用户名: 密码: 验证码:
南海东北部海陆地震联测与滨海断裂带深部结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南海东北部位于欧亚板块和菲律宾海板块的交汇地区,中新世以来,受台湾岛弧俯冲碰撞带的影响强烈,是新构造活动较为强烈的地区。南海东北部陆架作为南海与周边地区的连接纽带之一,相对而言研究程度较高,资料较为齐全,是研究南海形成演化的关键地区。
     该区首次成功地实施了海陆联测实验,填补了南海东北部海陆过渡带深地震探测的空白。论文的主要内容就是利用海陆联合测线P—2001的地震测深数据,通过数据处理、震相识别、射线追踪、走时模拟等方法,编写了三个通用地震数据格式转换程序(EVT2SAC,RAW2UKOOA,SAC2SEGY),建立了南海东北部海陆过渡带的深部速度结构模型,探明了滨海断裂带的可能位置及其构造意义,为南海东北部地震活动性及南海的形成演化研究提供了科学依据。
     创新之处:运用海陆联合深地震探测技术。在该区首次开展海上气枪放炮和陆上流动台站与海上OBS同时记录相结合的方法,获得了高质量的数据,填补了南海东北部滨海断裂带附近深地震探测的空白,为南海东北部深部结构的研究打下了良好基础,也为研究该地区的同行提供了一个可以参考的数据源。
     滨海断裂带附近的地壳结构具有由正常型陆壳向减薄型陆壳过渡的性质,地壳平均厚度28km,地壳厚度由华南沿海向海区逐步变薄,其中主要是上地壳变薄,下地壳变化不大。上地壳下部(埋深约10.0~18.0km)存在一层速度为5.5~5.9km·s~1、厚度为2.5~4.0km的低速层;下地壳未见高速层。探明了海陆联合测线中滨海断裂带的存在的可能位置,位于南澳台东南35km处,水深30~50m,其显示为一纵向低速带,此低速破碎带宽度6km左右,倾向SE向,地球物理特征表现为明显的区域重力梯度带、方向导数极值带和区域磁场梯度带,断裂深度接近莫霍面,而且滨海断裂带两侧地壳结构不同,是华南陆区正常型陆壳与海区减薄型陆壳的分界断裂。在构造意义上,滨海断裂带充当华南亚板块与南海亚板块的边界断裂,是一条张性裂离的断裂,它起着裂解华南大陆的作用。
     通过区内地震活动特征、主要活动断裂、震源机制解分析,确定该区NE向、NEE向和NW向断裂是主要的发震断裂。华南沿海主要受NEE向构造控制,但是NW向构造断裂带和地震密集带的存在也是不容忽视的。地壳中(埋深约10.0~18.0km)的低速层也是地震诱发的原因之一。
The northeastern South China Sea (SCS) is located in the jointing areas between the Eurasia and Philippine Sea plate. This area has been affected significantly by the Taiwan collision Zone since Miocene Epoch and therefore has intensive Neotectonic activities. The northern margin of the SCS is the key area to understand the forming and evolution history of the SCS due to its more detailed and comprehensive data.
    The onshore-offshore deep seismic experiment was carried out for the first time and filled the blankness of the seismic surveys in this transition zone between the South China mainland and northeastern SCS. The researches focus on a few of points as follow. The onshore-offshore deep seismic data (P-2001) were analyzed and processed; Three programs (EVT2SAC, RAW2UKOOA, SAC2SEGY) were written to convert data format; Different seismic phases were identified and their travel time arrivals were simulated to study the P-wave velocity crustal structure of this area; the location of the littoral fault belt was inferred. The results provided important information for the study on seismicities and evolution of the northeastern SCS.
    The significant innovation is that the onshore-offshore deep seismic experiment was carried out for the first time in northeastern SCS. We used 3-component Ocean Bottom Seismometers, portable land stations made in our country and marine air-gun seismic source. The seismic data obtained are in good quality and filled the blankness of the seismic surveys in this transition zone. All these provide a strong base for the study of the crustal structure.
