用户名: 密码: 验证码:
全球地幔对流的数值模拟及其动力学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对国内外关于地幔对流的研究进行了广泛而深入的调研,现有的研究结果表明,地幔对流
    是地球内部热能传递并将之转化为板块运动所需动能的一种有效途径,是导致地表观测场异常
    如大地水准面异常、重力异常、地表地形和岩石圈内部应力场异常以及长期海平面变化、大陆
    造山带和大洋盆地的形成、世界范围内地震和火山活动等方面的最主要原因。作者发现仍有几
    个问题需加强研究,如板块运动中的环型成分的激发机制,地幔粘度的处理,实际资料的引入
    等。作者的学位论文针对这几个问题进行了研究,获得了许多新的结果。本论文的贡献主要表
    现在以下几个方面:
    1) 、 建立了常粘度的高级数模型。为了深化认识和理解常粘度下球层中非线性自由热对
    流格局及其随热动力学参数--瑞利数和球谐级数m的演化特征,将前人在球谐级数m=0时
    的零级数模型发展为高级数模型(m=0,1,2,…,l)。前者仅能获得2-D南北向剖面,而本论文
    的模型可以获得一系列的南北向、东西向和深度上的3-D剖面。结果表明,瑞利数在非线性自
    由热对流中具有重要的影响,随着瑞利数的增大,对流的速率加快,热对流会逐渐成为球层中
    的主要传热方式,高温热柱区扩张,对流胞的数目增多。随着级数m的增加,温度剖面中的扰
    动区域相应于零级数模型的增多,而导致对流环数目亦增加,且其纵横比变大;
    2) 、 建立了一维粘度扰动下的变粘度模型。通过假定粘度为常粘度背景下存在仅随纬度
    变化的小横向扰动,将常粘度模型发展为变粘度地幔对流模型。对比了不同边界模型、深度和
    瑞利数时的环型场的变化特征。注意到环型场能量主要集中在球层的中、上部区域,其速度仅
    占总速度的几个百分点,这个比例几乎不随瑞利数的变化而改变,但其对流图样受瑞利数的影
    响较大。环型场的对流形态和速度的分布特征表现出了明显的纬向差异;
    3) 、建立了三维粘度扰动下的变粘度模型,引入了三维地震波速异常来约束模型。将仅
    随纬度变化的粘度发展为三维粘度变化形式,提供了相应的求解方法。然后将地震波速异常转
    换为地幔内部的温度和粘度异常,获得了极型场和环型场分布特征。
    4) 、探讨了地幔浅部对流场与地表构造的关系,获得了新的认识。在地幔浅部的极型场对
    流剖面不但与板块边界对应很好,还显示出(1) 各主要板块的运动方向和相对速率大小;(2)
    欧亚大陆南缘、西北缘和东缘分别受到印度洋板块的北向、大西洋板块的南东向以及太平洋板
    块的北西-西向的碰撞和挤压,因而在其南缘和东缘分别形成了巨型造山带和俯冲带,但是由
    于大西洋板快的运动速率和方向基本与欧亚板块的一致,这可能是在欧亚大陆西北缘不存在巨
    型造山带和俯冲带的原因:(3) 在非洲大陆东北部存在一个明显的发散中心,这可能是形成东
    非大裂谷的深部动力学原因。(4) 参与欧亚大陆南缘和美洲西缘造山活动的主体可能分别是
    400km以浅的印度洋板块和美洲大陆;太平洋板块可能俯冲到了400km以下的深度。
    首次提供了地幔浅部的环型场对流剖面,并探讨了其与浅部构造的联系:(1) 在赤道附近
    的大致南东东-北西西的强对流条带可能与环赤道大型剪切系统的存在相关:(2) 在南北半球
    存在的旋转方向相反的对流环表明它们整体上可能存在差异旋转。
    
    
    中国地震局地球物理所博士学位论文
     5)初步探讨了固体地球的差异旋转。论文对固体地球的差异旋转现象、速率、证据以及
    可能的产生机制进行了概述,并对岩石圈和地慢之间祸合的儿种可能力矩的量级进行了简单的
    估算。地球差异旋转可能会对地慢对流的对流形态产生重要的影响,因此结合岩石圈、地慢以
    及地核间差异旋转的地慢对流模型可能会对认识和理解地表全球构造的形成和演化起到积极
    作用。但作者现在还无法找到如何合理地将地球的这种运动引入到地慢对流模型中,期望专家
    们能为它们的结合提供建议,也愿意和感兴趣的研究者进行讨论。
     当然,论文目前的模型还需改进,在未来开展的研究中,应考虑用更多的地表观测资料和
    数据,如大水准面异常和地表重力位数据以及GPS资料等来约束模型,依此可以用来预测其它
    地球物理场的状态和分布规律,通过对比分析预测结果和实际观测数据分布的差异,调节模型
    尽量接近地球地慢的真实对流情况,从而找到浅部构造的深部动力学背景。
Widely reading the papers with respect to mantle convection throughout the world, we found that mantle convection is an effective way to transport quantity of heat and transform it into the kinetic energy of plate motion, and causes the anomalies of surface observed fields, e.g. geoid anomalies, gravity anomalies, surface topography and stress field anomalies within the lithosphere. It is also the main reason of the secular variations of sea level, the formation of continental erogenic zone and oceanic basin as well as the seismic and volcanic activity all over the world. However, a few aspects still deserve on study at present, e.g. the mechanism of toroidal component of plate motion, how to deal with mantle viscosity and use observations. These problems above are studied and some new results are obtained in my Ph.D. thesis. The main contributions are as follows.
    1) Setting up a high-order model. In order to understand further the patterns of thermal free convection with thermodynamic parameter- Rayleigh number and spherical-harmonic order m in a spherical shell, Zero-order model is developed into high-order model expanded the scalar poloidal and fluctuating temperature fields into Legendre polynomials with degree / = 6 and order m - 0, 1, 2, ..., l but not m = 0 only. Compared with zero-order model (degree 1 = 6 and order m = 0), from which only 2-D southerly (r) profiles can be obtained, high-order model can provide a series of southerly (r), easterly (r and radial velocity profiles. With Rayleigh number increasing, the convective motion becomes stronger, thermal convection becomes the main way of heat transportation, the hotter plume zone becomes wider, and the convection cells increases. With the addition of order m, the number of the fluctuating zone in temperature profiles increases, which causes the convective cell increase and its aspect ratio larger.
    2) Setting up a variable viscosity model with one-dimensional viscosity fluctuations. A constant viscosity mantle convection model is developed into a variable viscosity model assumed a latitude-dependent viscosity with small fluctuations on the basis of a constant background value. The features of toroidal field are studied for different boundary conditions, Rayleigh numbers and depths. It is found that the energy of toroidal field mainly concentrates in the middle and upper parts of the shell, and the ratio, hardly dependent on Rayleigh number, of toroidal to total velocities amounts to only a few percents. Rayleigh number has great effects on the convection patterns of toroidal field. The convection patterns and velocities of toroidal field have distinct differences in latitudinal direction.
    3) Setting up a variable model with 3-D viscosity fluctuations and introducing 3-D seismic wave velocity into the model. One-dimensional variable viscosity is developed into 3-D viscosity variations and the corresponding solution is presented. The seismic wave velocity is transformed into fluctuating temperature field and viscosity variations within the mantle, then the poloidal and toroidal fields are solved.
    4) Discussing the relationships of the velocity field and surface tectonics, and getting some new results. In the shallow part of the mantle, not only the convergent and divergent zones in poloidal velocity profile are well consistent with plate boundaries, but the profile shows (1) the moving
    
