用户名: 密码: 验证码:
岩体水力劈裂机理试验及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然岩体由于本身的结构不确定性,使得对其力学效应和渗透性的研究遇到巨大困难。在研究工程区域的岩体稳定问题时,规模巨大的断层等构造可以具体描述,但是大量的小规模构造难以具体描述。正是这些小规模构造在导水方面起到不可忽视的作用。而水的渗流问题又是影响岩体以及其上的建筑物稳定的重要因素。
     正如人们所知,渗流会降低岩土体的稳定性。在高静水压力作用下,岩体内水的流态已经不能完全被岩体中的通道所约束。具有高势能的水会破坏岩体的原有结构,“创造”出更多的渗流通道来,以满足它卸掉势能的需要。水力劈裂问题的研究实质,就是具有高势能的水对岩体的破坏。
     本文基于连续介质弹脆性损伤理论,研究岩体水力劈裂的机理,在以下方面有所进展:
     (1) 在弹脆性力学的范畴内,提出基于应变的岩体破坏模式,并推导了判别准则。认为岩体的破坏具有拉和剪两种形式。由于具体的承载条件和约束条件不同,岩体破坏时,可能是以某一种(拉或剪)形式破坏,也可能两种破坏形式并存发生。两种破坏形式并存发生时,在一个足够小的时间段内,也是以单一的形式发生,只是在下一时间段可能就转化成另一种形式发生破坏。在一个具体的时刻,岩体发生哪一种形式的破坏,取决于当前哪一种破坏趋势占优势地位。
     (2) 基于常规三轴水力劈裂试验,提出了材料“不均匀系数”的概念,用来描述了材料的不均匀分布状况。并基于此,提出应变(应力)集中为核心的水力劈裂观点。认为:岩体,特别是脆性岩体的破坏是从局部开始的,在局部形成裂纹。裂纹的扩展,及裂纹的相互连通,导致岩体整体破坏。在高压水荷载的作用下,岩体的劈裂破坏必然伴随着高压水的侵入。对于裂缝来讲,高压水对裂缝面施加面荷载。正是这一面荷载的作用,大大加强了缝端的应力集中程度。这也就是水力劈裂为什么会对岩体的稳定造成巨大威胁的原因。
     (3) 建立了渗透系数与损伤变量的关系函数。以此为桥梁,建立渗流、破坏的耦合关系。开发了有限元耦合计算程序。耦合计算分两部分:岩体的力学反应和岩体结构变化造成的渗流场的反应,两部分分别计算交叉叠代。数值计算的研究重点如下:①对岩体材料的非均匀模拟,选用Weibull分布或标准正态分布函数为计算单元赋材料参数(主要是弹模)。研究表明,分别按两种分布函数为材料赋值,得到的裂缝扩展没有明显差别。②在裂缝扩展过程的数值模拟上,数值计算分荷载步,在每一个荷载步内再叠代计算。在每一个叠代步,只允许一个单元破坏。破坏后的单元要进行应力转移。应力转移的大小按照弹脆性本构模式进行。如此反复叠代直到平衡为止,进入下一荷载步。计算表明,荷载步的大小对计算收敛性影响明显。计算时一般尽量设置小载荷步,载荷步过大时可能导致计算不收敛。③渗流场计算中,由于新裂缝连通性假设,随裂缝的扩展,渗流场变化明显。
A big puzzle was uprising on the study of natural rock mass mechanical effect and its permeability because of its structural uncertainty. When rock mass stability was studied in the scope of engineering district, big inner structures, like large faults, could be described in detail. But a mass of relatively small structures couldn't be described in numerical analysis mesh grid. Moreover, it was just this small structures could make a non-neglectable effect in rock mass permeability. And seepage was a prominent factor for stability of rock mass and constructions on the rock mass.As known, seepage may debase rock mass' stability. But how about the mechanism was? In soil mechanics research, effective stress theory was used as the base. In which buoyancy was taken into account in fact. Under high water pressure action, water current in rock mass couldn't be restricted in crannies. Water with high potential energy could pierce into rock block. So that. Some new crannies were created to deplete the water potential energy. Which, vitiation of water to rock mass, just was the nucleus of hydraulic fracture research. It also was one side problem of seepage stress couple research.Rock mass hydraulic fracture mechanics was studied in this dissertation based on continuum elasto-brittle damage theory. Some achievements were drawn as follows. In the category of elastic brittle mechanics, a tense-shear competing model for rock mass failure judging was put forward. In which the viewpoint was that rock mass failure might like tense or shear. In a certain condition, rock mass failure might as one of the both or all of the both. Even though the both happened simultaneously, There was only one style, shear or tense, happened in a little time slicing such as 1 second. Nobbut one style in this second might change to another in the next second. The failure style of rock mass in an idiographic time of day lied on which trend was in the ascendant. A normal triaxial hydraulic fracture test was done in seepage laboratory of Hohai university. The sample was thick-cylinder made from cement mortar. An anisomerous deformation was gained in the condition of symmetrical load and symmetrical restraint. And the stress state of sample failure couldn't satisfy the thick-cylinder theory. The concept of asymmetry coefficient was put forward to describe material distribution asymmetry.The viewpoint in rock mass hydraulic fracture mechanism in this dissertation was that strain (stress) concentration was the core concept. Under such a notion, Failure of brittle rock mass was from a certain local point. Crack appears from local. Cracks enlarging and connecting was the reason of rock mass failure. Fracture mechanics and brittle elastic damage mechanics were suitable in local crack enlarging research. Stress concentration was striking in the local zone of crack tip. A kind of smashing failure took place by tense or shear in a little local zone of crack tip with a free surface of crack. And strain concentration was striking in the local zone also.
