用户名: 密码: 验证码:
高放固化体处置条件下的浸出和模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高放废物固化体的安全处置,对保护生态环境和核能可持续发展具有重要意义。本工作研究模拟低氧地质处置条件下的玻璃固化体的浸出行为,对浸出后样品作了分析测定;采用地球化学模型和蒙特卡罗法作了模拟玻璃固化体的浸出行为研究;并用自蔓延高温合成法包容锶,对固化体的性能作了测定。
     本文采用静态浸出实验研究高放废液玻璃固化体在低氧模拟地质处置条件下的浸出行为。浸出液分析结果表明,不论是玻璃固化体质量损失率,还是单一元素(B、Na、Si、Al和其它元素)的浸出率都先呈指数递减规律变化,达到平衡后,低氧条件的浸出率比大气体系中的浸出率低,达到(10~(-4)~10~(-5)(g/cm~2·d)),表明低氧条件减缓玻璃固化体的腐蚀速率。X射线衍射分析和扫描电镜测定表明,90℃条件下玻璃固化体表面没有明显的衍射峰;150℃条件下,182天后玻璃表面有微弱的衍射峰出现。X-射线能谱分析表明是Ca-Si-Al-Fe-(P)氧化物的混合物晶粒。玻璃固化体在150℃和90℃条件下的浸出不属于单纯离子扩散或网络溶解控制过程,而是两者或者更多因素共同控制的过程。玻璃体中主要元素Si在90℃和150℃条件下的浸出,也是离子扩散和网络溶解两者或更多因素共同控制的过程。Na和B元素在90℃条件下浸出属于离子扩散控制过程。
     本文对玻璃固化体和富烧绿石型人造岩石在多种地质处置介质条件下的浸出行为进行了研究。样品质量损失率分析显示,富烧绿石样品在五种模拟地质介质中仍保持较低的浸出率,显现良好化学稳定性。花岗岩+Fe_3O_4和膨润土+Fe_3O_4两种模拟介质对固化体浸出率的影响大于其他三种介质的浸出率,在这两种地质介质中,固化体样品的浸出率在开始半年内比它在其他介质中的浸出率明显偏高。矿相分析和表面形貌观察表明,Fe_3O_4介质有加速固化体样品腐蚀的作用。X-射线能谱分析结果表明,U和Ba元素在固化体表面略有富集,Ca和Ti元素在固化体表面略有贫化,而Al和Zr元素在固化体表面的含量基本没有变化。玻璃固化体样品分析
    
    吃,中国原子能科学研究院博士学位论文
    结果显示,膨润土体系有增加玻璃腐蚀的倾向。X一射线能谱分析表明,在玻璃样品
    表面ca、Fe和Al元素呈富集,si和Mg元素略有浸出,Na元素基本完全浸出,
    这同其他浸出实验结果一致。
     本文采用地球化学模型PHREEQC(version2.7)对玻璃固化体在低氧、温度为
    150℃和90℃、浸出剂分别为去离子水和模拟地下水的四种实验条件下的浸出体系
    进行了研究。计算了浸出液中主要元素的浓度和沉积相的生成,并将计算结果同实
    验结果进行了比较。比较结果显示,计算得出的浸出液元素浓度同实验数据十分接
    近,计算生成的沉积相的成分同分析结果较为一致。表明浸出液达到平衡后,溶液
    中浸出元素的浓度不仅同浸出剂中离子浓度相关,而且同生成的沉积相密切相关。
    采用PHREEQC模型,从溶液化学平衡的角度,较好地对玻璃固化体浸出液浓度和
    沉积相生成进行计算,提供了研究玻璃固化体浸出行为的有效工具。
     本文用蒙特卡罗法,设计了模拟玻璃固化体在水溶液中浸出行为的计算模型。
    采用这一模型对玻璃固化体的浸出行为进行了模拟计算,得出了玻璃固化体的腐蚀
    深度。这一计算结果同实验结果比较,前14天有较好一致性。研究了不同510:含
    量五种玻璃固化体的浸出行为,显示5102含量越多,玻璃固化体的耐腐蚀性越好。
    还研究了不同离子交换几率对玻璃固化体浸出行为的影响。结果说明,当离子交换
    几率低于逆向反应几率时,玻璃固化体的腐蚀程度降低;当离子交换几率高于逆向
    反应几率时,玻璃固化体腐蚀加快。蒙特卡罗法从微观角度上研究玻璃固化体的浸
    出行为,对玻璃固化体的浸出机理研究提供有价值的方法。
     本文对自蔓延高温合成法固化放射性废物进行了初步探讨。研究了自蔓延高温
    合成法固化Sr,对得到的固化体进行矿相分析,物理性质(硬度、孔隙率、密度等)
    和浸出率测定,研究了该种方法对腮的最大包容率。研究结果显示,自蔓延高温法
    可以较好的包容放射性废物Sr,最大包容量可达到35wt%。固化体的物理性质和化
    学性质都较好满足固化放射性废物的要求,表明自蔓延高温法是一种有前途的固化
    放射性废物的方法。
     本研究所作的高放废液玻璃固化体在模拟地质处置条件下(低氧条件和多种地
    质介质)的浸出行为研究,采用了低氧条件和多种模拟地质介质,包括北山预选厂
    
    呱,中国原子能科学研究院博士学位论文
    址的花岗岩、膨润土、水泥和Fe304(容器腐蚀产物)作为浸出介质,模拟地下水
    和去离子水作为浸出剂,90℃和巧0℃两种浸出温度;采用了地球化学模型
    PHREEQC(version2.7)研究玻璃固化体浸出液中主要元素的浓度以及沉积相的生
    成;采用蒙特卡罗法建立玻璃固化体的计算模型,对玻璃固化体的浸出行为进行研
    究;采用了自蔓延高温法固化铭,这些工作都是当前国际上比较前沿的研究课题,
    采用了先进的分析测试技术,并且作了大量计算,得出了理论上和实践上有意义的
    结果。
    关键词:高放废液,玻璃固化体,富烧绿石,人造岩石,地质处置,地球化学模型,
    蒙特卡罗法,自蔓延高温法,钙钦矿
It is a very important thing to protect environment and have a sustained development of nuclear industry to safely dispose high-level radioactive waste. This paper studies on several sections, including the leaching test of simulated HLW-glass under low oxygen repository conditions, analyzing leached glass specimens, studing the glass leaching behavior using geochemistry model and Monte Carlo method, immobilizing Sr with SHS and characterising its products.The leaching