    
    direction and velocity of each main plate; (2) that the southern, northwestern, and eastern margins of Eurasian continent are collided and compressed by the northward moving Indian plate, the southeastward moving Atlantic plate and the northwest-westward moving Pacific plate, respectively. Therefore, the large erogenic zone and subduction zone occur in its southern and eastern margins. However, there are no these tectonics in its northwestern margin since the rate and direction of Atlantic plate is consistent with that of Eurasian plate; (3) There is a divergent zone in northeast Africa, which probably causes the East African Rift Valley; (4) It is possible that
引文
白武明.地幔对流和全球应力场.见:现今地球动力学问题讨论会论文集.北京:地震出版社,1994,46~56.
    陈良君,臧绍先.地幔粘度结构的研究,地球物理学进展,1998,13(4) :23~36.
    傅容珊.地球大地水准面异常和地幔对流的物理数学模型.地球物理学报,1990,33(专集Ⅱ):457~468.
    博容珊.地幔热动力学模型.地球物理学进展,1993,8(2) :15~22.
    傅容珊,常筱华,黄建华,等.区域重力均衡异常和上地幔小尺度对流模型.地球物理学报,1994,37(增刊 Ⅱ): 249~257.
    傅容珊、李力刚、黄建华等.青藏高原隆升过程的三阶段模式.地球物理学报,1999,42(5) :609~616
    傅容珊、黄建华等.青藏高原-天山地区岩石层构运动的地幔动力学机制.地球物理学报,1998,41(5) :658~ 668
    傅容珊,黄建毕,刘文忠.地震层析地球内部密度分布横向不均匀研究[J].地球物理学报,1993,36(6) : 740~751
    洪汉净,阮维基.大长宽比非稳态地幔对流的速度场特性.见:现今地球动力学问题讨论会论文集.北京:地 震出版社,1994,57~71.
    黄怀曾,吴功建等编.岩石圈动力学研究.北京:地质出版社,1994,53~55.
    黄建华,常莜华,傅容珊.两北地区上地幔物质流动及岩石层动力学.地震学报,1996,18(2) :194~199
    李荫亭.动态地幔柱尾管结构.地球物理学报,2000,43(1) :27~36
    李荫亭,关相德,薛恩.地幔对流与板快构造动力学.见:全国地热学术会议论文集.北京:科学出版社.1981, 15~24
    李祖宁.青藏高原隆升三阶段模式的数值模拟.科技大学硕士论文,2001.
    楼海,王椿镛,王飞.卫星重力资料揭示的新疆天山地区构造动力学状态.地震学报,2002,22(5) :482~ 490
    马宗晋.全球三大构造体系与板条构造.见:全球构造与剧体地球多圈层相互作用,香山科学会议第143次学 术讨论会,2000,14~16
    马宗晋,陈强.全球地震构造系统与地球的非对称性.中国科学,1988,10(B辑):1092~1099.
    马宗晋,杜品仁主编.地质力学的方法与实践-现今地壳运动问题(第四篇(下)),北京:地质出版社,1995.
    马宗晋,杜品仁.关于构造热涌模型的进一步思考.地震地质,2000,22(1) :59~64.
    马宗晋,宋小东,杜品仁,等.地球南北半球的非对称性[J].地球物理学报,2002,45(1) :26~33
    孙付平,赵铭,宁津生,等.用空间大地测量数据检测地球的非对称性全球构造变化.科学通报,2000,44 (99)
    孙荀英,王仁,王其允.海沟后退对地幔对流的影响.地球物理学报,1994,37(6) :738~748
    特科特D L, 舒伯特G主编.地球动力学-连续介质物理在地质问题上的应用,北京:地震出版社,1936.
    王绳祖.亚洲中东部地幔涡旋对流与“涡旋/网络”大陆动力学模型.地震地质,1998, 20(4) :379~389.
    