    
    Fracture enlarging and connecting in rock mass went with pressured water inrush consequentially. The new fracture was supposed interconnected in this dissertation. So, once fracture enlarged, pressured water swarmed into right away. The face pressure from water on fracture surface reinforced the stress concentration. Which was the reason why hydraulic fracture intimidates rock mass stability.Some research in rock mass hydraulic fracture numerical simulation was done in this dissertation. A Finite Element Method(FEM) program code was worked out. In the FEM program, computing process was divided in two parts, mechanics and seepage. The two parts had a certain relationship. And intercross iterative computing was done following the relationship between the two parts. Several key problems were studied as follows. (D Weibull distribution and normal distribution were used to give values to elements' Young's modulus in FEM mesh grid. By which, the material asymmetrical distribution was simulated. The research shown that the frac
引文
1.刘令瑶,崔亦吴,张广文,宽级配砾石土水力劈裂特性研究[J],岩土工程学报,20(3),1998:10~13
    2.谷兆祺主编.挪威水电工程经验介绍.泰比亚公司,1958
    3.孙雄,马宗晋,洪汉净,初论“构造流体动力学”[J],地学前缘(中国地质大学学报:北京),1996,3(3—4):137~143
    4.郭汉,詹锦泉,徐素健,锚杆劈裂注浆试验研究[J],煤炭学报24(5),1999:471~476
    5.盛金昌,速宝玉,裂隙岩体渗流应力耦合研究综述[J],岩土力学,1998,19(6):92~98
    6.王媛 徐志英 速宝玉,裂隙岩体渗流计算模型综述[J],水科学进展,1995(4)
    7.盛金昌,三维裂隙岩体渗流应力耦合数值分析及工程应用[D],[博士学位论文],南京:河海大学,2000.6
    8.陶振宇 窦铁生,关于岩体水力学模型[J],力学进展,1994,24(3):409~417
    9.李宏 徐增和 王泳嘉,弹性流体一维耦合渗流的计算机代数解[J],东北大学学报(自然科学版),1998,19(2):111~115
    10.耿克勤 吴永平,拱坝和坝肩岩体的力学和渗流的耦合分析实例[J],岩石力学与工程学报,1997,16(2):125~131
    11.耿克勤等,节理岩体的渗透系数与应变、应力的关系[J],清华大学学报,1996,1:107~112
    12.孙雄 洪汉净,构造应力场对油气运移的影响[J],石油勘探与开发·地质勘探,1998,25(1):1~3
    13.速宝玉 詹美礼 王媛,裂隙渗流与应力耦合特性的试验研究[J],岩土工程学报,1997,19(4):73~77
    14. Ganji A F. Variation of whole and fractured porous rock permeability with confining pressure[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1978,15
    15. Walsh J B, Effect of pore pressure and confining pressure on fracture permeability[J], Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1981, 18
    16. Tsang Y W, Witherspoon P A, The dependence of fracture mechanical and flow properties on fracture roughness and sample size[J], J of Geophys research, 1983, 88 (83)
    17.黄润秋 王贤能 陈龙珠,深埋隧洞涌水过程的水力劈裂作用分析[J],岩石力学与工程学报,2000(9):573~576
    18.朱珍德 胡定,裂隙水压力对岩体强度的影响[J],岩土力学,2000,21(1):64~67
    19. Volko P. Economides M. J., Propagation of hydraulically induced fractures—A continuum damage mechanics approach[J],International Journal of Rock Mechanics and Mining Science & GeomechanicsAbstracts, 1994,31(4):221~229
    20. R. G. Jefferey, K. W. Mills. Hydraulic fracture applies to inducing longwall coal mine goal falls[C], Pacific Rock 2000, Girard, Liebman, Breeds&doe, Balkema, ISBN 90 5809 155 4,423~430
    21
    
    21. Gidley, J. L., Holditch, S.A., Nierode, D. E., and Eeatch, R. W.(1989). Recent advances in hydraulic fracture, Society Petroleum Engineering Monograph, 452.
