用户名: 密码: 验证码:
准噶尔南缘复杂构造地质力学分析与井下复杂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆准噶尔盆地南缘具有优良的生油气条件,多年来一直是被寄予厚望的地区,勘探潜力巨大,是油气资源的有利接替区,现已发现多个含油气构造和油气聚集带。钻井方面由于存在巨厚砾岩层、高陡地层发育、客观存在地应力的各向异性、多套压力系统共存;同时因为构造运动造成地层破碎易垮塌、漏失,井眼复杂在所难免,严重的制约了钻井速度。为了实现在盆地南缘安全快速钻进,井下复杂是必须逾越的难关,因此研究造成井下复杂的力学机理,对推动盆地南缘勘探具有十分重要的意义。
     针对新疆准噶尔盆地南缘钻井难题,从地质力学的角度系统地分析噶尔盆地南缘高陡构造破碎地层井下复杂的根本原因,以岩石力学室内试验和现场试验数据为基础,用固体力学有限元法的原理和方法,建立高陡破碎地层井下复杂力学机理分析模式,对准噶尔南缘山前构造井下复杂(包括井眼失稳、井壁垮塌、井漏等)的力学机理进行了深入研究。
     南缘地区由于近期构造运动强烈,在许多地层中形成了破碎带,且存在较大的地层倾角,井眼垮塌还存在两重性,即,泥浆密度低于坍塌压力会发生垮塌,而泥浆密度高于地层孔隙压力将导致泥浆滤液进入地层微裂缝。钻遇这些地层井壁极易发生垮塌,同时也易发生井漏。本文用非线性岩石力学的理论和方法分析新疆准噶尔南缘山前构造的地质力学问题,提出了适合山前破碎地层的岩石力学分析的原理和方法。
     地应力问题是南缘地区钻井的主要难点,也是钻井过程中井下复杂的根本原因之一。南缘地区由于受构造运动影响形成了强扭压应力场,造成了地应力异常,是强地应力地层。本文结合新疆准噶尔南缘山前构造的实际地质特征,提出了研究高构造地应力场大小和方向的原理和分析方法,并通过理论研究、实验研究和现场实际应用确定了研究工区地应力的大小和方向。
     南缘地区地层破碎带来的钻井难点还由于破碎地层新,地层本身强度低,易水化膨胀,带来钻井的难度更大。本文应用断裂力学和损伤力学的理论,研究盆地南缘破碎地层井壁失稳的力学机制,并用岩石力学和弹塑性力学原理和有限元分析方法,研究了新疆准噶尔南缘山前破碎地层井下复杂的力学机理。并对岩石水化作用对井壁稳定性作用机理及其影响因素进了分析。
     在理论研究的同时,为了确定研究工区的地应力的大小及方向、岩石力学参数,进行了包括岩石力学实验、地层破裂压力试验等实验研究,为理论研究提供了必要的基础数据。
     通过系统的理论研究和实验研究,并结合现场试验,针对新疆盆地南缘钻井过程中井下复杂,提出了一套适合盆地南缘复杂构造钻井、减少井下复杂,提高钻井效率的可操作的技术措施。
Good hydrocarbon condition is possessed in the south edge of Zhunger Basin in Xingjiang. For many years the area has been thought to be enormous potentiality for exploration and is the advantageous successor of hydrocarbon resource . Now many hydrocarbon-bearing structure and petroleum accumulation zones have been discovered . In the drilling aspect, there is inevitable complicated downhole problems, the penetration is seriously restricted because there are great thick gravel payer , upgrowing big dip angle block , crustal stress , multiple pressure system , meanwhile tectonic movement leads to formation breakdown and formation caving and leak-off. In order to realize drilling safely and quickly at the south edge of Zhunger Basin, the complicated downhole problems must be resolved . It is very important to study the mechanical principle and mechanism of the complicated downhole problems which is much useful for improving the exploration of Zhunger Basin.For the drilling problem at the south edge of Zhunger Basin, the fundamental reason of its complication has been systematically analyzed from geological mechanics , based on the data of experiment of rock mechanics in door and on-site . Using the principles and methods of finite element analysis on solid mechanics, Models have been established to analyze the mechanism under this condition . By studying the mechanism thorough (including borehole stability , borehole caving , lost circulation ) , countermeasures and measures can be got to prevent downhole trouble.Because recent tectonic movement has been strong , many formation of the south area has formed fracture belt and has been big formation dip . Formation collapsing is dual nature , namely when the mud pressure is lower than