    This area has the typical continental crust. The crust thickness is gradually decreasing southward along the onshore-offshore seismic line. Mainly the upper crust thins the crust thickness, while the lower crust changes little. The thickness ratio of upper crust (not including sediment layers) and whole crust decreases from 0.58~ 0.61 in the north to 0.46 ~ 0.48 in the south of Binhai (littoral) fault belt.
    
    
    Correspondingly the depth of Moho discontinuity from about 29.5 ~ 30.5 km to 25.0~28.0 km. The low-velocity layer (5.5-5.9 km-s"1) exists generally in the middle crust (10~18km) with about 2.5~4.0 km thick, which also thins seaward. No obvious high-velocity layer appears in the lower crust. The littoral fault belt in the crustal structure reveals as low velocity zone, which is located about 35km SE from Nanao station and corresponding with the gradient belt of gravity & magnetism anomalies. The depth of fault extends down close to Moho discontinuity. The littoral fault belt is a boundary between the normal continental crust of the South China and the attenuating continental crust of sea area. This littoral fault belt had important tectonic significance in the process of rifting and breakup. The tension fault belt made South China block detach.
    The studies on gravity, magnetism, seismicities, deep structure, fracture structure and focal mechanism show that fractures in trends NE, NEE and NW are main causative faults. The NEE tectonic is the main structure in the coastal region of the South China, but the NW fault system and the dense earthquakes zone can't be neglected. The low-velocity layer in depth from 10 to 18km is also one of the reasons that earthquakes happened frequently.
引文
[1] Barry K. M., Cavers D. A., Kneale C. W.. Recommended standards for digital tape formats [J]. Geophysics, 1975, 40(2): 344-352.
    [2] Chen A T, Nakamura Y. Velocity structure beneath eastern offshore of southern Taiwan based on OBS data and its tectonic significance [J]. TAO,1998, 9 (3) :409-424.
    [3] Cohen Jack K. & Stockwell John W.. The SU user's manual [R]. Colorado School of Mines, Chicago, USA. 1995.
    [4] Daniel Au and Ron M. Clowes. Shear wave velocity structure of the oceanic lithosphere from Ocean Bottom Seismometer studies [D]. The Doctor Dissertation of Department of Geophysics and Astronomy University of British Columbia, 1983.
    [5] Feng Zhiqiang, Mao W C. Structure and hydrocarbon potential of the Para-passive continental margin of the Northern South China Sea [A]. In: Geology and Geophysics of Continental Margin [M], AAPG menmoir 53,1992, 27-41
    [6] Gerver M. and Markusevitch V. Determination of seismic wave velocity from the travel-time curve. Geophys. J. R. astron. Soc. 1966,11,165-173
    [7] Gerver M. and Markusevitch V. On the characteristic properties of travel-time curves. Geophys. J. R. astron. Soc. 1967,13,241-246
    [8] Hayes D E, Nissen S S, Buhl P, et al. Throughgoing crustal faults along the northem margin of the South China Sea and their role in crustal extension [J]. Journal of Geophysical Research, 1995,100 (B11) :22 435-22 446.
    [9] Huang B S, Chen K C, Yen H Y, et al. Re-examination of the epicenter of the 16 September 1994 Taiwan strait earthquake using the beam-forming method [J]. TAO, 1999,10 (3) :529~542.
    [10]Huang ChiYue, Xia Kanyuan, Peter B. Yuan, et al. Structural evolution from Paleogene extension to latest Miocene-recent arc-continent collision offshore Taiwan: comparison with on land geology [J]. Journal of Asian earth sciences, 2001,19: 619-639.
    [11]Kodaira S., Bellenberg M., Ieasaki T., et al. Vp/Vs ratio structure of the Lofoten continental margin, northern Norway, and its geological implications [J]. Geophys J. Int., 1996,124:724~740.
    [12]Kodaira S., Kurashimo E., Park J.O., et al. Structural factors controlling the
    
    rupture process of a megathrust earthquake at the Nankai trough seismogenic zone [J]. Geophys. J. Int., 2002,149: 815-835.