behaviors of HLW-glass under repository condition-low oxgen were systemically studied. According to MCC-1 method, the fabricated HLW-glass specimens were leached in static condition for 546d. The compositions of leachate were analyzed by ICP-MS and ICP-AES, and the results showed that the leaching rate and mass loss rate were lower than that at atmosphere, and indicted that glass had less corrosion under low oxgen condition. The leached surfaces were detected by XRD and SEM/XEDS. The results showed no diffraction peak appeared on the surface under 90℃; During the same leaching time, there were some little diffraction peaks appeared on the glass under 150℃ after leaching 182d, which may formed the compound of Ca-Si-Al-Fe-(P), Some expressions are emploied to explain the leaching mechanism. The glass dissolution process and leaching behavior of Si element were controlled by both of ion-diffusion reaction and glass-net dissolution reaction, or more others; the leaching behaviors of Na and B element were controlled by ion-diffusion reactions under 90℃ . The leaching behavior of HLW-glass and pyrochlore-rich synroc under multi-barrier media was respectively studied. The results of mass loss rate showed that pyrochlore-rich synroc had a low mass loss rate with better durability. Especially, the barrier media-granite + Fe3O4 and bentonite + Fe3O4, had more effection on the mass loss rate than others in the first half year. The results of XEDS suggested that U and Ba were enriched on the surface;at the same time, Ca and Ti had a little depleted on the surface of
    
    pyrochlore-rich synroc; the results of XRD and SEM indicated that Fe3O4 can increase the corrosion of glass and pyrochlore-rich synroc; The results of glass mass loss rate showed that bentonite had the most corrosive to the glass specimens among barrier media; the results of XEDS indicated that Ca Fe and Al element were enriched on the glass surfaces, Si and Mg had slightly depleted, and Na was completely depleted.The geochemical model, PHREEQC (2.7 version), was used for calculating the leachate compositions and the sediment phases formed on the glass surface. The results showed that the calculating results were well agreed with the experiment results. The calculating results of the sediment phases were consistent to analysed one. All of these results suggested that the geochemical model-PHREEQC could be a good tool to study the leaching behavior of glass under repository conditions. And the results also suggested that the equilibrium in leaching system was based on the interaction among three parts: the glass, the solution and the sediment phases.A Monte-Carlo model was established based on one component-SiO2 and used for calculation of corrosive depth of glass with different content of SiO2. The study indicted that the more content of SiO2 