    
    王绳祖,李建国,张宗淳.地幔对流的实验研究:非立柱状幔柱和地幔涡旋.地震地质,2000,22(2) :155~ 166.
    王家映.地球物理反演理论[M].武汉:中国地质大学出版社,1998,23-26
    王景赟,黄建华,傅容珊.弹性岩石圈、区域重力异常和上地幔小尺度对流.地壳形变与地震,2000,20(4) : 1~8.
    吴珍汉.1997. 旋转地球动力学[M].北京:地质出版社
    杨学祥,等.1998. 地球差异旋转动力学[M].长春:吉林大学出版社
    叶正仁.地幔对流产生的重力与大地水准面异常.固体地球物理学术讨论会,石家庄,1985.
    叶正仁.一种反演地幔密度横向差异的方法.地球物理学报,1988a,31:65-72.
    叶正仁,滕春凯,张新武.地幔对流与岩石圈板块的相互耦合及影响--(Ⅰ)球腔中的自由热对流[J].地球 物理学报,1995,38(2) :174~180
    叶正仁,朱日祥.地幔对流与岩石圈板块的相互耦合及影响--(Ⅱ)地幔混合对流理论及其应用[J].地球 物理学报,1996,39(1) :47-56
    张健,熊亮萍,汪集旸.南海深部地球动力学特征及其演化机制.地球物理学报,2001,44(5) :602-610
    朱涛.地幔动力学研究进展--地幔对流.地球物理学进展,2003,18(1) :65-73
    朱涛,冯锐.球层中高阶自由热对流格局及其变化的研究[J].地震学报(待刊),2004.
    Albarede F.Van der Hilst R D.可以调和证据矛盾的新地幔对流模型.世界地震译从,2002,3:52-58. 谢晓 峰译自:New mantle convection model may reconcile conflicting evidence. Eos, 1999, 80(45) : 35-39
    Anderson O L, Sumino Y. The thermodynamic properties of the Earth's lower mantle. Phys. Earth Planet. Inter., 1980, 23:314-331.
    Andrews D J, Sleep N H. Numerical modeling of tectonic flow behind island arcs. Geophys. J. R. Astron. Soc.. 1974, 38,237-251.
    Artyushkov E V. Density differentiation of the earth's matter and processes at the core-mantle interface. J. Geophys. Res., 1972,77:6454-6458.
    Artyushkov E V. Stresses in the lithosphere caused by crustal thickness inhomogeneities.J. G. R., 1973, 78:7675-7708.
    Bataille K, Flatte S M. Inhomogeneities neat the core-mantle boundary inferred from short-period scattered PKP waves recorded at the Globe Digital Seismograph Network. J. Geophys. Res., 1988,93: 15057-15064
    Baudry N, Kroenke L. Intermediate-wavelength (400-600) South Pacific geoidal undulations: their relationship of linear volcanic chains. Earth and Planet. Sci. Lett., 1991, 102: 430-443.
    BERCOVICI D, SCHUBERT G, GLATZMAIER G A. Three-dimensional spherical models of convection in the earth's mantle. SCIENCE, 1989, 244-247.
    Bercovici D, Schubert G, Zebib A, et al. Geoid and topography for infinite Prandtl number convection in a spherical shell. J.G.R., 1988, 93(B6) : 6430-6436.
    Buckus G. 1958. A class of self-sustaining dissipative spherical dynamos[J]. Ann Phys, 4: 381-384
    Busse F H. Multiple solutions for convection in a two component fluid. Geophysical Research Letters, 1982, 9(5) :
    
    519-522
    Busse F H. Quadrupole convection in the lower mantle. Geophysical Research Letters, 1983, 10(4) : 285-288.
    Butler S L. Peltier W R. On scaling relations in time-dependent mantle convection and the heat transfer constraint on layering. J. G. R., 2000,105(B2) : 3175-3208
    Cadek O, Richard Y, Martinec Z, Matyska C. Comparison between Newtonian and non-Newtanian flow driven by internal loads. Geophys. J. Int., 1993,112: 103-114
    Chase C G. Subduction, the geoid and lower mantle convection. Nature, 1979, 282: 464-468.
    Christensen U. 1984. Convection with pressure-and temperature-dependent non-Newtonian rheology[J]. Geophys J R Astr Soc, 77: 343-384
    Christensen U, Harder H. 1991. 3-D convection with variable viscosity[J]. Geophys J Int, 104: 213-226
    Christensen U, Yuen D A. The interaction of a subducting lithospheric slab with a chemical or phase boundary. J. Geophys. Res., 1984, 89: 4389-4402.
    Clayton R W, Comer R P. A tomographic analysis of mantle heterogeneities from body wave travel time[J]. EOS Trans Am Geophys Union, 1983, 62: 776
    CREAGER K C, JORDAN T H. Slab penetration into the lower mantle. J.G.R., 1984, 89(B5) :3031-3049.
    Creager K C, Jordan T H. Slab penetration into the lower mantle beneath the Marianas and other arcs of the northwest Pacific. J. G. R., 1986,91(83) .
    Cripp A E, Richard G G. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model. Geophys. Res. Lett., 1990,17(8) : 1109-1112
    Crough S T, Jurdy D M. Subducted lithosphere, hotspots and the geoid. Earth and Planetary Science Letters, 1980, 48: 15-22.
    Cserepes L, Rabinowicz M, Rosemberg-Borot C. Three-dimensional infinite Prandtl neumber convection in one and two iayers with implications for the earth's gravity field. J.G.R.,1988. 93(B10) : 12009-12025.
    Detrick R S, Crough S T. Island subsidence, hotspots, and lithosphere thinning. J. Geophys. Res., 1978, 83:1236-1244.
    Duncan R A, Richards M A. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys., 1991, 29: 31-50
    Dziewonski A M. Mapping the Lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. J.G.R. 1984, 89(B7) : 5929-5952.
    Dziewonski A M, Anderson D L. Preliminary reference earth model [J]. Physics of the Earth and Planetary Interiors, 1981,25:297-356
    Dziewonski A M, Hager B H, O'Connell R J. Large-scale heterogeneities in the lower mantle. J. Geophys. Res., 1977, 82: 239-255
    Dziewonski A M, Woodhouse J H. Global images of the Earth's interior. Science, 1987,236: 37-48
    ElsasserWM. Sea floor spreading as thermal convection. J. Geophys. Res., 1971,76:1101-1112.
    Fleitout L, Froidevaux C. Tectonic and topography for a lithosphere containing density heterogeneities. Tectonics,
    