    [13]Louvari E.K. and Kiratzi A. A., 1997, RAKE: A windows program to plot earthquake focal mechanisms and the orientation of principal stresses [J]. Computer & Geoscience, 23:851-857.
    [14]Luegert James H.. MacRay: Interactive Two-Dimensional Seismic Raytracing for the Macintosh~(TM)[R]. U.S. Open File Report 92-356. Department of the interior U.S. Geological survey. 1992, Menlo Park, Calif., 44pp.
    [15]Makris J., Papoulia J., Papanikolaou D., et al. Thinned continental crust below northern Evoikos Gulf, central Greece, detected from deep seismic soundings [J]. Tectonophysics, 2001, 341:225-236.
    [16]Michael Norris & Michael Hares, SEG/UKOOA Ancillary Data Standard [R], ADS Trace Edit—Version 1.0, SEG Technical Standards Committee.
    [17] Morley C.K.. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia [J]. Tectonophysics, 2002, 347:189-215.
    [18]Mutter J. C., Buck W. R., Zehnder C.M. Convective partial melting—A model for the formation of thick basaltic sequences during the initiation of spreading [J]. J. Geophys. Res., 1988, 93, 1041-1048.
    [19]Nakamura Y, Donoho P L, Roper P H, et al. Large-offset seismic surveying using ocean-bottom seismographs and air guns: Instrumentation and field technique [J]. Geophysics, 1987, 52:1601-1611.
    [20]Nakamura Y, Mclntosh K, Chen A T. Preliminary results of a large offset seismic survey west of Hengehun Peninsula, southern Taiwan [J]. TAO, 1998, 9 (3) : 395-408.
    [21]Nissen S S, Hayes D E, Buhl P, et al. Deep penetration seismic soundings across the north margin of the South China Sea [J]. Journal of Geophysical Research, 1995, 100 (B11) :22 407-22 433.
    [22]Nissen S S, Hayes D E, Yao B, et al. Gravity, heat flow, and seismic constrains on the process of crustal extension: Northern margin of the South China Sea [J]. Journal of Geophysical Research,1995,100 (B11) :22 447-22 483.
    [23]Paul Wessel, Walter H.F. Smith, The Generic Mapping Tools—GMT-3 [R], School of Ocean and Earth Science and Technology University of Hawaii at Manoa, 1995.
    [24]Pular J. A., Gallart J., Fernandez-Viejo G., et al. Seismic image of the Cantabrian
    
    Mountains in the western extension of the Pyrenees from integrated ESCIN reflection and refraction data [J]. Tectonophysics, 1996, 264:1-19.
    [25]Qiu Xuelin, Shi Xiaobin, Yan Pin, et al. Recent progress of deep seismic experiments and studies of crustal structure in northern South China Sea [J]. Progress in Natural Science, 2003,13 (7) :231-236.
    [26]Qiu Xuelin, Ye Shanyu, Wu Shimin, et al. Crustal structure across the Xisha Trough, northwestern South China Sea [J]. Tectonophysics, 2001,341 (2001) 179-193.
    [27]Ru K., Pigott J.D. Episodic rifling and subsidence in the South China Sea [J].Aw. Assoc. Pet. Geol., 1986, 70 (9) , 1136-1154.
    [28]Ruppel C. Extensional processes in continental lithosphere [J]. J. Geophys. Res., 1995, 100, 24187-24215.
    [29]Tapponnier P., Peltzer G. and Armijo R., 1986. On the mechanics of the collision between India and Asia [A]. In: M.P. Coward and A.C. Ries (Editors), Collision Tectonics. Geological Society Special Publication [M]. Geological Society, London, 115-157.
    [30]Tappormier P., Peltzer G. and Armijo R.. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine [J]. Geology, 1982, 10, 611-616.
    [31]Tatham R H, McComack M D. Multi-component seismology in petroleum exploration [J]. Investigationsin Geophysics Series, 1991, 6, SEG.
    [32]Taylor B., Hayes D. E. The origin and History of the South China Sea Basin [A]. In: The tectonic and geologic evolution of Southeast Asian Seas and Islands [M]. Geophys. Monogr. Sea. AGU. 1983, 27, 23-56.