caused the less corrosion on the glass. The effection of different stochastic value of ion exchange reaction was also investigated. And the results showed, when the stochastic value of ion exchange was lower than that of invert reaction, the glass had less corrosion. On the other hand, the calculating results of the corrosion depth were consistent with the experimental results during 14d, which suggested the Monte Carlo model was suitable for studying the glass corrosion depth during that period. The Monte-Carlo model presented an effective tool to leaching mechanism of HLW glass form.The high-temperature (combustion) self-propagating synthesis (SHS) was used for immobilization of Sr element in perovskite synroc. The preliminary study indicated that the SHS-syn
引文
[1] 闵茂中,陈式主编,放射性废物处置原理,北京,原子能出版社,1998年12月
    [2] 罗上庚,放射性废物治理对发展核电和核工业的重要性和迫切性,核科技发展战略研讨会文集,157,1986年,
    [3] 罗上庚,核废物及其治理,环境科学与技术,3,38,1986年
    [4] 罗上庚,放射性废物概论,北京,原子能出版社,2002年8月
    [5] An intermantional group of experts, the management of radioactive waste, published by the uranium institute, August 1991
    [6] 王驹,徐国庆,中国高放废物深地质处置研究,辐射环境管理国际研会讨论文,1997年9月
    [7] 王宝贞,编著,放射性废水处理,北京,科学出版社,1979年
    [8] International Atomic Energy Agency, Design and Operation of High Level Waste Vitrification and Storeage Facilities, IAEA Technical Reports Series No.339, 1992
    [9] 罗上庚,高放废液玻璃固化的配方研究和性能鉴定,北京,科学技术成果报告,1986年
    [10] N.A.Chapman,I.G.Mckinley著,谢运棉,刘春秀,俞军译,核废物的地质处置,北京,原子能出版社,1992年
    [11] 罗上庚,高放废物的分离与嬗变,辐射防护,1,72,1996年
    [12] 罗上庚,高放废物处置安全研究,科技导报,12,22,1992年
    [13] 李寿彤,高放废物的嬗变处置与不产生长寿命高放废物的先进核能系统,核科学与工程,Vol.16 No.3,1996年
    [14] 杨永伟,高放废物嬗变研究发展及前景,核动力工程,Vol.17 No.3,1116年
    [15] 经济合作发展组织核能机构编,王驹,张铁岭译,国际放射性废物地质处置十年进展,北京,原子能出版社,2001年9月;
    [16] A.E.Ringwood, S.E.Kesson, N.G.Ware, Immobilization of High-level Nuclear Reactor Waste in Synroc, Nature, 278:219, 1979
    
    [17] 罗上庚,回归自然——人造岩石固化放射性废物,自然杂志,2,87,1998年
    [18] 罗上庚,玻璃固化国际现状及发展前景,硅酸盐通报,1,42,2003年
    [19] Antoine Jouan, Jean-Pierre Moncouyoux, Multiple Application of Cold Crucible Melting, 1995年
    [20] 严家德,用于动力堆高放废液玻璃固化的焦耳陶瓷熔融器,中国原子能科学研究院,1983年
    [21] 徐国庆,王驹,郑华玲,孙东辉编译,中国高放废物深地质处置,世界放射性废物地质处置,北京,原子能出版社,p48-58,1999年
    [22] 盛嘉伟,罗上庚,汤宝龙,国外高放废液玻璃固化体浸出行为的研究和发展,辐射防护,Vol.16,No.2,1996年
    [23] E.Vemaz, S.Gin, I.Ribet, Present understanding of the kinetics of alteration of the R7T7 glass and their impact on the modeling of the long term behavior, L'Atome, de la Recherche (?) l'Industrie, Bruges le, 2000
    [24] E.Vernaz, J.L.Dussossoy, Current state of knowledge of nuclear waste glass corrosion mechanisms the case of RTT7 glass, Applied Geochemistry, Suppl. Issue No.1, p.13-22, 1992
    [25] J.C.Cunnane, etc. High-Level Nuclear Waste Borosilicate Glass: A Compendium of Characteristics, September 15, 1992