    22. Veatch, R. W. (1983). Overview of current hydraulic fracture design and treatment technology—Part 1. J. Pet. Technol.,677~687
    23. Veatch, R. W. (1983). Overview of current hydraulic fracture design and treatment technology—Part 2. J. Pet. Technol., 853~863
    24. Murdoch, L. C., and Slack, W. W. (2002). Forms of hydraulic fractures in shallow fine-grained formations[J]. Journal of Geotechnii and Geoenvironment Engineering, 128(6), 479~487
    25.王建军,应用水压致裂法测量三维地应力的几个问题[J],岩石力学与工程学报,2000,19(2):229~233
    26.陈群策 安美建 李方全,水压致裂法三维地应力测量的理论探讨[J],地质力学学报,1998,4(1):37~43
    27.刘允芳,水压致裂法三维地应力测量[J],岩石力学与工程学报,1991,10(3):246~256
    28.刘允芳 罗超文 景锋,水压致裂法三维地应力测量及其修正和工程应用[J],岩土工程学报,1999,21(4):465~470
    29.刘允芳 钟作武 汪洁,水压致裂法三维地应力测量成果计算与分析的探讨[J],岩石力学与工程学报,2002,21(6):833~838
    30.郭启良 安其美 赵仕广,水压致裂应力测量在广州抽水蓄能电站设计中的应用研究[J],岩石力学与工程学报,2002,21(6):828~832
    31. T. Ito, K. Evans, K. Kawai K. Hayashi, Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Science, 36(1999):811~826
    32. G. Klee, F. Rummel, A. Williams. Hydraulic fracturing stress measurement in Hong Kong[J]. International Journal of Rock Mechanics and Mining Science, 36(1999):731~741
    33.李自强.水压致裂法地下绝对应力测量.中国诱发地震[M].[北京]:地震出版社.1984
    34. Morgenstern N. R. and Vaughan P. R. (1963), Some observations on allowable grouting pressures[C]. Proceedings of Conference Grouts and drill in Muds, Institute of Civil Engineering, London, 36~42
    35. Wong. H. Y., and Farmer. I. W. (1973), Hydro-fracture mechanisms in rock during pressure grouting[J]. Rock Mechanics 5,21~41
    36. Murdoch, L.C. (1995), Forms of hydraulic fractures created during a field test in fine-grained glacial drift[J]. Q. Journal of Engineering Geology, 28, 23~35
    37. Murdoch, L. C. (2000), Remidation of organic chemicals in the vadose zone. Vadose zone, Science and Technology Solutions[C], B. B. Looney and R. W. Falta, eds., Battelle, 949~1237.
    38. Pollard, D. D. (1973).Derivation and evaluation of a mechanical model for sheet intrusions[J]. Tectonophysics, 19, 233~269
    39. Pollard D. D. (1978). Forms of hydraulic fractures as deduced from field studies of sheet intrusions[C]. United States Symposium of rock Mechanics, Y. S. Kim, edited, University of Nevada, Reno, November, 1~9
    40
    
    40. Kenneth D. Mahrer, A review and perspective on far-field hydraulic fracture geometry studies[J], Journal of Petroleum Science and Engineering 24 1999 13 - 28
    41. S. H. Advani & T. S. Lee, J.M. Avasthi. Parametric sensitivity investigations for hydraulic fracture configuration optimization[A], In: Rock Mechanics as a Guide for Efficient Utilization of Natural Resources. Khair(ed.). 1989 Balkema Rotterdam. ISBN 90 6191 871 5:451~458
    42.王育平,王永红.水-土相互作用对土体裂隙水流的影响[J].岩石力学与工程学报,1999,18(5)
    43. J. Desroches and M. Thiercelin. Modeling of the propagation and closure of micro-hydraulic fractures. In: Rock Mechanics in the 1990s(volume I), (Bezalel Haimson Ed.). The 34th U.S. Symposium on rock mechanics, University of Wisconsin-Madison, June 27~30,1993: 331~334
    44. P. Papanastasiou and M. Thiercelin. Influence of inelastic rock behavior in hydraulic fracturing. In: Rock Mechanics in the 1990s(volume Ⅰ ), (Bezalel Haimson Ed.). The 34th U.S. Symposium on rock mechanics, University of Wisconsin-Madison, June 27~30,1993: 339~342
    45.刘建军,刘先贵.有效压力对低渗透多孔介质孔隙度、渗透率的影响[J].地质力学学报,2001,7(1):41~44
    46.李世平,李玉寿.岩石全应力应变过程对应的渗透率—应变方程[J].岩土工程学报,1995,17(2):13~19
    47.秦勇,张德民,傅雪梅等.沁水盆地中—南部现代构造应力场与煤储层物性关系之探讨[J].地质评论,1999,45(6):576~583
    48.屠厚泽,高森.岩石破碎学[M],北京:地质出版社,1990
    49.王恩志,王洪涛,孙役,双重裂隙系统渗流模型研究[J],岩石力学与工程学报,1998,17(4):400~406
    50. X. Dunat, M. Vinches & J.-P. Henry et al. Modeling of hydro-mechanical coupling in rock joints, In: Mechanics of Jointed and Faulted Rock, Rossmanich(ed.), 1998, Balkeman, ISBN 90 5410 9556
    51. Skemton A.W., The pore pressure coefficient A and B. Geotechnique, 1954(4): 143~147
    52. Mesri G., Adachi K. & Ullrich C.R.,Pore response in rock to undrained change in all round stress. Geotechnique, 1976, 26(2): 317~330
    53. Guy Archambault, Stephane Poirier, Alain Rouleau et al. The behavior of induced pore fluid pressure in undrained triaxial shear test on fractured porous anology rock material specimens. In: Mechanics of Jointed and Faulted Rock, Rossmanich(ed.), 1998, Balkeman, ISBN 90 5410 9556:555~560
    54. S. C. Blair, R.K. Thorpe, F.E. Shaffer, Laboratory observations of the effect of geologic discontinuities on hydrofracture propagation, Rock Mechanics as a Guide for Efficient Utilization of Natural Resources, Khair(ed.),1989 Balkema, Rotterdam ISBN 90 6191 871 5
    
    55. T. Ito and K. Hayashi. Analysis of crack reopening behavior for hydrofrac stress measurement. In: Rock Mechanics in the 1990s(volume Ⅰ), (Bezalel Haimson Ed.). The 34th U.S. Symposium on rock mechanics, University of Wisconsin-Madison, June 27~30,1993: 335~338