    1982,1:21-56.
    Forsyth D, Uyeda S. On the relative importance of the driving forces of plate motion. Geophys. J. R. Astron. Soc., 1975,43: 163-200.
    Forte A M, Peltier W R. Plate tectonics and aspherical Earth structure: the importance of poloidal coupling. J. Geophys. Res., 1987,92:3645-3679.
    Forte A M, Peltier W R. Gross earth data and mantle convection: new inferences of mantle viscosity. In: Glacial Isostasy, Sea-level and Mantle Rheology, eds by Sabadini R, Lambeck K and Boschi E. Netherlands: Kluwer Academie Publishers, 1991, 425-444
    Fu R S. A numerical study of the effects of boundary conditions on mantle convection models constrained to fit the low degree geoid coefficients. Phys. Earth Planet. Inter, 1986,44: 257-263.
    Fu R S. 1989. Plate motions, earth's geoid anomalies and mantle convection[A]. In Slow deformation and transmission of stress in the earth[C], eds by Cohen S C, Vanicek P, 47-54
    Fu R S. Huang J H. Deep mantle flow, global tectonic pattern and the background of seismic stress field China. ACTA SE1SMOLOGICA SINIA, 1992, 5(2) : 271-281.
    Fu R S, Huang P H. The global stress field in the lithosphere obtained from the satellite gravitational harmonics. Physics of the Earth and Planetary Interiors, 1983, 31: 269-276.
    Fu R S, Huang J H. Global stress pattern constrained on deep mantle flow and tectonic features. Physics of the Earth and Planetary Interior, 1990, 60: 314-323.
    Gable C W, O'Connell R J, Travis B J. Convection in three dimensions with surface plates: generation of toroidal flow[J]. J Geophys Res, 1991,96: 8 391-8 405
    Garwin L. Smoke signals from the deep. Nature, 1991, 351: 699-701.
    Giardini D, Li X, Woodhouse J H. Three dimensional structure of the Earth from splitting in free oscillation spectra. Nature, 1987,325:405-411
    Haddon R A W. Evidence for inhomogeneities near the core-mantle boundary. Phil. Trans. Roy. Soc. London, 1982, 306:61-70
    Haddon R A W, Buchbinder G G R. S-wave scattering by 3-D heterogeneities at the base of the mantle. Geophys. Res. Lett., 1987, 14:891-894
    Hager B H, O'Connell R J. Subduction zone dips and flow driven by the plates[J], Tectonophysics, 1978, 50: 111-134
    Hager B H, O'Connell R J. Kinemetic models of large-scale mantle flow. J. Geophys. Res., 1979, 84: 1031-1048.
    Hager B H, O'Connell R J. A simple global model of plate dynamics and mantle convection. J. Geophys. Res., 1981, 86:4843-4867.
    Hager B H. Subducted slabs and the geoid: constraints on mantle rheology and flow. J. Geophys. Res., 1984, 89: 6003-6015.
    Hager B H. Mantle viscosity: a comparison of models from postglacial rebound and from the geoid, plate driving forces, and advected heat flux. In: Glacial Isostasy, Sea-level and Mantle Rheology, eds by Sabadini R, Lambeck
    
    
    K and Boschi E. Netherlands: Kluwer Academic Publishers, 1991. 493-514
    Hager B H. Clayton R W, Richards M A, et al. Lower mantle heterogeneity, dynamic topography and the geoid. Nature, 1985, 313: 541-543 .
    Hager B H, Clayton R W. Constraints on the structure of mantle convection using seismic observations, flow models and the geoid[A]. In mantle convection: Plate tectonics and Global dynamics[M], eds. Peltier W R, Gordon and Breach, New York. 1989, 657-764
    Hager B H, Richards M A. Long-wavelength variations in Eath's geoid:physical models and dynamical implications. Phil. Trans. R. Soc. Lond. A. 1989, 328: 309-327.
    Haskell N A. The motion of a viscous fluid under a surface load. Physics. 1935,1(6) : 265-269.
    Haskell N A. The viscosity of the asthenosphere. Am. J. Sci., 1937, 33: 22-28
    Haxby W F, Weissel J K. Evidence for small-scale mantle convection from SEASAT altimeter data. J. Geophys. Res., 1986,91:3507-3520.
    Hess H H. History of ocean basins. In: A. E. J. Engel, H. L. James and B. F. Leonard eds., Petrologic studies. 1962, Buddington Volume: 599-620.
    Hong H J, Yuen D A. Dynamic effects from equation of state on topographics and geoid anomalies due to internal loading.J. Geophys. Res., 1990,95(812) : 19933-19948
    Jackson I N S, Liebermann R C, Ringwood A E. Disproportionation of spinels to mixed oxides: significance of cation configuration and implications for the mantle. Earth Planet. Sci. Lett., 1974, 24: 203-208.
    Jeanloz R, Richter F M. Convection, composition, and the thermal state of the lower mantle, J. Geophys. Res.. 1979, 84(B10) : 5497-5504.
    Jordan T H. Ljthospheric slab penetration into the lower mantle beneath the sea of Okhptsk. Geophys. Res., 1977, 43: 473-496.
    Kellogg L H, King S D. The effect of temperature dependent viscosity on the structure of new plumes in the mantle: Results of a finite element model in a spherical, axisymmetric shell. Earth and Planetary Science Letters, 1997, 148: 13-26
    King S D. Subducted slabs and the geoid 1. Numerical experiments with temperature-dependent viscosity[J]. J Geophys Res, 1994, 99(810) : 19 843-19 852
    Kirby S H, Kronenberg A K. Rheology of the lithosphere: selected topics[A]. In US National Report to international Union of Geodesy and Geophysics 1983-1986, Contributions in Tectonophysics[C], Am Geophys Union, Washington DC, 1987, 1 219-1 244
    Koch D M, Ribe N M. The effect of lateral viscosity variations on surface observables. Geophys. Res. Lett., 1989,16: 535-538
    LIU H S. Mantle convection pattern and subcrustal stress field under Asia. Phys. Earth Planet. Inter., 1978, 16: 247-256.
    Loper D E. A simple model ofwhole-mantle convection. J.G.R., 1985,90(82) : 1809-1836.
    Loper D E, Stacey F D. The dynamical and thermal structure of deep mantle plumes. Physics of the Earth and
    