    [26] J.C.Cunnane compiled and edited, High-Level Waste Borosilicate Glass: A Compendium of Corrosion Characteristics, Volume Ⅱ, Aronne National Laboratory, Argonne, Illinois 60439, October 1993
    [27] A.Martinez-Esparza, J.Quinones, J.de Pablo, J.Merino etc. Modelling Spent Fuel and HLW Behaviour in Repository Conditions, Workshop of Spent Fuel Behaviour Modelling 5th Euraton Framework Programme.SFS Project, Avila. June 2002
    [28] K.B.Harvey, Dissolution Models for Glassy Waste Forms, Atomic Energy of Canada Limited, Whiteshell laboratories, Pinawa, Manitoba ROE ILO, 1995
    [29] R.M.Wallace and G. G. Wicks. Leaching chemistry of defense borositicate glass, Materials Research Society Symposium Proceedings 15 (Scientific Basis for Nuclear Waste Management VI), p23-28,1983
    
    [30] AJ.Machiels and C.Pescatore. Modeling of waste form leaching, Part II: mechanistic modeling of nuclear waste form leaching by aqueous solutions. UILU-ENG-82-5360 (REV.7/83), university of Illinois, Urbana, IL, 1983
    [31] B.Grambow, Nuclear waste dissolution: mechanism, model, and application. Report to JSS Project Phase IV. Swedish Nuclear Fuel and Waste Management Company report, 87-02, 1987
    [32] D.L.Parkhurst and C.A.J.Appelo, User's guide te^PHREEQC (version2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations: U.S. Geological Survey Water-Resources Investigation Report 99-4259,1999
    [33] TJ.Wolery, (UCRL-MA-110662 PT I), EQ3/6, A software Package for geochemical modeling of Aqueous Systems: Package Overview and Installation Guide (Version 7.0) September 14,1992
    [34] D.L.Parkurst, D.C.Thorstenson, and L.N.Plummer, PHREEQE-a computer program for geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 80-96,195,1980
    [35] B.Grambow, Nuclear Waster Management, (copyright by The American Ceramic Society), Gsschemical modeling of the reaction between glass and aqueous solution, Advances in Ceramics, Vol. 8,1984
    [36] J.Patyn, P. Van Iseghem, W. Timmemans, The long-term corrosion and modeling of two simulated Belgian preference high-level waste glasses-part II, Mat.Res.Soc.Symp.Proc.Vol. 176.1990
    [37] P. Van Isghem, L.Lemmens, M.Aertsens and M.Put, Interaction between HLW glass and clay: experiments versus model, Proceedings of GEOVAL'94, edited by OECD, Paris, p.203-217, 1995
    [38] Lolivier Ph, K.Lemmens and P.Van Iseghem, In scientific bases for nuclear waste management XXI, edited by I.G. McKinley and C. McCombie, Mat. Res.Soc.Symp.Proc, Vol.506, Warrendale, p.399-406, PA(1998)
    [3
    
    [39] B.Kienzler, B.Luckscheiter, S.Wilhelm, waste form corrosion modeling comparison with experimental results, Waste Management 21, p741-752, 2001
    [40] 崔安熙,郭亮天,范智文,孙庆红,Np、Pu在地下水和工程屏障平衡水中的形态计算研究,核化学和放射化学,Vol.23,No.1,2001
    [41] 钱天伟,陈繁荣,陈家军,武贵斌,Np、Pu在黄土地下水系统中的反应路径模拟,核技术,Vol.27,No.1,2004,