    56. P. J. van den Hock, J.T.M van den Berg and J. Shlyapobersky. Theoretical and experimental investigation of rock dilatancy near the tip of a propagating hydraulic fracture. In: Rock Mechanics in the 1990s(volume Ⅰ), (Bezalel Haimson Ed.). The 34th U.S. Symposium on rock mechanics, University of Wisconsin-Madison, June 27~30,1993: 351~354
    57.郑少河,赵阳升.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2)
    58. Advani S.H., Lee T.S., and Lee J.K., Three dimensional modeling of hydraulic fractures in layered media: Part Ⅰ -finite element formulations, Journal of Energy Resources Technology, 1991,112:1~18
    59. SettariA. and Cleary M.P. Development and testing of a pseudo-three-dimensional model of hydraulic fracture geometry, SPEPE, Trans. AIME, 281,1986:449~466
    60. Touboul E., Ben Naceur K., and Thiercelin M., Variational methods in the simulation of three dimensional fracture propagation, In:Proc. 27th U.S. Symposium on Rock Mechanics, Tuscaloosa, AL, 1986: 659~668
    61. Martha L.F., Topological and Geometrical Modeling Approach to Numerical Discrietization and Arbitrary Fracture Simulation in Three Dimensions, PhD. Thesis, Cornell University, Ithaca, N.Y.,1991
    62. Sousa, J.L. Three-Dimensional Simulation of Near-Wellbore Phenomena Related to Hydraulic Fracturing from a Perforated Wellbore, PhD. Thesis, Cornell University, Ithaca, N.Y.,1992
    63. Vandamme L.,A Three Dimensional Displacement Discontinuity Model for the Analysis of Hydraulically Propagated Fractures, PhD. Thesis, University of Toronto, Toronto, Ontario, Canada, 1986
    64. J.F. Shao, Poroelastic behaviour of brittle rock materials with anisotropic damage[J], Mechanics of Materials 30(1998): 41~53
    65. Axel K.L. Ng and John C. Small, A Case Study of hydraulic fracturing using finite element methods[J], Can. Geotech. J. Vol. 36,1999:861~875
    66. Hong-Chul Leea, Young-Ha Hwanga, Tae-Gu Kimb, Failure analysis of nose landing gear assembly[J], Engineering Failure Analysis, 10 (2003) 77-84
    67. Ron C K Wong; Marolo C Alfaro, Fracturing in low-permeability soils for remediation of contaminated ground[J], Canadian Geotechnical Journal; Apr 2001; 38, 2; pg. 316
    68.余寿文 冯西桥,损伤力学,[北京]:清华大学出版社,1997.12
    69.谢和平,岩石混凝土损伤力学,[北京]:中国矿业大学出版社,1990.2
    70. Soo-Ho Chang, Chung-In Lee, Seokwon Jeon, Measurement of rock fracture toughness under modes Ⅰ and Ⅱ and mixed-mode conditions by using disc-type specimens[J], Engineering Geology 66 (2002) 79 - 97
    
    71. Richard J H Jolly; Lidia Lonergan, Mechanisms and controls on the formation of sand intrusions[J], Journal of the Geological Society, Vol 159, 2002, PP: 605-617
    72. C. Atkinson , D.A. Eftaxiopoulos, Numerical and analytical solutions for the problem of hydraulic fracturing from a cased and cemented wellbore[J], International Journal of Solids and Structures 39 (2002) 1621 - 1650
    73. C.Y. Dong, C.J. de Pater, Numerical modeling of crack reorientation and link-up[J], Advances in Engineering Software 33 (2002) 577-587
    74. Dougill J. W. ,Lau J. C. ,Burr N. J. ,Mechancis in Eng. ,AS CE. EMD. ,1976,333~355
    75.尤明庆 邹友峰,关于岩石非均质性质与强度尺寸效应的讨论[J],岩石力学与工程学报,2000,19(3):391~395
    76.龙广成 周筑宝 谢友均,混凝土断裂尺寸效应律的探讨[J],长沙铁道学院学报,1999,17(4):51~54
    77.徐世烺,赵国藩,混凝土断裂韧度的概率模型研究,土木工程学报,1988,21(4):9~23
    78.倪玉山 张琦,混凝土尺寸效应研究进展,力学进展,1997,27(1):97~103
    79.胡蓓雷 赵国藩 宋玉普,混凝土损伤与试件尺寸效应[J],计算力学学报,1997,14(2):204~216
    80. Loland K E. ,Continuum damage model for load response estimation of concrete, Cement and Concrete Research, 1980,10,395~402
    81.余天庆,混凝土的分段线性损伤模型,岩石、混凝土断裂与强度,1982,2,14~16
    82.钱济成 周建方,混凝土的两种损伤模型及其应用,河海大学学报,1989,3,40~47
    83.C 伏尔柯夫,吴学蔺译,强度统计理论,科学出版社,1965
    84.T.C.皮萨林科、A.A.别捷列夫著,江明行译,复杂应力状态下的材料变形与强度,科学出版社,1983:129~140
    85. Kandarpa S, Kirkner D J, Spencer B F. Stochastic damage model for brittle materials subjected to monotonic loading[J]. Journal of Engineering Mechanics. 1996(8): 788~795
    86.李杰,张其云,混凝土随机损伤本构关系[J],同济大学学报,2001,29(10):1135~1141
    87.唐春安,岩石破裂过程中的灾变[M],北京:煤炭工业出版社,1993.6
    88.杨卫,孙庆平,黄克智等.固体的宏细观本构理论与断裂.自然科学进展.1993,(6):515~524
    89.杨卫.细观力学与细观损伤力学.力学进展.1992,22(1):1~9
    90.王自强 段祝平,塑性细观力学,北京:科学出版社,1995
    91. Zhou Qunli, et al. Compression Shear Fracture Mechanics for Marble. Int. Confr. On Frac. Of Conc. And Rock, 1987
    92.金淑燕,孙天泽,徐实昆等,辉绿岩脆——塑性变形转化的高温高压实验研究[J],地球科学——中国地质大学学报,2000,25(6):565~572
    93.蒋海昆,张流,周永胜.不同围压条件下花岗岩变形破坏过程中的声发射时序特征[J].地球物理学报.2000,43(6):812~825
    94. Nemat-Nasser S and Hori M., Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, The Netherlands, 1993
    95
    
    95. Tvergaard V., Material Failure by Growth to Coalescence.. The Danish Center for Applied Mathematics and Mechanics, Report No. S45 , The Technical University of Denmark ,1988
