oh. A blind extraction of temporally correlated but statistically dependent acoustic signals. Brain Science Institute, RIKEN.
    [112] 西安交通大学透平压缩机教研室,透平压缩机测试技术.机械工业出版社,1991.
    [113] 胡广书.数字信号处理——理论算法与实现.北京:清华大学出版社.1997:11-12.
    
    [114] 冯长建.HMM动态模式识别理论、方法以及在旋转机械故障诊断中的应用.浙江大学博士学位论文,2002.
    [115] Duda RO, Hart PE, StorkDG, Pattern Classification. John Wiley & Sons, 2000.
    [116] Guedalia ID, London M, Werman M, An on-line agglomerative clustering method for non-stationary data. Neural computation, 11:521-540,1999.
    [117] D. Koller, M. Sahami, Toward optimal feature selection. Machine Learning Proceedings of the Thirteenth International Conference, pp. 284-292, 1996.
    [118] Kari Torkkola, Nonlinear feature transforms using maximum mutual information. Motorola Labs, 7700 South River Parkway, MD ML28, tempe AZ 85284, USA. IEEE 2001.
    [119] Edith Grall-Mas and Pierre Beauseroy, Mutual Information-Based Feature Extraction on the Time-Frequency Plane. IEEE Trans. on Signal Processing, Vol. 50, No. 4, 2002: 779-790.
    [120] Geoffrey L. Barrows and John C. Sciortino, Jr. A mutual information measure for feature selection with application to pulse classification.Tactical Electronic Warfare Division, Code 5720, Naval Research Laboratory, Washington, D. C. USA.
    [121] C.H. Chen and Xiaohui Zhang, On the roles of PCA and ICA in data fusion. Electrical and Computer Engineering Department, University of Massachusetts dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747-2300 USA.
    [122] 徐秉铮,张百灵,韦岗,神经网络理论与应用,广州:华南理工大学出版社,1994,305-335.
    [123] E.Oja. A simplified neuron model as a principal component analyzer.J. of Mathematical Biology, 15:267-273, 1982.
    [124] E.Oja, J.Karhunen. On stochastic approximation of the eigen-vrctors and eigenvalues of the expectation of random matrix.of Math Analysis and Applications, 106: 69-84, 1985.
    [125] E. Oja. Neural networks, principal components, and subspaces. Int. J. on Neural Systems, 1: 61-68, 1989.
    [126] E.Oja, H. Ogawa, and J.Wangviwattana. Learning in nonlinear constrained Hebbian networks. In T. Kohinen et al., editor, Artficial Neural Networks, Proc. ICANN'91, pages 385-390, Espii, Finland, 1991. North-Holland, Amsterdam.
    [127] Chakra Chennubhotla and Allan Jepson. Sparse PCA extracting multi-scale structure from data. Department of Computer Science, University of Toronto, 6 King's College Road Toronto, ON M5S 3H5, Canada.
    [128] Sang-Jean Lee, Sand-Bong Jung, Jang-Woo Kwon, Seung-Hong Hong. Face detection and recognition using PCA. 1999 IEEE TENCON.
    [129] S. Chitroub, A. Houacine and B. Sansai. Compound PCA-ICA neural network model for enhancement and feature extraction of multi-frequency polarimetric SAR imagery. Signal Processing Laboratory, Electronics Institute, University of Sciences and Technology of Houari Boumedienne.
    [130] Wang Haiqing, Song Zhihuan and Li Ping, Improved PCA with Optimized Sensor Locations for Process Monitoring and Fault Diagnosis. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000.
    [131] S. Diwakar, M. A. Essawy, S. Zein Sabatto. An intelligent system for integrated predictive diagnosis. Dep. Of Electrical and Computer Engineering, Tennessee State University, Nashville, TN-37209.
    [132] 程正兴,小波分析算法与应用.西安:西安交通大学出版社,204-225,1998.
    [133] G Vasios, A. Prentza, D. Blana, E.Salamalekis, R Thomopoulos, D. Giannaris, D. Koutsouris. Classification of fetal heart rate tracings based on wavelet-transform & self-organizing map neural networks. Biomedical Engineering Lab., Dept. of Electrical & Computer Engineering, National Technical University of Athens, Greece.