caving pressure , borehole wall will collapse , but the mud pressure is higher than pore pressure , the mud will come into the microcrack . When such formation being drilled , borehole is prone to collapse and leak . In this paper nonliear principle and method of rock mechanics are used to analyse the geological mechanical problems of mountain front structure at the south edge of Zhunger Base in Xingjiang and adequate principles and methods are offered to research these rock mechanics mechanism.The crustal stress problem is major difficulty during drilling at the south area of the Base and is the fundamental reasons of the complicated downhole condition during drilling . The
    
    south area has formed strong wrest-compressed stress field because of the effect of tectonic movement, so the crustal stress is abnormal, the crustal stress is strong in the area. Considering the actual geological characters of mountain front structure of Zhunger in Xinjiang, and the principle and method to study the magnitude and direction of crustal stress field of big dip block are proposed . By theoretic study , experimental study and practical application in the fields , the magnitude and direction stress field for the working block is determined decided.The drilling problems in the breakage block is caused by the reasons that the breakage block is new , the formation intensity is low, and is prone to hydrate, which brings bigger drilling problem. In this paper the theories of fracture mechanics and damaging mechanics are used to study the mechanism of borehole well instability for breakage formation at the south edge of the Basin , and the mechanism of rock mechanics and elastoplastic mechanics and analysis method of finite element are used to study the mechanism of the complicated downhole problems (including borehole instability , borehole collapsing , lost circulation) for the piedmont fractural formulation at the south edge of Zhunger . working mechanism of rock hydration affecting borehole wall stability and its factors have been studied .Besides theoretic study , in order to determine the magnitude and direction of crustal stress in the working block and the rock mechanics parameter , the experiments have been done including rock mechanics experiment, formation fracture experiment and so on, which provide the n
引文
[1] 杜青才,石晓兵等,霍10井区大倾角地层自然造斜规律探讨与防斜打快对策,天然气工业,2004,Vol24(3)
    [2] 杜青才,石晓兵等,霍10井高陡构造井壁失稳及井下复杂的机理研究,钻采工艺,2004,第4期
    [3] 李颚荣等,地应力测量理论研究与应用,北京:地质出版社,1987,9
    [4] 哈秋舲等,岩石边坡各向异性岩体卸荷非线性力学研究,北京:中国建筑工业出版社,1997,12
    [5] Bernt S·Aadn φ y, J·Sebastian Bel Classification of Drilling-induced Fractures and Their Relationship to In-situ Stress Direction. The Log Analyst. November-December,1998
    [6] Stephen Prensky. Borehole Breakouts and In-situ Rock Stress-A Review. The Log Analyst. May-June, 1992
    [7] B. A. Eaton. Fracture Gradient Prediction Techniques and Their Application in Drilling, Stimulation, and Secondary Recovery Operations,SPE,2136