    [33]Taylor B., Hayes D. E. The tectonic evolution of the south China Sea Basin [A]. In: The tectonic and geologic evolution of Southeast Asian Seas and Islands [M]. Geophys. Monogr. Sea. AGU. 1980, 23, 89-104.
    [34]UKOOA Data Exchange Format (P6/98) Definition Of 3d Seismic Binning Grids, Revision 2.0c, 1999. U.K. offshore operators association (UKOOA Surveying and Positioning Committee).
    [35]Wang Zhihong and Lu Huafu. Evidence and dynamics for the change of strike-slip direction of the Changle-Nanao ductile shear zone,southeastern China. 1997, 15 (6) :507-515.
    [36]William C. Tapley, Josegh E. Tull. SAC-Seismic Analysis Code USERS
    
    MANUAL [M]. Lawrence Livermore National Laboratory, Livermore, CA. 1991.
    [37]Xia Kanyuan, Zhou Di, Su Daquan, et al. The velocity structure of the Yinggehai basin and its hydrocarbon implication [J]. Chinese Science Bulletin, 1998, 43(24): 2047-2055.
    [38]Yah Pin, Zhou Di, Liu Zhaoshu. A crustal structure profile across the northern continental margin of the South China Sea [J]. Tectonophysics, 2001, 338:1-21.
    [39]Zelt C A and Smith R B. Seismic travel time inversion for 2-D crustal velocity structure [J]. Geophys. J. International, 1992, 108:16-34.
    [40]Zhou Di, Ru Ke, Chen Hanzong. Kinematics of Cenozoic extension on the South China Se Zhou a continental margin and its implications for the tectonic evolution of the region. [J]. Tectonophysics, 1995, 251:161-177.
    [41]陈恩民,黄咏茵.华南十九次强震暨南海北部陆缘地震带概述[J].华南地震,1984,4(1):11-32.
    [42]陈国达.东亚陆缘扩张带——一条离散型大陆边缘成因的探讨[J].大地构造与成矿学,1997,21(2):117-123。
    [43]陈祥熊,袁定强,吴长江.台湾海峡南部Ms7.3级地震震源破裂特征及东南沿海地震形势分析[J].地震学报,1996,18(2):145-155.
    [44]邓属予.台湾新生代大地构造[A].见:台湾大地构造[C],台湾中国地质学会与中国地球物理学会联合出版,2002,49-94.
    [45]丁原章,黄新辉.华南滨海断裂带地震危险性的数学模拟[J]。华南地震,1995,15(1):12-20.
    [46]丁原章,梁劳,郭钦华.华南沿海地区断裂构造的地震危险性[A].见:张宗祜主编,中国东南沿海第四纪地质论文集[C].北京:地震出版社,1992,1-9.
    [47]顾芷娟,郭才华,李彪,等.壳内低速高导层成因初步探讨[J].中国科学(B辑),1995,25(1):108-112.
    [48]郭福祥.华南大地构造演化的几个问题[J].广西地质,1994,7(3):1-13.
    [49]何廉声,陈邦彦.南海地质地球物理图集(1:200万)[M].广东地图出版社,1987.
    [50]何淼祥,蔡木潮.南澳岛的地质特征[J].华南地震,1986,6(3):9-13.
    [51]洪天聪,陈普刚,丘学林,等.海上多道地震数据的解编和格式转换[J].热带海洋学报,2002,21(2):52-57.
    [52]黄慈流,苏达权,陈汉宗,等.台湾海峡西部地质、地球物理和地球化学综合调查研究[J].1997,149.
    [53]黄慈流.南海及围区大地构造格架与沉积盆地分布[A].见:龚再升,李思
    
    田,夏戡原,等主编.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997.44-51.
    [54]黄福林.论南海的地壳结构及深部过程[J].海洋地质与第四纪地质,1986,6(1).
    [55]黄金莉,顾小虹.国家数字台网中心应用地震波形数据格式及转换[J].地震,2001,21(4):60-65.
    [56]劳秋元,吴健生.大陆边缘地质构造演化[M].上海:同济大学出版社,1997.