    96. Gilormini P. Licht C and Suquet P. , Growth of Voids in a Ductile Matix: A Review. Arch. Mech. , 1988,40(1),43~80.
    97. Krajcinovic D. Damage mechanics. Mech. Mater. ,1989,8,117~197
    98. Kachanov M. ,Effective elastic propertyes of crack solids, critical review of some basic concepts. Appl. Mech. Review, 1992,45(7),304~335
    99. Budiansky B and O' Connell R J. ,Elastic Moduli of a cracked solids. Int. J. Solids Struct. ,1976,12(1),81~95
    100. Huang Y. Hu K. and Chandra A. A generalized self-consistent mechanics method for microcracked solids, J. Mech. Phys. Solids, 1994,42(8),1273~1291
    101. Benvensite Y. On the Mori-Tanaka' s method in cracked solids. ,Mech. Res. Comm. ,1986,13(4),193~201
    102. Hashin Z. The differential scheme and its application to cracked materials. J. Mech. Phys. Solids , 1988,36,719~734
    103. Dugdale D S. , Yielding of Steel sheets containing slits. J. Mech. Phys. Solids, 1960,8,100~104
    104.杨卫,宏微观断裂力学,[北京]:国防工业出版社,1995.9
    105. Ozmat B, Argon A S, Parks D M, Growth modes of cracks in creeping typ 304 strainless steel, Mech. Mater. ,1991,11:1~17
    106.杨卫,郭田福,傅增力,裂尖超钝化:实验、理论与数值模拟,力学学报,1993,25(4):468~478
    107. Budiansky B, O' Connell R J, Elastic moduli of a cracked solid. Int. J. Solids Structs, 1976,12:81~97
    108. Kachanov M L. A microcrack model of rock inelasticity, Part Ⅰ:frictional sliding on microcracks. Mech. Mater. , 1982,1:19~27
    109. Kachanov M L. A microcrack model of rock inelasticity, Part Ⅱ:Propagation of microcracks. Mech. Mater. , 1982,1:19~27
    110. Nemat-Nasser S, Sumi Y, Keer L M. Unstable growth of tension cracks in brittle solids: stable and unstable bifurcations, snap-through, and imperfection sensitiveity. Int. J. Solids Structs. ,1980,16:1017~1035
    111. Nemat-nasser S. On finite plastic flow of crystalline solids and geomaterials. J. Appl. Mech. ,1983,50:1114
    112. Bazant Z P. Mechanics of distributed cracking. Appl. Mech. Rev. , 1986,39:675~705
    113. Kracjinovic D. Constitutive equations for damage materials. J. Appl. Mech. ,1983,50:335~360
    114. Ozmat B, Argon A S, Parks D M. Growth modes of cracks in creeping type 304 stainless steel. Mech. Mater. ,1991,11:1~17
    115.L·米勒主编,岩石力学,CISM第165号教程与讲座,李世平 冯震海等译,[北京]煤炭工业出版社,1981.7:62~95
    
    116. Janson T. Dugdale crack in a material with continuous damage formation, Eng. Frac. Mech. ,1977,9,891~899
    117. Hult J. A H and MacClintock F A. Elastic-plastic stresss and strain distributions around sharp notches under repeated shear. In: Proc. Of 9th Int. Congress of Applied Mechanicd, 1957,8,51~58
    118. Roke D P and Bradshaw F J. A study of crack tip deformation and a derivation of fracture energy. In: Proc. of 2nd int. conf. Of fracture, Brighton, 1969,1,46~57
    119. Yu S W and Feng X. J. Temperature fields at crack tip in a damaging medium. ZAMM, 1992, 72(4), T 166~169
    120.冯西桥,脆性材料的细观损伤理论和损伤结构的安定分析,[博士学位论文],清华大学,1995
    121.林天健.岩石力学若干假说及其工程意义的评述[J].力学与实践,1989,11(6):64~70
    122.张金铸,林天健.三轴试验中岩石的应力状态和破坏性质[J].力学学报,1979(2)
    123.徐松林,吴文等.大理岩等围压三轴压缩全过程研究Ⅱ:剪切断裂能分析[J].岩石力学与工程学报,2002,21(1):65~69
    124.俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.6:317~338
    125.李小春,许东俊.岩石材料应变软化模型及有限元分析[J].岩土力学,1990,11(1):19~27
    126.林卓英,吴玉山,关玲莉.岩石在三轴压缩下脆—延转化的研究[J].岩土力学,1992(2/3):45~53
    127.高延法.岩石真三轴压力试验与岩体损伤力学[M].北京:地震出版社,1999.