    [8] R. A. Anderson et al. Determining Fracture Pressure Gradient from Well Logs, JPT,1973,11(1):1259-1268
    [9] 汪海阁.页岩地层井眼稳定的物化模型.国外钻井技术,1996(4)
    [10] 黄荣樽.地层破裂压力模式的探讨.华东石油学报,1985,1(34)
    [11] Poon D C等.分形地质统计学在油气性质评价与储量估算中的应用.国外油气勘探,1995,7(1)
    [12] 潘保芝等.分数维及其在测井地质解释上的应用.测井在油藏描述中的应用.石油工业出版社,1992.
    [13] 王天波等.用分形理论确定m、n值的方法及其应用.测井技术,1998,22(1)
    [14] 赵良孝等著.碳酸盐岩储层测井评价技术.石油工业出版社,1999
    [15] 张景寿等著.地应力裂缝测试技术在石油勘探开发中的应用.石油工业出版社,2001
    [16] 李志明,张金珠著.地应力与油气勘探开发.石油工业出版社,1997
    [17] 刘向君,罗平亚著.石油测井与井壁稳定性.石油工业出版社,1999
    
    [18] 欧阳健等著.测井地质分析与油气层定量评价.石油工业出版社,1999
    [19] 楼一珊,黄立新著.地层坍塌压力的计算及应用研究.河南油田,1999年,6(1)
    [20] 贾文玉,田素月、孙耀庭等著.成像测井技术及应用.石油工业出版社,2000
    [21] 中国石油学会测井专业委员会著.测井在石油工程中的应用.石油工业出版社,1996
    [22] 杨斌.利用全波列测井计算地层破裂压力.测井在石油工程中的应用.石油工业出版社,1996
    [23] 赵良孝.用测井资料分析压裂漏失及井壁应力崩落的机理和特征.测井在石油工程中的应用.石油工业出版社,1996
    [24] 赵良孝、张树东等.成像测井在石油勘探开发中的应用.四川石油管理局,1999
    [25] 黄荣樽、邓金根、王康平著.利用测井资料计算三个地层压力剖面.测井在石油工程中的应用.石油工业出版社,1996
    [26] 谭廷栋.从测井信息中提取地层破裂压力.地球物理测井,1990,14(6)
    [27] 赵唤欣,高祝军.用声波时差法预测地层压力的方法.石油勘探与开发,1995,22(2)
    [28] 夏宏泉等.川东飞仙关组鲕滩储层测井识别.天然气工业,2001,21(1)
    [29] 郭齐军等.测井声波时差在地层压力预测中的应用.中国海上油气,1997,11(1)
    [30] 薛亚东等.基于人工神经网络的实钻地层可钻性预测.石油钻采工艺,2001,23(1)
    [31] 屈东升.川东高陡构造井塌原因及防塌措施研究.钻采工艺,2000,23(5)
    [32] 张厚美等.岩石可钻性表示方法探讨.钻采工艺,1999,22(1)
    [33] 左银卿等.测井新技术在裂缝性地层中的应用.测井与射孔,2002,12(2)
    [34] 杨玉征等.长庆石油测井论文集(1970~2000).石油工业出版社,2000
    [35] 杨进等.岩石声波时差与岩石可钻性的关系及其应用.钻采工艺,1998,21(2)
    [36] 王建军.应用水力压裂法测量三维应力几个问题.岩石力学工程报告,2002,19(2)
    [37] 朴玉芝等.利用测井资料确定合理钻井液密度方法的研究.钻井工艺,1998,21(5)
    [38] 丰全会等.井壁稳定性及其在盐城地区的应用.钻井工艺,2000,23(4)
    [39] 王冠贵等.用全波测井资料确定的碳酸盐岩地层的破裂压力值的分析.地球物理 测井,1990,14(3)
    [4
    
    [40] 夏宏泉等.基于灰色神经网络的测井预测地层压力.西南石油学院学报,1998,20(2)
    [41] 夏宏泉等.三维地层压力数据的神经网络处理及立体图形显示.天然气工业,1997,17(3)
    [42] 刘向君等.岩石可钻性与钻速预测.天然气工业,1999,19(5)
    [43] 刘向君等.SMITH公司合作项目《井壁稳定性评价与钻头选型研究》.西南石油学院科研报告,1999
    [44] 石晓兵,夏宏泉,陈平等.地质导向钻井技术的现场应用.西南石油学院学报,2002,24(2)
    [45] 夏宏泉等.泥页岩地层井壁稳定性测井评价系列研究.西南石油学院科研报告,2000
    [46] 司马立强等.川东北部地区飞仙关组鲕滩储层测井评价技术及横向预测方法研究.四川测井公司内部报告
    [47] Rollow A.G: Estimating drill ability in the laboratory, 《Rock Mechanical》 Proceeding of the fifth symposium on rock mechanics. 1962,P93~100
    [48] White C.G:Arock drill ability index, 《Quarterly of collard school of Mines》,1969
    [49] 坦加耶夫著,王维俊译.岩石可钻性和可爆性.冶金工业出版社.1987
    [50] C.G.维特著.边蔚奇译.岩石可钻性指数.煤炭工业出版社.1980.P4~15
    [51] Mason K.I Tricone Bit Selection Using Sonic Logs. In SPE, 13256
    [52] Falcao J.L, Emaidla E: PDC Bit selection through cost Prediction Estimates using Cross-plots and Sonic log Data. Paper SPE/IADC 25733
    [53] H.I.Bilgesuetal: A New Approach for Drill Bit selection America JPT 2000.12
    [54] 尹宏锦.油田岩石可钻性统计分级方法.石油大学学报,1982.6(3)
    [55] 尹宏锦.实用岩石可钻性.东营.石油大学出版社,1990
    [56] 路保平.测井资料在石油普查中的应用.测井在钻井中应用论文集.1996
    [57] 张厚美.岩石可钻性表示方法探讨.石油钻采工艺,1999,22(1)
    [58] 田军等.利用测井资料预测岩石可钻性.石油钻采工艺,1994,16(3)