    [57]李根坤.福建基底构造格局及其特征[J].福建地质,1991,10(2):158-164.
    [58]李家彪.南海地体系迁移与碰撞[A].见:许东禹主编,海洋地质学与古海洋学.第30届国际地质大会论文集[C],1999,13:24-34.
    [59]李平鲁,苏乃容.珠江口盆地东段中生代凹陷特点及其生烃能力评价.1994,南海东部石油公司研究所,内部文献.
    [60]李思田,林畅松,张启明.南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事迹[J].科学通报,1998,43(8):797-810.
    [61]李唐根,邱燕,姚永坚.大地构造特征[A].见:刘光鼎主编.中国海域及邻域地球物理特征[C].北京:科学出版社,1992.248-271.
    [62]梁慧娴,李平鲁.南海的构造演化及南海型大陆边缘[J],南海研究与开发,1991(1):1-7.
    [63]梁劳.巴士系断裂带的构造应力场特征[J].华南地震,1998,18(1):119-124.
    [64]廖其林,王振明,王屏路,等.福州—泉州—汕头地区地壳结构的爆炸地震研究[J].地球物理学报,1988,31(3):270-280.
    [65]林邦慧,林奕山,陈诗安,等.1994年9月16日台湾海峡7.3级地震震源过程的研究[J].华南地震,1998,18(1):15-26.
    [66]林纪曾,粱国昭,赵毅,等.东南沿海地区的震源机制与构造应力场[J].地震学报,1980,2(3):245-256.
    [67]刘福田,胡戈,吴华,等译.地震学中的射线方法[M].北京:地质出版社,1982.
    [68]刘家碹.台湾海域新生代的大地构造[A].台湾大地构造[C],台湾中国地质学会与中国地球物理学会联合出版,2002,1-48.
    [69]刘以宣.华南沿海的活动断裂[J],海洋地质与第四纪地质,1985,5(3):11-21.
    [70]刘以宣.华南沿海区域断裂构造分析[M],北京:地震出版社,1981。
    [71]刘以宣.南澳断裂带与滨海断裂带的基本特征及其活动性探讨[J].华南地震,1986,6(3):1-7。
    
    
    [72]刘以宣.南海新构造与地壳稳定性[M].北京:科学出版社,1994.85-107.
    [73]刘昭蜀,赵岩,张毅祥.南海地质地球物理调查研究及研究方向[J].海洋科学,1995(4):60-63.
    [74]卢华复,贾东,郭令智,等。闽台微大陆的组成与碰撞史.见:李继亮主编,东南大陆岩石圈结构与地质演化.冶金工业出版社,1993,12-26.
    [75]马宗晋.中国大陆地震深度分布与“易震层”初探[J].地震科学研究,1983,(3):43-46.
    [76]丘学林,周蒂,夏戡原,等.南海西沙海槽地壳结构的海底地震仪探测与研究[J].热带海洋,2000,19(2):9-18.
    [77]丘学林,施小斌,阎贫,等.南海北部地壳结构的深地震探测和研究新进展[J].自然科学进展,2003,13(3):231.236.
    [78]丘学林,赵明辉,叶春明,等.南海东北部海陆联合深地震探测[A].中国地球物理学会年刊2002[C].北京:地震出版社,2002,243.
    [79]任纪舜,姜春发,张正坤,等.中国大地构造及其演化[M].1980,北京:科学出版社.
    [80]任镇寰,钟贻军,罗振暖.1994年9月16日台湾浅滩7.3级地震发震构造的讨论[J].地壳形变与地震,1998,18(4):38-47.
    [81]宋海斌,郝天珧,江为为.南海北部张裂边缘的类型与形成机制[A].见:陈颐等主编.寸丹集(庆贺刘光鼎院士工作50周年学术论文集)[C],北京:科学出版社,1998,74-81.
    [82]谭承泽,郭绍雍.磁法勘探教程[M].北京:地质出版社,1984.3-9.
    [83]陶于洋,欧阳自远.长乐-南澳变形变质带地球化学特征[J].地质论评,1996,42(3):223-230.