    [42] C.M.Jantzen and M.J.Plodinec, Thermodynamic model of natural, medieval and nuclear waste glass durability, North-Holland, Amsterdam Journal of Non-crystalline solids 67, p207-223, 1984
    [43] T.Advocat, J.L.Crovisier, B.Fritz and E.Vemaz, Thermokinetic model of borosilicate glass dissolution: contextual affinity, Mat.Res.Soc.Symp.Proc.Vol. 176, 1990
    [44] M.Aerstens, D.Ghaleb, New techniques for modeling glass dissolution, Journal of Nuclear Materials 298, p37-46, 2001
    [45] J.M.Dwlaye, D.Ghaleb, Molecular dynamics simulation of low-energy atomic displacemen cascades in a simplified nuclear glass, Journal of Nuclear Materials 244, p22-28, 1997
    [46] 许淑艳编著,蒙特卡罗方法在实验核物理中的应用,北京,原子能科技出版社,1996年
    [47] 管理决策仿真,梁静国主编,哈尔滨,哈尔滨工程大学出版社,2003年
    [48] 徐钟济,蒙特卡罗方法,上海,上海科学技术出版社,1985年
    [49] M.Aerstens, P. Van Iseghem, Modeling glass dissolution with a Monte Carlo technique, Mat.Res.Soc. Symp.Proc.Vol.412, 1996
    [50] M.Aerstens, Testing the Grambow glass dissolution model by comparing it with Monte Carlo simulation results, Mat.Res.Symp.Proc.Vol.556, 1999
    [51] 冯冬青,谢宋和等,编著.模糊智能控制,北京,化学工业出版社出版,2000年
    [52] JHG-Ar45型氩气提存回收(循环)装置使用说明书,天津海资公司科技部, 2002年8月
    [5
    
    [53] MCC, MCC-1P static leach test method, Nuclear Waste Materials Handbook Test Methods, Material Charaterization Center, U.S.A. 1983
    [54] Standard Test Method for Static Leaching of Monolithic Waste Forms for Disposal of Radioactive Waste, ASTM Designation: C 1220-98
    [55] 罗上庚,姜耀中,柳德橹,高放废物玻璃固化体性能研究,中俄和科学家论文集,北京,原子能出版社,p127,1994年
    [56] 徐书荣,821厂模拟高放废液玻璃固化冷台架产品性能评价及数学模型建立,中国原子科学研究院硕士毕业论文,2001年3月
    [57] G.R.Lumpkin, K.L.Smith, and M.G.Blackford, Electron microscope study of Synroc before and after exposure to aqueous solutions, J.Mater.Res. Vol.6, No. 10, Oct 1991
    [58] W.L.Ebert, E.C.Buck, J.S.Luo, S.W.Tam and J.K.Bates, Corrostion Behavior of Environmental Assessment Glass in Product Consistency Tests of Extended Duration,, Argonne National Laboratory, ANL-98/27, 1998
    [59] A.Lodding, P.Van Iseghem, Corrosion of Waste Glasses in Boom Clay: Studies of Element Concentrations by SIMS, Mat.Res.Soc.Symp.Proc.Vol.412, 1996
    [60] David E. Clark and Bruce K.Zoitos, Corrsion of Glass, Ceramics and Ceramic Superconductors, United States, Noyes Publications, 1992
    [61] T.Banba, H.Kamizono and H.Mitamura, Studies of wasteform performance at Japan Atomic Energy Research Institute, 1991 IAEA Research Co-ordingate Meeting.Karlsruhe, Germany, Nov. 11-15, 1991
    [62] T.Banba, H.Mitamura, K.Kuramoto, et.al, Studies of wasteform performance at Japan Atomic Energy Research Institute, Final Reprot for IAEA Research Coordingation Meeting, Marcoule, France, Apr. 14-18, 1997
    [63] Shanggeng Luo, Jiawei Sheng, Baolong Tang, A comparison of HLW-glass and PWR-borate waste glass, Joural of Nuclear Materials 298, p 180-183,2001
    [64] 王承遇,陶瑛编著,玻璃表面和表面处理,北京,中国建材工业出版社,1993年11月
    
    [65] 武汉大学,吉林大学等校编,曹锡章,张畹蕙,杜尧国等修订,无机化学,上海,高等教育出版社,1983年