    Planetary Interiors, 1983, 33: 304-317.
    Master G. Jordan T H, Silver P G, Gilbert F. A spherical earth structure from fundamental spheroidal-mode data. Nature. 1982, 298: 609-613
    Mckenzie D P, Weiss N. Convection in the Earth's mantle: towards numerical simulation. J. Fluid Mech., 1974, 62: 465-538.
    Mckenzie D P. Surface deformation, gravity anomalies and convection. Geophys, J. R. Astron. Soc., 1977, 48: 211-238.
    Minister J B, Jordan T H. Present-day plate motion[J]. J Geophys Res, 1978, 83: 5 331-5 354
    Mitrovica J X, Peltier W R. The inference of mantle viscosity from an inversion of the Fennoscandian relaxation spectra, Geophys. J. Int. 1993,114: 45-62.
    Mitrovica J X, Peltier W R. Constrains on mantle viscosity based upon the inversion of post-glacial uplift data from the Hudson Bay region. Geophys. J. Int. 1995, 122: 353-370
    Morgan W J. Gravity anomalies and convection currents. 1. A sphere and cylinder sinking beneath the surface of a viscous fluid. J. Geophys. Res., 1965a, 70: 6 175-6 187
    Morgan W J. Gravity anomalies and convection currents. 2. The Puerto Rico trench and the mid-Atlantic rise. J. Geophys. Res., 1965b, 70: 6 189-6 204
    Morgan W J. Convection plumes in the lower mantle, Nature: 1971, 230: 42-43.
    Morgan W J. Deep mantle convection plumes and plate motion, Geol. Soc. Am. Mem. 1972. 56: 203-213.
    Nataf H C, Nakanishi I, Anderson D L. Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy. 3. inversion. J. Geophys. Res., 1986, 91: 7 261-7 307
    O'Connell R J. on the scale of mantle convection. Tectonophysics, 1977,38: 119-136.
    Olson P, Bercovici D. On the equipartitioning of kinetic energy in plate tectonics[J]. Geophys Res Lett, 1991, 18:1 751-1 754
    Olson P, Paul G S, Richard W C. The large-scale structure of convection in the Earth's mantle. Nature, 1990, 344: 209-215.
    Parker R L, Oldenberg D W. Thermal model of ocean ridges. Nature Phys. Sci., 1973, 242: 137-139.
    Parsons B, Daly S. The relationship between surface topography, gravity anomalies and temperature structure of convection. J. Geophys. Res., 1983,88: 1129-1144.
    Parsons B, Mekenzie D P. Mantle convection and thermal structure of plates. J. Geophys. Res., 1978, 83: 4485-4496.
    Peltier W R. Glacial-isostatic adjustment-Ⅱ, The inverse problem. Geophys. J. R. Astron. Soc. 1976, 46: 669-706.
    Pekeris C L. Thermal convection in the interior of the earth. Mon. Not. R. Astron. Soc., Geophys. Suppl., 1935, 3: 343-351.
    Ribe N M. The dynamics of thin shells with variable viscosity and the origin of toroidal flow in the mantle[J]. Geophys J Int 1992,110: 537-552
    Richard A K. New hints of deep slabs. Sicence, 1991,25: 1069.
    
    
    Richard A K. Do plumes stir earth's entire mantle. Sicence, 1991, 25: 1068-1069.
    Richard Y L, Fleitout L. Froidevaux C. Geoid heights and lithospheric stresses for a dynamical earth. Ann. Geophys., 1984,2:267-286.
    Richard Y, Vigny C. Mantle dynamics with induced plate tectonics[J]. J Geophys Res, 1989, 94: 17 543-17 560
    Richards M A, Duncan R A, Courtilot V E. Flood basalte and hotspot tracks: plume heads and trails. Science, 1989, 246: 103-107
    Richards M A, Hager B H. Geoid anomalies in a dynamic Earth. J. Geophys. Res.. 1984, 89: 5 987-6 002
    Richards M A, Hager B H. Effects of lateral viscosity variations on long-wavelength geoid anomalies and topography. J. Geophys. Res., 1989,94: 10 299-10 313Richards M A, Hager B H. The earth's geoid and large scale structure of mantle convection, The Physics of Planet., wiley, New York, 1984, 247-272.
    Richards M A, Hager P H, Sleep N H. Dynamically supported geoid high over hotspots: observation and theory. J. Geophys. Res., 1988, 93: 7690-7708.
    Richardson R M, Solomon S C, Sleep N H. Tectonic stress in tne plates. Rev. Geophys.. 1979, 17, 981-1020.
    Richter F M. Convection and the large-scale circulation of the mantle. J. Geophys. Res., 1973, 78: 8735-8745.
    Richter F M, Parsons B. On the interaction of two scale of convection in the mantle. J. Geophys. Res., 1975, 80: 2529-2541.
    Ringwood AE. Phase transformations and mantle dynamics. Earth Planet. Sci. Lett., 1972, 14: 233-241.
    Runcorn S K. Satelite gravity measurements and a laminar viscous flow model of the earth's mantle. J. Geophys. Res., 1964, 69:4389-4392.
    Runcorn S K. Flow in the mantle inferred from the low degree harmonics of the geopotential. Geophys. J. R. Astron. Soc., 1967, 14:375-389.
    Runcorn S K. Dynamical processes in the deeper mantle. Tectonophysics, 1972, 133: 623-637.
    Schubert G, Zebib A. Thermal convection of an internally heated infinite Prandtl number fluid in a spherical shell[J]. Geophys Astrophys Fluid Dynamics, 1980, 15: 65-90.
    Solomon S C, U K T P. Elevation of the olivine-spinel transition in subducted lithosphere: seismic evidence. Phys. Earth Planet. Inter. 1975, 11: 97-108.
    Stacey F D., Viscosity structure implied by mantle convection. Phys. Earth Planet. Inter., 1989 55: 1-9.
    Stacey F D, Loper D E. The thermal boundary layer interpretation of D" and its role as a plume source. Phys. Earth Planet. Inter., 1983, 33: 45-55.
    Stewart C A. Thermal convection in the earth's mantle: mode coupling induced by temperature-dependent viscosity in a three-dimensional spherical shell[J]. Geophys Res Lett, 1992,19(4) : 337-340
    Su W J, Dziewonski A M. Predominance of long-wavelengh heterogeneity in the mantle. Nature, 1991,352: 121-126
    Su W J, Dziewonski A M, Woodhouse J H. Global mantle S-velocity heterogeneity from long-period waveforms (abstract). Eos Trans. AGU, 1990, 71: 556
    Su W J, Robert L W, Dziewonski A M. Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys.
    