    [84]腾吉文.固体地球物理学概论[M].北京:地震出版社,2003.186—193.
    [85]涂光炽,张玉泉,赵振华.华南两个富碱侵入岩带的初步研究.中国科学院地球化学研究所.内部报告.
    [86]王家林,王一新,万明浩,等.石油重磁解释[M].北京:石油工业出版社,1991.58-70.
    [87]王家林.重磁反演新方法与南海东北部重磁资料的图像处理.《中国边缘海形成演化及重要资源的关键问题》第三次学术研论会,北京,2003.
    [88]王平,夏戡原,张毅祥,等.南海东北部深部构造与中新生代沉积盆地[J].海洋地质与第四纪地质,2002,22(4):59-65.
    [89]王天楷,陈明凯,蔡庆辉,等.2002.从两岸合作海底地震仪震测探讨南中国海北部地壳速度构造[A].海峡两岸第五届台湾邻近海域海洋科学研讨会
    
    论文摘要[C],2002年5月,台湾台北。
    [90]王志洪,黄伟,卢华复.福建泉州蛇绿岩及其构造肢解.南京大学学报(自然科学版),1993,29(2):313-324.
    [91]王志洪,卢华复,贾东.长乐-南澳韧性剪切带中糜棱岩变形微构造研究.地质科学,1995,30(1):85-96.
    [92]王志洪,卢华复.闽东南中生代碰撞造山带的确认证据.大地构造与成矿学,1997,21(3):278-284.
    [93]魏柏林,冯绚敏,陈定国,等.东南沿海地震活动特征[M].北京:地震出版社,2001.
    [94]吴根耀.华南及邻区特提斯演化[A].见:曹佑功主编.全球构造带超大陆的形成与裂解[M].北京:地质出版社,1998,46-63.
    [95]吴进民.南海地质构造深化的若干问题[A].见:陈颐等主编.寸丹集(庆贺刘光鼎院士工作50周年学术论文集)[M].北京:科学出版社.1998.61-73
    [96]吴世敏,周蒂,丘学林.南海北部陆缘的构造属性问题[J].高校地质学报,2001,7(4):419-426.
    [97]夏戡原,黄慈流,黄志明.南海东北部东沙-澎湖-北港高磁异常隆起带及其南侧磁静区的深部地壳结构特征[A].见:张中杰,高锐,吕庆田,等主编.中国大陆地球深部结构与动力学研究—庆贺腾吉文院士从事地球物理研究50周年[M].北京:科学出版社.2004.454-465.
    [98]夏戡原,周蒂,苏达权,等.莺歌海盆地速度结构及其结油气勘探的意义[J].科学通报,1998,43(4):361-367.
    [99]夏戡原.海洋构造地球物理当前动态、前景及我们的发展方向[J].地球科学进展,1992,7(2),1-4.
    [100]夏戡原.南海地壳类型与结构特征[A].见:龚再升,李思田,夏戡原,等主编.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997,12-26.
    [101]谢以萱.南海地形地貌[A].见:刘昭蜀,赵焕庭,范时清,等主编.南海地质[M].北京:科学出版社,2002,14-26.
    [102]熊绍柏,金东敏,孙克忠,等.福建漳州地热田及其邻近地区的地壳深部构造特征[J].地球物理学报,1991,34(1):55-63.
    [103]徐起浩,彭承光,李运贵.南澎列岛及其附近海域、岛屿的地震地质特征[J].华南地震,1986,6(3):29-36.
    [104]许树坤,叶一庆,杜文斌.南海北部海底地形和磁力异常的地体构造特征[A].海峡两岸第五届台湾邻近海域海洋科学研讨会论文摘要[C],2002
    
    年5月,台湾台北.
    [105] 薛佳谋.南澎大断裂的发育特征及其发震意义[J].华南地震,1986,6(3):20-28.
    [106] 阎贫,刘昭蜀,姜绍仁.南海北部地壳的深地震地质结构探测[J].海洋地质与第四纪地质,1997,17(2):21-27.
    [107] 阎贫,刘海龄.南海北部陆缘地壳结构探测结果分析[J].热带海洋学报,2002,21(2):1.12.