    128. A.A. Savitski, E. Detournay, Propagation of a penny-shaped .uid-driven fracture in an impermeable rock: asymptotic solutions[J], International Journal of Solids and Structures 39 (2002) 6311-6337
    129. Wang Guanglun, O.A. Pekau, Zhang Chuhan et al., Seismic fracture analysis of concrete gravity dams based on nonlinear fracture mechanics[J], Engineering Fracture Mechanics, 65 (2000):67-87
    130. M. Gutierreza,, L.E. φinob, R. Nyga°rd, Stress-dependent permeability of a de-mineralised fracture in shale[J], Marine and Petroleum Geology 17 (2000) 895-907
    131. C.J. de Pater, J. Groenenboom, D.B. van Dam, R. Romijn, Active seismic monitoring of hydraulic fractures in aboratory experiments [J], International Journal of Rock Mechanics & Mining Sciences 38 (2001) 777-785
    132. M.M. Rahman, M.M. Hossain, D.G. Crosby et al., Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells[J], Journal of Petroleum Science and Engineering 35 (2002) 127- 150
    133. Ronit Nativ; Eilon Adar; Lior Assaf; Erik Nygaard, Characterization of the hydraulic properties of fractures in chalk[J], Ground Water; 2003; 41, 4: pg. 532-543
    134.苏文,徐树桐,江来利等.大别山北部石榴二辉麻粒岩变质结构和水活度及其演化特征[J],地球科学——中国地质大学学报,2000,25(2):152~158
    135. B.Y. Park , K.S. Kim , S. Kwon , Determination of the hydraulic conductivity components using a three-dimensional fracture network model in volcanic rock[J], Engineering Geology 66 (2002) 127-141
    13
    
    136. Z. Rahima,, S.A. Holditch, Effects of fracture fluid degradation on underground fracture dimensions and production increase[J], Journal of Petroleum Science and Engineering 37 (2003) 85-99
    137.凌建明,节理岩体损伤力学及时效损伤特性的研究[D],博士学位论文,[上海]同济大学,1992
    138. Horii H & Nemat-Nasser S. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure. J. of Geophysical Research, March 10, 1985, 90(B4): 3105~3125
    139. Horri H and Nemat-Nasser S .,Brittle failure in compression: splitting, failure and brittle ductile transition[J]. Phil. Trans. Royal Soc. London. A,(1986)319:337~374
    140.徐松林 吴文等,大理岩等围压三轴压缩全过程研究Ⅱ:剪切断裂能分析[J],岩石力学与工程学报,21(1),2002:65~69
    141.黄克智 肖纪美,材料的损伤断裂机理和宏微观力学理论[M],[北京]清华大学出版社 1999.12:62~87
    142.周维垣 剡公瑞 杨若琼,岩体弹脆性损伤本构模型及工程应用[J],岩土工程学报,Vol.20 No.5(1998):54~57
    143.余天庆 钱济成,损伤理论及其应用[M],[北京]国防工业出版社,1994(4):109~114
    144.安民 俞茂宏 吴熹等,广义双剪屈服准则在岩石力学中的应用[J],岩土力学,Vol.12 No.1(1991):17~26
    145.于骁中 谯常忻 周群力,岩石和混凝土断裂力学[M],[长沙]中南工业大学出版社,1991.12
    146.邓爱民 符晓陵 徐道远,混凝土拉、压损伤的等价关系研究[J],工程力学(增刊),2001:343~349
    147.谢兴华,速宝玉,詹美礼,基于应变的岩石类脆性材料损伤研究[J],岩石力学与工程学报,2004,23(12):
    148.谢兴华,速宝玉,詹美礼,基于应变的脆性岩石破坏强度研究[J],岩石力学与工程学报,2004,23(7):1087-1090
    149.谢兴华,速宝玉,高延法,岩石类脆性材料损伤断裂研究综述[J],建筑技术开发,2003,30(5):89~92
    150.谢兴华,速宝玉,裂隙岩体水力劈裂研究综述[J],岩土力学,2004,(2):330-336
    151. Sherard J. L. Embankment Dam Cracking, Embarkment Dam Engineering-The Casegrande Volume, John Wiley and Sons, Inc. N.Y. 1973
    152. Hubbert M. K. and Willis D.G., Mechanic of Hydraulic Fracturing, Transactions of American Institute of Mining Engineers, Vol. 210(1957): 153~168
    153. Haimson B. Hydraulic Fracturing in Porous and Non-porous Rock and Its Potential for Dertermining In-site Stress at Great Depth, Technical Report No.4-68,U.S. ACE,1968
    154.孙亚平,水力劈裂机理研究,[博士学位论文],清华大学,1985.12
    155.朱建华,心墙压实土的水力劈裂研究,[硕士学位论文],水利水电科学研究院,1985.1
    156. C.M. Kim & H.H.Abass, Hydraulic fracture initiation from horizontal wellbores: Laboratory experiments, In: Rock Mechanics as a Multidisciplinary Science, Roegiers ed.,Proceedings of the 32nd U.S. Symposium, Balkema, Rotterdam, 1991:231~240