    Res., 1994, 99 (B4) : 6 945-6 980
    Su W J, Woodward R L, Dziwonski A M. Degree 12 model of shear velocity heterogeity in the mantle[J]. J Geophs Res, 1984,99:6945-6980
    Tackley P J. Effect of strongly temperature-dependant viscosity on time-dependant, 3-dimensional model of mantle convection. J. Geophys. Res., 2000,105:11 063-11 082
    Tackley P J. Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science, 2000, 288:2002-2007
    Tanimoto T. The three-dimensional shear wave structure in the mantle by overtone waveform inversion, I. Radial seismogram inversion. Geophys. J. R. Astron. Soc., 1987,89: 713-740
    Tanimoto T. The 3-D shear wave structure in the mantle by overtone waveform inersion-Ⅱ. Inversion of X-waves and G-waves. Geophys. J., 1988, 93: 321-334
    Tanimoto T. Long-wavelength S-wave velocity structure throughout the mantle. Geophys. J. Int.. 1990, 100: 327-336
    Vogt P R. On the applicability of thermal conduction models to mid-plate volcanism: Comments on a paper by Gass et al.J. Geophys. Res., 1981, 86: 850-960
    Weistein S A, Olson P L. The proximety of hotpots to convergent and divergent plate boundaries.
    Wilson J T. Mantle plumes and plate motions. Tectonophysics, 1973,19: 149-164Woodhouse J H, Dziewonski A M. Mapping the upper mantle: three-dimensional modeling of earth structure by inversion of seismic waveform. J.G.R., 1984, 89(B7) :5953-5986.
    Yamaji A. Periodic hotspot distribution and small-scale convection in the upper mantle. Earth and Planetary Science Letter, 1992, 109: 107-116.
    Ye Z R. Three-dimensional inversion of the mantle density structure. Terra Cogneta, 1988b, 18: 139.
    Ye Z R. Lateral variations of the mantle density and fluctuation of the core-mantle boundary. Phys. Earth Planet. Inter., 1989,58:163-172.
    Yuen D A, Peltier W R. Mantle plumes and the thermal stability of the D" layer. Geophys. Res. Lett., 1980a, 7: 625-628.
    Zebib A F, Schubert G, Straus J M. Infinite Prandtl number thermal convection in a spherical shell[J]. J Fluid Mech, 1980,97(part2) :257-277
    Zhang S, Christensen U. Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle. Geophys. J. Int., 1989,114: 531-547
    Zhong S J, Zuber M T. Role of temperature-dependant viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res., 2000,105:11 063-11 082
    
    
    陈良君,臧绍先.地幔粘度结构的研究,地球物理学进展,1998,13(4) :23~36
    李四光,天文地质古生物资料摘要,北京:科学出版社,1972
    马宗晋,供现今地球动力学研究的8组全球级构造现象与问题,见:现今地球动力学问题讨论会论文集,张崇 立,高祥林和商宏宽编.地质出版社(北京),1994,5~12
    马宗晋,高祥林,任金卫.现今全球构造特征及其动力学解释,第四纪,1992,研究4期
    马宗晋,宋小东,杜品仁,等.地球南北半球的非对称性.地球物理学报,2002,45(1) :26~33.
    汤懋苍,柳艳香.天灾-地球多圈层快速互动之恶果.见:全球构造与固体地球多圈层相互作用,香山科学会 议第143次学术讨论会,2000,48~49
    杨志根.平极长期漂移与地球平均下地幔黏度的估计.地球物理学报, 2001,44(6) :736~745
    曾融生.固体地球物理学导论.北京:科学出版社,1984
    Aurnou J. Brito D, Olson P. Mechanics of inner core super-rotation. Gophys. Res. Lett.. 1996, 23, 3401-3404
    Aurnou J. Brito D, Olson P. Anomalous rotation of the inner core and the toroidal magnetic field, J. Geophys. Res., 1998,103(B5) ,9721-9738
    Aurnou J, Olson P. Control of inner core rotation by electromagnetic, gravitational and mechanical torques, Phys. Earth Planet. Inter., 2000, 117, 111-121
    Baumgardner J R, Tome C N, Lebensohn R. et al. Inner core anisotropy: texture as an alternative to a single crystal, Eos, 1997, 78, F458
    Bergman M I. Measurements of elastic anisotropy due to solidification texturing and the implications for the earth's inner core. Nature, 1997, 389, 60-63
    Bills B G. Tidal despinning of the mantle, inner core super-rotation and outer core effective viscosity, J. Geophys. Res., 1999,104,2653-2666
    Bloxham J. Dynamics of angular momentum in the earth's core, Ann. Rev. Earth Planet. Sci., 1998, 26, 501-517
    Bostrom R C. Westward displacement of the lithosphere, Nature, 1971, 234, 536-538
    Buffett B A. Gravitational oscillations in the length of day, Geophys. Res. Lett., 1996, 23(17) , 2279-2282
    Buffett B A. A mechanism for decade fluctuations in the length of day, Geophys. Res. Lett., 1996, 23(25) , 3803-3806
    Buffett B A, Creager K C. Rotation and deformation of the inner core, Eos, 1998, 79, S218-S219
    Bullard E C, Freedman C, Gellman H, et al. The westward drift of the earth's magnetic field, Philos. Trans. R. Soc. London, Ser. A, 1950, 243, 61-92
    Busse F H. Differential rotation in stellar convection zones, Astrophys. J., 1970, 159, 629-639
    Carcione J M, Cavallini F. A rheological model for anelastic anisotropic media with applications to seismic wave propagation, Geophys. J. Int., 1994,119, 338-348
    Creager K C. Anisotropy of the inner core from differential travel times of the phsases PKP and PKIKP, Nature, 1992, 356,309-314
    Creager K C. Inner core rotation from small-scale heterogeneity and time-varying travel times, Science, 1997, 287,
    