    [66] E.R.Vance, Synroc: A suitable waste form for actinides, Mat.Res.Soc.Bull, 19(2):28, 1995
    [67] P.Van Iseghem, Wei Jiang, M. Blanchaert, et al. the interaction between synroc-C and prue water or boom clay, Mat. Res. Soc. Symp. Proe., p305: 412, 1996
    [68] L.A. Mertens, W.Lutze, J.A.C. Marples, et al., A comparison of the behavior of Vitrified HLW in Repositories in Salt, Clay and Granite. Part Ⅰ: Experimental, Mat. Res. Soc. Symp. Proc., p176: 267, 1990
    [69] J.A.C. Marples, W.Lutze, M.Kawanishi, P. Van .Isegbem, A comparison of the behavior of Vitrified HLW in Repositories in Salt, Clay and Granite. Part Ⅱ: Results Mat. Res. Soc. Syrup. Proe., p176: 275, 1990,
    [70] J.A.C.Marples, Glass Technol.29 (6) 230, 1988
    [71] 杨建文,富烧绿石人造岩石和锆英石固化模拟锕系废物研究,博士论文,北京,中国原子能科学研究院,2000年7月
    [72] Jianwen Yang, Shanggeng Luo, Baolong Tang, Baojtm Li, Xichen, Chemical Durability and α-Irradiation Resistance of Pyrochlore-rich Synroc Under Simulated Repository Conditions, the second research co-ordination meeting, Sydney, Australia, 28.Aug.-2.Sept.2000
    [73] K. Lemmens, M. Aertsens, V. Pirlet, H. Serra, E. Valeke, P. De Canniere, P. Van laeghem, Measurement of glass eorrsion in Boom clay disposal conditions. SCK.CEN, ICEM'01: 8 International Conferences on Radioactive Waste Management and Environmental Remediation, Bruges, Sept.30-Oet.04, 2001
    [74] P.Van Iseghem, K.Lemmens, Marc Aertsens, et.al. Characterization and compatibility with the disposal medium of Cogema and Eurochemie reprocessing waste forms, SCK.CEN, Mol, Belgium, R-3644, October 2002
    [75] Ph.Loliyier, K.Lemmens and P. Van Iseghem, Geochemical Modelling of the Interaction of HLW Glass with Boom Clay Media, "ⅩⅪst Scientific Basis for Nulear Waste Managemen", Davos, Switzerland, 28.09-03.10.1997
    [7
    
    [76] X.Feng, I.L.Pegg, Y.Guo, AA.Barkatt and P.B.Macedo, Effects of Surface Area-to-Solution Volume Ratio on Chemical Durability of Nuclear Waste Galsses, Mat.Res.Soc.Symp.Proc.Vol. 176, 1990
    [77] T.Banba, T.Murakami, and H.Isobe, Growth Rate of Alteration Layer and Elemental Mass Losses during Leaching of Borosilicate Nuclear Waste Glass, Mat.Res.Symp.Proc.Vol. 176. 1990
    [78] A.Abdelouas, J.Crovisier, W.Lutze, B.Grambow, J.Dran, R.Muller, Surface layers on a borosilicate nuclear waste glass corroded in MgCl_2 solution, Journal of Nuclear Materials 240, 100-111, 1997
    [79] H.Li, M.J.Schweiger, P.Hrma, and X.Feng, Surface Characterization of Simulated Low-level Radioactive Waste Glasses Corroded in Water and LiOH Buffer Solution, Mat.Pes.Soc.Symp.Proc.Vol.412. 1996
    [80] M.J.Jercinovic, S.A.Kaser, R.C.Ewing, and W.Lutze, Comparison of Surface Layers Formed on Synthetic Basalitic Glass, French R7T7 and HMI Borosilicate Nuclear Waste Form Glasses-Materials Interface Ineractions Tests, Waste Isolation Pilot Plant, Mat.Pes.Soc.Symp. Proc.Vol. 176. 1990