    157. John F. Schatz & Bennett J. Zeigler et al, Multiple radial fracturing from a wellbore-Experimental and theoretical results, 28th U S Symposium on Rock Mechanics, Tucson,29 June~1 July 1987:821~829
    15
    
    158.陈勉 庞飞 金衍,大尺寸真三轴水力压裂模拟与分析[J],岩石力学与工程学报,2000,19(增):868~872
    159.张守良 沈琛 邓金根,岩石变形及破坏过程中渗透律变化规律的试验研究[J],岩石力学与工程学报,2000,19(增),885~888
    160.王世芳,建筑材料,中央广播电视大学出版社,1997.1
    161.黄良辉,复杂应力状态土体水力劈裂性质研究[D],博士学位论文,北京:清华大学,1989.1,P28
    162.惠兴田,巷道顶板中的自稳隐形拱[J],建井技术,Vol.21 No.5(2000):17~19
    163.周维垣主编,高等岩石力学[M],北京:水利电力出版社,1989
    164.傅宇方 黄明利 任凤玉等,不同围压条件下孔壁周边裂纹演化的数值模拟分析[J],岩石力学与工程学报,2000,19(5):577~583
    165.傅宇方 梁正召 唐春安,岩石介质细观非均匀性对宏观破裂过程的影响[J],岩土工程学报 Vol.22 No.6(2000):705~710
    166.刘庭金 唐春安 焦明若,含典型裂纹系硬包体试样破裂机制的数值试验[J],东北大学学报(自然科学版),Vol.22 No.5(2001):553~556
    167.高延法,岩石真三轴压力试验与岩体损伤力学[M],地震出版社,1999.2:63~70
    168.刘庭金 唐春安,软硬接触对含包体试样破裂模式影响的数值试验[J],地震研究,Vol25,No 1(2002):53~57.
    169. Peter Valko and Michael J. Economides, Hydraulic Fracture Mechanics[M], England: John Wiley & Sons,1995
    170. D.G. Crosby, M.M. Rahman, M.K. Rahman, S.S. Rahman, Single and multiple transverse fracture initiation from horizontal wells[J], Journal of Petroleum Science and Engineering 35 (2002) 191- 204
    171. Aguilera Roberto(1995), Naturally fractured reservoirs(2nd edition)[M], Pennwell Books, Pennwell Publishing Company, Tulsa. Oklahoma, USA
    172.王仁 熊祝华 黄文彬,塑性力学基础(M),北京:科学出版社,1982.3
    173. Mi Y M. Three-dimensional analysis of crack growth. Computational Mechanics Publications, 1996
    174.寇晓东.无单元法追踪结构开裂及拱坝稳定研究[博士学位论文].北京:清华大学,1998
    175. Brace W F. Brittle Fracture of Rocks. in: W.R.Judd, eds. State of Stress in the Earth's Crust. Elsevier, New York, 1964. 117~174
    176. Hock E & Bieniawski Z T. Brilltie fracture propagation in rock under compression. Int. J. Fract. Mech., 1965, 1:137~155
    177. M.K. RAHMAN, M.M. HOSSAIN and S.S. RAHMAN, An analytical method for mixed-mode propagation of pressurized fractures in remotely compressed rocks [J], International Journal of Fracture 103: 243-258, 2000.
    178. Erdogan, F. and Sih, G.C. (1963). On the crack extension in plates under plane loading and transverse shear [J] . ASME, Journal of Basic Engineering 85, 519-527.
    179. Chang, K.J. (1981). On the maximum strain criterion - A new approach to the angled crack problem [J] . Engineering Fracture Mechanics 14, 107-124.
    
    180. Hellan, K. (1984). Introduction to Fracture Mechanics[M], McGraw-Hill, International Editions, Singapore.
    181. Sih, G.C. (1974). Strain-energy-density factor applied to mixed mode crack problems[J]. International Journal of Fracture 10, 305-321
    182. Shen, B. and Stephansson, O. (1993). Numerical analysis of mixed mode Ⅰ and mode Ⅱ fracture propagation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 30, 861-867.
    183. Sousa, J.L., Lutz, E.D. and Ingraffea, A.R. (1991). Three-dimensional simulation of hydraulically driven fracture propagation in rock mass. InFracture Processes in Concrete, Rock and Ceramics 2 (Edited by J.G.M. van Mier, J.G. Rots and A. Bakker), E & FN Spon/Chapman & Hall, UK, 545-560.
    184. Sousa, J.L., Carter, B.J. and Ingraffea, A.R. (1993). Numerical simulation of 3D hydraulic fracture using Newtonian and power-law fluids. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 30, 1265-1271.