    [59] 赵军等.声波测井资料在岩石可钻性及钻头选型中的应用.测井技术,2001,25(1)
    [60] 杨进等.利用测井资料进行钻头选型研究.西部探矿工程,1998,10(3)
    [61] 徐同台等.测井在钻井中的应用.石油工业出版社,1996
    [62] 张传进等.测井资料在钻井工程中应用现状与展望.天然气工业,2002,22(5)
    
    [63] 冯定等.神经网络专家系统理论与实践.江汉石油学院学报,1996,18(4)
    [64] 刘卫东.利用声波时差预测岩石可钻性新方法.钻采工艺,1995,18(2)
    [65] 张炎.多底井井眼轨迹设计与控制理论.北京:石油工业出版社,2000
    [66] 陈平.钻井完井工程.西南石油学院,2002
    [67] 夏宏泉,刘之的等.碳酸盐剖面地层孔隙压力计算方法研究西南石油学院学报,2003(5):5-7
    [68] 李术才等.复杂应力状态下断续节理岩体断裂损伤机理研究及其应用.岩石力学与工程学报,1999,18(2)
    [69] 雍世和.测井数据处理与综合解释.石油大学出版社,1996
    [70] 于骁中.岩石和混凝土断裂力学,长沙:中南大学出版社,1991
    [71] 白家祉,苏义脑.井斜控制理论与实践.北京:石油工业出版社,1990
    [72] 胥永杰等,四川盆地高陡构造碳酸盐岩钻井技术发展方向.天然气工业,2000;(20)3
    [73] 杨勋尧.地层造斜力的计算与应用.石油学报,1985
    [74] 赵新瑞等.井斜控制理论与防斜钻井技术综述.钻采工艺,2000;(23)1
    [75] 韩来聚等.大倾角地层防斜打直技术.石油钻探技术,2001;(29)4
    [76] 李剑波等.大倾角构造防斜技术.岩土工程界,2000;(3)6
    [77] 李增科,何开平.偏心防斜技术的研究与应用.钻采工艺,2000;(23)5
    [78] 卢发掌译,各向异性地层中大斜度井眼稳定性的模拟,井壁稳定性译文集(下册)p43~59.北京:石油工业出版社,1992。
    [79] 高得利等,谈谈定向井井壁稳定问题,石油钻采工艺,1997,Vol(19),1.
    [80] Chenervert M.E. "Shale Alteration by Water Adsorption", J.Pet,Tech.,1970,1141-48
    [81] “国内外泥页岩井壁稳定问题的调研”,石油天然气总公司情报研究所
    [82] 周维垣,《高等岩石力学》,水利电力出版实社,1989
    [83] E.Van Oort, "A Novel Technique for the Investigation of Drilling Fluid Induced Borehole Instability in Shales", Shell Research(DSEPL)
    [84] 邓金根,张洪生.,《钻井工程中井壁失稳的力学机理》,北京:石油工业出版社,1998
    [85] Yew C.H., Chenervert M.E., Wang C.L., Osisanya S.O., 1990, Wellbore Stress Distribution Produced by Moisture in Shales", E.van Oort, Shell Research
    [86] Mody F.K., Hale A.H., 1993, "Borehole Stability Model to Couple the Mechanics and Chemistry of Drilling-fluid/shale Interactions", J. Petrol. Tech., 1093-1101
    
    [87] M.R.Mclean,M.A.Addis.“井眼稳定性分析:现有分析方法的回顾及现象应用”,SPE 19941
    [88] Bol G.M., Wong S.W., Davidson C.J.,Woodland D.C., 1992, "Borehole Stability in Shales", Paper SPE 24975, European Petroleum Conference, Cannes, France
    [89] 梁大川,“泥页岩水化机理研究现状”,钻井液与完井液,1997年14(6)
    [90] 林永学、黄河福,“三轴应力状态下页岩水化破坏实验研究”,石油钻探技术,1996,24(1)
    [91] Per Horsrud, Rune M. Holt & Eyvind Esonstebo, "Time Dependent Borehole Stability: Laboratory Studies and Numerical Simulation of Different Mechanism in Shales"
    [92] A. Onaisi, C.Durand & A. Audibert, "Role of Hydration State of Shales in Borehole Stability Studies"
    [93] Eric Van Oort著,王平全译,“页岩的物理化学稳定性”,国外钻井技术,1998,15(4)
    [94] Cook J.M., Sheppard M.C., Houwen O.H., 1990, "Effects of Strain Rate and Confining Pressure on the Deformation and Failure of Shale", Paper IADC/SPE 19944, Drilling Conference in Houston, Texas
    [95] 张允真等,弹性力学及其有限元法,北京:中国铁道出版社,1983
    [96] 赵经文等,结构有限元分析,哈尔滨:哈尔滨工业大学出版社,1988,4
    [97] 丁皓江等,弹性和塑性力学中的有限元法,北京:机械工业出版社,1989,11
    [98] 朱大勇等,复杂形状洞室围岩应力弹性解析分析,岩石力学与工程学报,1999,18(4)
    [99] 丰全会等,井壁稳定性研究及其在盐层地区的应用,钻采工艺,2000,23(4)
    [100] 丰全会等,井壁稳定的弹性模型及其应用,石油钻探技术,2000,28(4)
    [101] 陈秀云等,垂直井眼井眼稳定的理论分析,石油钻探技术,1999,27(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700