    1284-1288
    Dehant V, Hinderer J, Legro H, et al. Analytical approach to the computation of the earth, the outer core and the inner core rotational motions, Phys. Earth Planet. Inter., 1993, 76, 259-282
    Demets C, Gordon R G, Argus D F, et al, Current plate motions, Geophys. J. Int., 1990, 101, 425-478
    Dichey J O, Marcus S L, Hide R. Global propagation of interannual fluctuations in atmospheric angular momentum, Nature, 1992, 357, 485-487
    Dickman S R. Investigation of controversial polar motion features using homogeneous International Latitude Service data, J. Geophys. Res., 1981,86, 4904-4912
    Doglioni D. The global tectonic patterns, J. Geodyn., 1990,12, 21-38
    Forsyth D, Uyeda S. On the relative importance of the driving forces of plate motion, Geophys. J. R. Astron. Soc., 1975,43,163-200
    Fu R S. A numerical study of the effects of boundary conditions on mantle convection models constrained to fit the low degree geoid coefficients, Phys. Earth Planet. Inter., 1986, 44, 257-263
    Gilman P A. Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell I, Geophys. Astrophys. Fluid Dyn., 1977,8,93-135
    Gilman P A. Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell Ⅲ: Effects of velocity boundary conditions, Geophys. Astrophys. Fluid Dyn., 1978, 11, 181-203
    Glatzmaier G A, Roberts P H. A three-dimensional, self-consistent computer simulation of a geomagnetic reversal, Nature, 1995a, 377, 203-208
    Glatzmaier G A, Roberts P H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle, Phys. Earth Planet. Inter., 1995b, 91, 63-75
    Gubbins D. Rotation of the inner core, J. Geophys. Res., 1981,86(B 12) , 11695-11699
    Hide R. The earth's differential rotation, Q. J. R. Astron. Soc., 1986, 278, 3-14
    Hide R, Dickey J O. Earth's variable rotation, Science, 1991,253,629-637
    Hinnov L M, Wilson C R. An estimate of the water storage contribution to the excitation of polar motion, Geophys. J. R. Astron. Soc., 1987, 88, 437-460
    Hollerbach R. On the theory of the geodynamo, Phys. Earth Planet. Inter., 1996, 98, 163-185
    Hollerbach R. What can the observed rotation of the Earth's inner core reveal about the state of the outer core?, Geophys. J. Int., 1998, 135, 564-572
    Holme R. Electromagnetic core-mantle coupling, 1: explaining decadal changes in the length of day, Geophys. J. Int., 1998,132,167-180
    Jackson A, Bloxham J, Gubbins D. Time-dependent flow at the core surface and conservation of angular momentum in the coupled core-mantle system, In Dynamics of the Earth's Deep Interior and Earth Rotation, ed. J-L LeMouel, D. Smylie, T. Herring, Geophys. Monogr, 1993, 72, 97-107, Washington, DC: Am. Geophys. Union
    Jault D, Gire C, Lemouel J-L. Westward drift, core motions and exchanges of angular momentum between core and
    