    
    [134] 马野,李楠,应用自组织映射神经网络进行模拟电路故障诊断的仿真研究.系统仿真学报.13(5),582-584,2001.
    [135] Patrik O. Hoyer and Aapo Hyvarinen, Feature extraction from colour and stereo images using ICA. Neural Networks Research Centre, Helsinki University of Technology.
    [136] Teuvo Kohonen, Self-Organizing Map. Proceedings of the IEEE, vol. 78, No. 9. September 1990.
    [137] 焦李成,神经网络的应用与实现.西安:西安电子科技大学,pp1-3,1996.
    [138] Vapnik V. N., The Nature of Statistical Learning Theory, Springer-Verlag, New York, ISBN 0-38794559-8, 1995.
    [139] Steve R. Gunn, Support vector machines for classification and regression, Technical Report, Faculty of Engineering and Applied Science Department of Electronics and Computer Science, University of Southampton, May 1998.
    [140] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal representations by error propagation, In Parallel Distributed Processing, Explorations in the Microstructure of Cognition. Vol. 1. Foundations, D.E. Rumelhart, J.L. McClelland and the PDP research group, Eds. Cambridge, Mass. MIT Press, 1986, 318-362.
    [141] J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA, Vol. 79, 2554-2558, 1982.
    [142] Te-Won Lee, B.-U. Koehler, and R. Orglmeister, Blind source separation of nonlinear mixing models, in Proc. 1997 IEEE Workshop, Neural Networks for Signal Processing, NNSP'97, New York, USA, 406-415, 1997.
    [143] G. Burel, Blind separation of sources: A nonlinear neural algorithm, Neural Networks, Vol. 5, pp. 937-947, 1992.
    [144] Y. Tan, J. Wang, and J.M. Zurads, Nonlinear blind source separation using a radial basis function networks. IEEE Trans. Neural Networks, Vol. 12, No. 1,pp. 124-134,2001.
    [145] 刘福声,罗鹏飞.统计信号处理.长沙:国防科技大学出版社,2-12,1999.
    [146] 冯辅周,褚福磊,丁汉哲,KL-Bayes方法在故障模式识别中的应用.振动工程学报,Vol.12,No.4,1999.
    [147] E. Diday, Clustering in pattern recognition, Proc. 5th Int. Conf. Pattern Recognition, IEEE New York.
    [148] http://tiger.technion.ac.il/~eladyt/Classification_toolbox.html/User guide.
    [149] 吴今培,模糊诊断理论及其应用.北京:科学出版社.P214,1995.
    [150] Sirkka-Liisa Joutsiniemi, Samuel Kaski, T. Andreo Larsen. Self-organizing map in recognition of topographic patterns of EEG Spectra. IEEE Transaction of Biomedical Engineering. Vol. 42, No. 11, NOVEMBER 1995.
    [151] Sunghwna Sohn, Cihan H. Dagli. Advantages of using fuzzy class memberships in self-organizing map and support vector machines. Smart Engineering Systems Laboratory, Department of Engineering Management, University of Missouri-Rolla, MO65409.
    [152] Xian-zheng Wang, Makoto Yoshizawa, Akira Tanaka, Ken-ichi Abe, Hiroshi Takeda, Tomoyuki Yambe, Shin-ichi Nitta, Kou Imachi. An automatic monitoring system for artificial hearts using self-organizing map. Grad. Sch. Of Eng., Tohoku Univ., Sendai 980-8579, Japan. Proceedings of the first joint BMES/EMBS Conference Serving Humanity, Advancing Technology, Oct. 13-16, '99, Atlanla, GA, USA.
    [153] Otavio Augusto S. Carpinteiro. A Self-Organizing Map Model for Analysis of Musical Time Series. Escola Federal de Engenharia de Itajuba, Instituto de Engenharia Electrica. Av. BPS 1303, Itajub_a, MG, 37500-000, Brasil.