    185.胡云进,应用无单元法追踪三维岩体裂纹的扩展[R],博士后研究报告,北京:清华大学,2003.8
    186.尹双增.断裂、损伤理论及应用.北京:清华大学出版社,1992
    187. Gerstle W H, Matha L & Ingraffea A R. Finite and boundary element modelling of crack propagation in two- and three-dimensions. Engrg. with Computers, 1987, 2:167~183
    188.J.贝尔著,李竞生,陈崇希译,孙讷正校,多孔介质流体动力学,中国建筑工业出版社,1983.8,P26~27
    189.李建林,哈秋瓴.节理岩体拉剪断裂与强度研究.岩石力学与工程学报,1998,17(3):259~266
    190.陈文玲,李宁,含非贯通裂隙岩体介质的损伤模型,岩土工程学报,2000,22(4)
    191. Advani S.H., Lee T.S., and Lee J.K., Three dimensional modeling of hydraulic fractures in layered media: Part Ⅰ -finite element formulations, Journal of Energy Resources Technology, 1991,112:1~18
    192. SettariA. and Cleary M.P. Development and testing of a pseudo-three-dimensional model of hydraulic fracture geometry, SPEPE, Trans. AIME, 281,1986:449~466
    193. Touboul E.,Ben Naceur K., and Thiercelin M., Variational methods in the simulation of three dimensional fracture propagation, In:Proc. 27th U.S. Symposium on Rock Mechanics, Tuscaloosa, AL,1986: 659~668
    194. Martha L.F., Topological and Geometrical Modeling Approach to Numerical Discrietization and Arbitrary Fracture Simulation in Three Dimensions, PhD. Thesis, Cornell University, Ithaca, N.Y.,1991
    195. Sousa,J.L. Three-Dimensional Simulation of Near-Wellbore Phenomena Related to Hydraulic Fracturing from a Perforated Wellbore, PhD. Thesis, Cornell University, Ithaca, N.Y., 1992
    196. Vandamme L.,A Three Dimensional Displacement Discontinuity Model for the Analysis of Hydraulically Propagated Fractures, PhD. Thesis, University of Toronto, Toronto, Ontario, Canada, 1986
    197. J.F.Shao,Poroelastic behaviour of brittle rock materials with anisotropic damage[J], Mechanics of Materials 30(1998): 41~53
    
    198. Axel K.L. Ng and John C. Small, A Case Study of hydraulic fracturing using finite element methods[J], Can. Geotech. J. Vol.36,1999:861~875
    199.董哲仁,钢衬钢筋混凝土压力管道设计与非线性分析[M],中国水利水电出版社,1998.4:190~202
    200. Zhan Meili & Su Baoyu, Modification for 3-D failure stress state on the basis of stress path, In: Computer Methods and Advanced in Geomechanics, Jianxin Yuan Edited, Proceedings of the ninth international conference on computer methods and advances in geomechanics, Wuhan,China,2-7 November 1997
    201.华东水利学院土力学教研室编,土工原理与计算[M],北京:水利水电出版社,1982.11
    202.张玉卓,张金才,裂隙岩体渗流与应力耦合的试验研究[J],岩土力学,1997,18(4):59~62
    203.盛金昌,速宝玉,王媛等.裂隙岩体渗流弹塑性应力耦合分析[J].岩石力学与工程学报,1999,19(3):304~309
    204.郑少河,朱维申,裂隙岩体渗流损伤耦合模型的理论分析[J],岩石力学与工程学报,2001,20(2):156~159
    205.周创兵,熊文林,双场耦合条件下裂隙岩体的渗透张量[J],岩石力学与工程学报,1996,15(12):338~344
    206.周创兵,熊文林,地应力对裂隙岩体渗透特性的影响[J],地震学报,1997,19(2):154~163
    207.朱珍德,孙钧,裂隙岩体的渗流场与损伤场耦合分析模型及其工程应用[J],长江科学院院报,1999,16(5)
    208.姜振泉 季梁军 左如松等,岩石在伺服条件下的渗透性与应变、应力的关联性特征[J],岩石力学与工程学报,2002,21(10):1442~1446
    209.朱珍德,张爱军,徐卫亚,脆性岩石全应力-应变过程渗流特性试验研究[J],岩土力学,2002,23(5):556~563
    210.杨天鸿,岩石破裂过程渗透性质及其与应力耦合作用研究[D],博士学位论文,东北大学,[沈阳],2001
    211.朱珍德,裂隙岩体损伤流变模型研究及其应用[博士后D],成都:四川大学,1999.5
    212. Elsworth D., R. E. Goodman, Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1986, 23(3): 233-243
    213.杨天鸿,唐春安,朱万成等,岩石破裂过程渗流与应力耦合分析[J],岩土工程学报,2001,23(4):489~493
    214.王学滨,潘一山,考虑围压及孔隙压力的岩石试件应力与应变关系[J],地质力学学报,2001,7(3):266~270
    215.张守良,沈琛,邓金根.岩石变形及破坏中渗透率变化规律的实验研究[J].岩石力学与工程学报,2000,19(增):885~888
    216.韩宝平,冯启言,等.全应力应变过程中碳酸盐岩渗透性研究[J].工程地质学报,2000,8(2):127~128.
    217.李世平,李玉寿,吴振业.岩石全应力应变过程对应的渗透率-应变方程[J].岩土工程学报,1995,17(2):231~235.
    218.唐春安.脆性材料破坏过程分析的数值试验方法[J].力学与实践,1999,21(2):21~24.
    
    219.唐春安,朱万成,混凝土损伤与断裂——数值试验[M],北京:科学出版社,2003.1
    220.徐芝纶,弹性力学(第二版)(M),北京:高等教育出版社,1982.4
    221.赵阳升,煤体—瓦斯耦合数学模型及数值解法[J],岩石力学与工程学报,1994,13(3):229~239
    222.桂和荣,孙本魁,“深部开采底板突水控制论”研究意义及核心内容[J],淮南工业学院学报,(1999)Vol.19 No.3:
    223.王鸿勋,张士诚,水力压裂设计数值计算方法[M],北京:石油工业出版社,1998.6:104~196
    224.《数学手册》编写组,数学手册[M],北京:高等教育出版社,1979.5(第一版),2000年重印,PP:331~332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700