    mantle, Nature, 1988, 333, 353-356
    Jault D. Lemouel J-L. Core-mantle boundary shape: constrains inferred from the pressure torque acting betweencore and mantle, Geophys. J. Int., 1990, 101, 233-241
    Jault D, Lemouel J-L. Exchange of angular momentum between the core and mantle, J. Geomagn. Geoelectr., 1991,43, 111-129
    Jeanloz R, Wenk H-R. Convection and anisotropy of the inner core. Geophys. Res. Lett., 1988, 15, 72-75
    Jephcoat A, Olson P. Is the inner core of the earth pure iron? Nature, 1987,325, 332-335
    Jordan T H. Some comments on tidal drag as a mechanism for driving plate motions. J. Geophys. Res., 1974, 79(14) : 2141-2142
    Karato S. Inner core anisotropy due to magnetic field-induced preferred orientation of iron, Science, 1993, 262, 1708-1711
    Kautzleben H. On the temporal variations of the geomagnetic fields. Gerlands Beitr. Geophys., 1972, 81, 233-239
    Kohler H. Differential rotation caused by antsotropic turbulent viscosity. Solar Physics, 1970, 13. 3-18
    Kuang W J. Force balances and convective state in the earth's core. Physics of the Earth and Planet. Inter., 1999, 116, 65-79
    Kuang W J, Bloxham J. On the effect of boundary topography on flow in the Earth's core, Geophys. Astrophys. Fluid Dyn., 1993,72, 161-195
    Kuang W J, Bloxham J. On the dynamics of the topographical core-mantle coupling, Phys. Earth Planet. Inter., 1997a, 99,289-294
    Kuang W J, Bloxham J. An earth-like numerical dynamo model, Nature, 1997c, 389, 371-374
    Lambeck K, Hopgood P. The earth's rotation and atmospheric circulation from 1963-1973, Geophys. J. R. Astron. Soc., 1981,64,67-89
    Langley R B, King R W, Shapiro I I, et al, Atmospheric angular momentum and the length of the day: a common fluctuation with a period near 50 days, Nature, 1981, 294, 730-733
    Minster J B, Jordan T H. Present-day plate motion. J. Geophys. Res., 1978,83: 5331-5354
    Minster J B, Jordan T H, Molnar P, et al. Numerical modelling of instantaneous plate tectonics. Geophys. J. R. Astron. Soc., 1974,36:541-576
    Moore G W. Westward tidal lag as the driving force of plate tectonics, Geology, 1973, 1, 99-101
    Morelli A, Dziewonski A M, Woodhouse J H. Anisotropy of the inner core inferred from PKIKP travel time, Geophys. Res. Lett., 1986, 13, 1545-1548
    Olson P L, Glatzmaier G A. Magnetoconvection in a rotating spherical shell: structure of flow in the outer core, Phys. Earth Planet. Inter., 1995,92, 109-118
    Peacock S, Hudson J A. Seismic properties of rocks with distributions of small cracks, Geophys. J. Int., 1990, 102, 471-484
    Poupinet G, Souriau A, Coutant O. The existence of an inner core super-rotation questioned by teleseismic doublets,
    
    Phys. Earth Planet. Inter., 2000, 118. 77-88
    Ranalli G. Westward drift of the lithosphere: not a result of rotational drag, Geophys. J. Int., 2000. 141, 535-537
    Richard Y, Doglioni D, Sabadini R. Differential rotation between lithosphere and mantle: a consequence of lateral mantle viscosity variation, J Geophys. Res., 1991, 96, 8407-8415
    Sakuraba A, Kono M. Effects of the inner core on the numerical solution of the magnetohydrodynamic dynamo, Phys. Earth Planet. Inter., 1998, 111, 105-121
    Szeto A M K. Gravitational coupling in a triaxial ellipsoidal earth, J. Geophys. Res., 1997,102(B 12) , 27651-27657
    Shearer P M. Constraints on inner core anisotropy from PKP(DF) travel times, J. Geophys. Res., 1994, 99, 19647-19659
    Shearer P M, Toy K M, Orcutt J A. Axisymmetric earth models and inner core anisotropy, Nature, 1988, 333, 228-232
    Shearer P M, Toy K M. PKP(BC) versus PKP(DF) differential travel times and aspherical structure in the earth's inner core, J. Geophys. Res., 1991, 96, 2233-227
    Song X D, Richards P G. Seismological evidence for differential rotation of the Earth's inner core, Nature, 1996, 382, 221-224
    Souriau A, Romanowicz B. Anisotropy in the inner core attenuation: a new type of data to constrain the nature of the solid core, Geophys. Res. Lett., 1996, 23, 1-4
    Souriau A, Romanowicz B. Anisotropy in the inner core: relation between P-velocity and attenuation, Phys. Earth Planet. Inter., 1997,101, 33-47
    Souriau A. New seismological constrains on differential rotation of the inner core from Novaya Zemlya events recorded at DRV Antarctica, Geophys. J. Int., 1998,134, F1-F5
    Su W J, Dziewonski A M. Anisotropy in three dimensions, J. Geophys. Res., 1995,100, 9831-9852
    Su W J, Dziewonski A M, Jeanloz R. Planet within a Planet: rotation of the inner core of the earth, Science, 1996,274, 1883-1887
    Tromp J. Support for anisotropy of the earth's inner core from free oscillations, Nature, 1993,366, 678-681
    Vinnik L, Romanowicz B, Breger L. Anisotropy in the center of the earth, Geophys. Res. Lett., 1994,21, 1671-1674
    Voorhies C V. Inner core rotation from geomagnetic westward drift and a stationary spherical vortex in Earth's core, Phys. Earth Planet. Inter., 1999,112, 111-123
    Wahr J M. The effects of the atmosphere and oceans on the earth's wobble and on the seasonal variations in the length of day-2, results, Geophys. J. R. Astron. Soc., 1983, 74,451-487
    Wahr J M, The earth's rotation, Ann. Rev. Earth Planet. Sci., 1988,16,231-249
    Wahr J M, Oort A H. Friction-and mountain-torque estimates from global atmospheric data, J. Atmos. Sci., 1984, 41, 190-204
    Xu S, David C, Szeto A M K. Variations in length of day and inner core differential rotation from gravitational coupling, Phys. Earth Planet. Inter., 2000,117, 95-110
    Xu S, Szeto A M K. Gravitational coupling within the earth: comparison and reconciliation. Phys. Earth Planet. Inter.,
    
    1996. 97:95-107
    Xu S, Szeto A M K. The coupled rotation of the inner core. Geophys. J. Int., 1998, 133: 279-297
    Yoshida S. Sumita I, Kumazawa M. Growth model of the inner core coupled with the outer core dynamics and the resultant elastic anisotropy, J. Geophys. Res., 1996, 101,28085-28103
    Yukutake T. A stratied core motion inferred from geomagnetic secular variations, Phys. Earth Planet. Inter., 1981, 24, 253-258
    Zatman S, Bloxham J. The phase difference between length of day and atmospheric angular momentum at subannual frequencies and the possible role of core-mantle coupling, Geophys. Res. Lett., 1997a,24, 1799-1802
    Zatman S, Bloxham J. Torsional oscillations and the magnetic field within the earth's core, Nature, 1997b, 388, 760-

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700