    [154] Panu Somervuo. Competing hidden markov models on the self-organizing map. Helsinki University of Technology, Neural networks research center, P.O. Box 5400 FIN-02015 HUT.
    
    [155] Z. Wang, M. Hagenbuchner, A.C. Tsoi, S.Y. Cho, Z. Chi. Image Classification with structured self-organization map. Center for Multimedia Signal Processing, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
    [156] Michel Haritopoulos, Hujun Yin, Nigel M. Allinson. Self-organizing map applied to image denoising. Department of Electrical Engineering and Electronics, UMIST, Manchester, M60 1QD England.
    [157] A.Syed, H.A. Elmaraghy, N. Chagneux. Real-time monitoring and diagnosing of robotic assembly with self-organizing neural maps. Flexible Manufacturing Centre, McMaster University, Hamilton, Ontario, Canada.
    [158] Jussi Ahola, Esa Alhoniemi, Olli Simula. Monitoring industrial processes using the self-organizing map. 1999 IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications, Kuusamo, Finland, June 16-18, 1999.
    [159] Javier Ropero Pelaez, Mariana A. Aguiar, Ricardo C. Destro, Zsolt L. Kovacs, Marcelo G. Simoes. Predictive maintenance oriented neural network system-PREMON. The 27th Annual Conference of the IEEE Industrial Electronics Society.
    [160] Renato Tinos, Marco Henrique Terra. Fault Detection and Isolation in robotic manipulators and the Radial Basis Function Network trained by the Kohonen's self-organizing map. Electrical Engineering Department, EESC/USP Caixa Postal 359, Sao Carlos, Sao Paulo, Brazil, 13560-970.
    [161] Jouko Lampinen, Timo Kostiainen. Generative Probability Density Model in the Self-Organizing Map. Laboratory of Computational Engineering, Helsinki University of Technology, P,O.Box 9400, FIN-02015 ESPOO, FINLAND.
    [162] S.R. Gunn, M. Brown, and K.M. Bossley. Network performance assessment for neurofuzzy data modelling. In X. Liu, P. Cohen, and M. Berthold, editors, Intelligent Data Analysis, Vol. 1208 of Lecture Notes in Computer Science, 313-323, 1997.
    [163] Dashan Gao, Jie Zhou, Leping Xin, SVM-based Detection of moving vehicles for automatic traffic monitoring, 2001 IEEE Intelligent Transportation Systems Conference Proceedings -Oakland (CA) USA, 25-29, 2001.
    [164] Matthias Rychetsky, Stefan Ortmann, Manfred Glesner, Support Vector Approaches for engine knock detection, Darmstadt University of Technology, Institute for Microelectronic Systems, Karlstrabe 15, D-64283 Darmstadt.
    [165] Junfeng Gao, Wengang Shi, Jianxun Tan, Fengjin Zhong, Support Vector Machines based approach for fault diagnosis of valves in reciprocationg pumps. Harbin Institute of Technology, Harbin, China, 150001.
    [166] V. Vapnik, S. Golowich, and A. Smola. Support vector method for function approximation, regres -sion estimation, and signal processing. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281-287, Cambridge, MA, 1997. MIT Press.
    [167] A. Paraschiv-Ionescu, G. Bouvier, C. Jutten, A.M. Ionescu, A. Chovet, Blind source separation processing for intelligent sensor microsystems. LIS, INPGrenoble, 46, av. Grenoble, France.
    [168] E.A. Vittoz, X. Arreguit, CMOS integration of Herault-Jutten cells for separation of sources. Workshop on Analog VLSI and Neural Systems Norwell, MA, Kluwer Academic, 1989.
    [169] J.H. Huijsing, G. v.d. Horn, Integrated Smart Sensors. Design and Calibration Kluwer Academic Publishers, 1998.
    [170] R.L.C. Simon, R.H.S. de Vries, S. Middelhoek, Autocalibration of silicon Hall devices, Seensors and Actuators, A 52, 203-207, 1996.
    [171] 胡竟峰.基于网络的大型旋转机械远程监测与诊断系统的研究与开发,浙江大学硕士学位论文.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700