    [108] 阎贫.海底地震仪记录中的横波[J].海洋地质与第四纪地质,1998,18(1):115-118.
    [109] 杨金玉,张训华,王修田.利用重磁计算解释南海海盆中部地壳结构特征[J].海洋地质与第四纪地质,2001,21(1):45-50.
    [110] 姚伯初,曾维军,陈艺中,等.南海北部陆缘西部的地壳结构[J].海洋学报,1994b,16(3):86-93.
    [111] 姚伯初,曾维军,陈艺中,等.南海北部陆缘东部的地壳结构[J].地球物理学报,1994d,37(1):27-35.
    [112] 姚伯初,曾维军,等著.中美合作调研南海地质专报[M].北京:中国地质大学出版社.1994.1-203.
    [113] 姚伯初.南海北部陆缘的地壳结构及构造意义[J].海洋地质与第四纪地质,1998,18(2):1-16.
    [114] 姚伯初.南海北部陆缘新生代构造运动初探[J].南海地质研究,中国地质大学出版社,1993,5:1-12.
    [115] 姚运生,刘锁旺,邵占英.从江汉洞庭盆地新生代以来的构造变形探讨华南地块与周缘板块的相互关系[J].地壳形变与地震,2000,20(4):41-49.
    [116] 姚运生,姜卫平,晁定波.南海海盆重力异常场特征及构造演化[J].大地构造与成矿学,2001,25(1):46—54.
    [117] 尹周勋,赖明惠,熊绍柏,等.华南连县—博罗—港口地带地壳结构及速度分布的爆炸地震探测结果[J].地球物理学报.1999,42(3):383-392.
    [118] 俞震甫,罗清华.台湾先第三纪大地构造[A].台湾大地构造[C].2002,台湾中国地质学会、中国地球物理学会,167-196.
    [119] 曾融生,孙为国,毛桐恩,等.中国大陆莫霍界面深度图[J].1995,地震学报,17(3),322-327.
    [120] 曾融生,著.固体地球物理学[M].北京:科学出版社,1984.54-57.
    [121] 曾维军.广州.巴拉望地学断面[A].见:刘光鼎主编.中国海域及邻域地球物理特征[C].北京:科学出版社,1992.272-288.
    
    
    [122] 詹文欢,钟建强.华南滨海断裂带活动区段的划分及其对沿海经济开发区的影响[J].南海研究与开发,1996,(3):1-8.
    [123] 詹文欢.南海西北部现代活动构造及其生态环境灾害[D].2002.中国科学院南海海洋研究所博士学位论文.
    [124] 张毅祥,黄慈流.南海新生界地震地层与前新生界基底[A].见:龚再升,李思田,夏戡原,等主编.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997.27-41.
    [125] 张用夏,杨华.中国附近海域航空磁测及区域构造[J].中国科学(B 辑),1983,356~365.
    [126] 张文佑.断裂和断裂带的分类[A].见:断块构造导论[M].北京:石油工业出版社,1984,101-111.
    [127] 郑天愉,刘鹏程.1994年9月16日台湾海峡地震及其构造背景研究[J].地球物理学报,1996,39(1):68-79.
    [128] 中国科学院南海海洋研究所.南海地质构造与陆缘扩张[M].北京:科学出版社,1988.
    [129] 钟建强.滨海断裂带之所在及其活动性初探[J].华南地震,1987,7(4):1-7.
    [130] 周硕愚,吴云.中国大陆东南边缘海现时地壳运动与地震动力学综合研究[J].地壳形变与地震,2001,21(1):1-14.
    [131] 周永胜,何昌荣.华北地区壳内低速层与地壳流变的关系及其对强震孕育的影响[J].地震地质,2002,24(1):124-132.
    [132] 周祖翼.闽东沿海构造带[A].见:刘光鼎主编.中国海域及邻域地球物理特征[C].北京:科学出版社,1992.320.333
    [133] 邹和平,王建华,丘元禧.广东南澳和莲花山韧性剪切带~(40)Ar/~(39)Ar年龄及其地质意义[J].地球学报,2000,21(4):356-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700