    [81] W.福格尔著,谢于深译,玻璃化学,北京,轻工业出版社,1988年
    [82] 陆庆乐,高等数学(工本),西安,西安交通大学出版社,2003年3月
    [83] A.M.Law, W.D.Kelton, Simulation Modeling and Analysis, the McGraw-Hill Companies, 2000
    [84] http://www.mhhe.com/lawkelton
    [85] E.Kashchieva, sturcutral studies of glasses by transmission electron microscopy and electron diffraction, in 'Glass, scientific research ofr high performance containment' (CEA/Valrho, summer session proc.), p.79-86, 1998
    [86] A.G. Merzahznov, I.P. Brovinskaya, Dokl Akad Nauk SSSR, 204 (2): 429, 1972
    [87] 蔡杰,李文兰,张宝林等,自蔓延高温合成法在陶瓷领域的应用,真空电子技术,No.2,1996年
    
    [88] 李光福,韩杰才,吴忍耕,耐高温材料的自蔓延高温合成法研究进展,宇航材料工艺,Vol(3),1995年
    [89] 张延安,赫翼成,自蔓延高温合成研究动态,中国有色金属学报,Vol.8Suppl.2,1998年9月
    [90] 张树格,燃烧合成技术的起源及其在我国的发展,粉末冶金技术,Vol.15,No.4,1997年
    [91] A.E Ringwood, S.E Kesson, K.D. Reeve, et al. Synrroc. In: Lutze W, Ewing RC, ed. Radioactive Waste Forms for the Forture. Armsterdam: North Holland, 233, 1988
    [92] M.Muthuraman, A.N.Dhas, K.C.Patil, Commbustion synthesis of oxide materials for nuclear waste immobilization, Bull.Mater. Sci, 17(6): 977-987, 1994
    [93] I.P.Borovinskaya, T.V.Barinova, V.I.Ratnikov, et al. Consolidation of Radioactives Waste into Mineral-like Material by the SHS Method. Inter. J. SHS, 7(1): 129-135,1998
    [94] 路新,郭志猛,罗上庚等,自蔓延高温合成固定放射性废物,硅酸盐学报,Vol.31(2),205-208,2003年
    [95] 王子潮,钙钛矿的高温塑性:下地幔的流变性,地球物理学进展,Vol.9(1),p59-74,1994年
    [96] 高西汉,钙钛矿结构,压电与声光,Vol.16,No.4,44-48,1994年
    [97] T.佐尔泰,J., H.斯托特,矿物学原理,地质出版社.北京,1992年2月
    [98] R H.Mitchell, Perovskite: a revised classification scheme for an important rare earth element host in alkaline rocks, Rare Earth Minerals: Chemistry, Origin and Ore Depisies, Min Soc Series, Chapman & Hall; 6:41-76, 1996
    [99] 殷声,燃烧合成,冶金工业出版社,北京,1999年6月
    [100] H.C.Yi, J.J.Moore, Review self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials, J.Mater.Sci, 25(2B): 1159-1168, 1990
    [101] J.B.Holt, Z.A.Mumir, Combustion synthesis of titanium carbide: theory and experiment. J Mater Sci. 21(1): 251-259, 1986
    
    [102] Shanggeng Luo, Liyu Li, Baolong Tang, Dexi Wang, Synroc immobilization of high level waste (HLW) bearing a high content of sodium, Waste Management 18, 55-59, 1998
    [103] Liyu Li, Shanggeng Luo, Baolong Tang, and Dexi Wang, Immobilization of Sodium-Bearing High-Level Radioactive Waste in Synroc Containing (NaO.5NdO.5) TiO3-Type Perovskite, Communications of the American Ceramic Society, 80(1), 250-252, 1997
    [104] Shanggeng Luo, Jiawei Sheng, Baolong Tang, A comparison of HLW-glass and PWR-bumal of Nuclear Materials 298,180-183,2001
    [105] ASTM: C 1285-97, Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardousm and Mixed Waste Glasses: The product consistency test (PCT), 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700