用户名: 密码: 验证码:
脉冲电沉积纳米晶铬-镍-铁合金工艺及其基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的铬或铬合金镀层采用六价铬镀液,由于电流效率低并且镀液毒性大等的缘故,已经不能满足当今社会对环保,节能和经济效益的需要,人们希望用三价铬镀液取代六价铬镀液。但三价铬电镀的研究还有待深入,有些问题尚未完全解决,其中最为突出的就是,镀层无法随沉积时间的延长而持续增厚,这使得电镀功能性厚镀层时采用三价铬电镀还很困难。因此,本文在电沉积出镍-铁合金纳米晶的基础上,采用脉冲电沉积的方法研究了在三价铬体系中获得纳米晶铬和铬-镍-铁合金纳米晶厚镀层的工艺及其基础理论,以期解决三价铬镀液完全代替六价铬电镀的难题。
     本文首次研究了制备用于电磁屏蔽等领域的电沉积铁-镍纳米晶合金箔和铁-镍-铬纳米晶合金箔的方法;系统研究了各工艺条件对合金成分和电流效率的影响;确定了获得铁-镍合金箔的最优工艺条件为:FeSO_4·7H_2O为52g·l~(-1),镍铁离子浓度摩尔比为4.7~5左右,H_3BO_345g·l~(-1),稳定剂Ⅰ的浓度控制在29~34g·l~(-1),稳定剂Ⅱ浓度为10g·l~(-1),阴极电流密度为5A·dm~(-2),温度控制在48~52℃,pH值控制在1.75~2.25;确定了获得电沉积高电阻率铁-镍-铬合金箔的最佳工艺配方为:CrCl_3·6H_2O 20g·l~(-1),FeSO_4·7H_2O 65~70g·l~(-1),NiSO_4·6H_2O180 g·l~(-1),NiCl_2·6H_2O 45g·l~(-1),H_3BO_345g·l~(-1),稳定剂Ⅰ25~30 g·l~(-1),稳定剂Ⅱ 10 g·l~(-1),光亮剂1~5 g·l~(-1),润湿剂0.2~0.5g·l~(-1)。电流密度10~12 A·dm~(-2),温度58~65℃,溶液pH值2.20~2.50,在上述条件下获得的合金箔厚度在50μm左右,成分均匀、结晶细致、镀层光亮;其中铁-镍合金箔成分为48%~50%Ni,50%~52%Fe,微量的Cr,P与S,B,C;铁-镍-铬合金箔成分为65%~70%Ni,30%~35%Fe,1%~2%Cr和微量的P与S,B,C。实验证明在直流电沉积条件下从水溶液中获得质量优良含Cr量>2%的三元合金镀层是比较困难的。
     本文首次系统的研究了从含Cr~(3+)的水/N,N-二甲基甲酰胺(DMF)溶液或含镍、铁、铬离子的合金水/DMF溶液中脉冲电沉积纳米晶铬和铬-镍-铁合金纳米晶厚镀层的方法;系统研究了脉冲电沉积条件下脉冲周期、脉冲工作比、溶液中各主盐浓度、溶液的pH值、电沉积时间等工艺条件对电沉积铬和铬-镍-铁合金的沉积速度、电流效率、合金成分、表面形貌、晶粒尺寸等的影响;电沉积获得纳米晶铬以及纳米晶铬-镍-铁合金镀层都具有镜面光亮的外观,其中的铬-镍-铁合金镀层最厚可以达到80μm以上,较文献报道的厚度要厚;铬-镍-铁合金镀层的成分分别为Cr40%~60%,Ni10%~40%,Fe10%~30%,以及其他一些元素,如S,B,C,O,H等。确定脉冲电沉积获得纳米晶铬镀层的最佳工艺为CrCl_3·6H_2O含量为0.8~1.2mol·l~(-1),脉冲周期为100ms,占空比0.3-0.5,电流密度18~20 A·dm~(-2),温度为30℃左右,溶液pH值为1.0左右,溶液循环速度保持在1.36~1.98ml·min~(-1);获得铬-镍-铁合金纳米晶的最佳工艺条件为脉冲周期为100ms,工作比为0.3~0.5,平均电流密度为18~20A·dm~(-2),镀液温度30℃左右,pH值控制在0.9~1.5,在这种条件下脉冲电沉积铬-镍-铁合金的平均沉积速度可以达到3μm·min~(-1),电流效率为50%以上。对直流电沉积和脉冲电沉积纳米晶铬和纳米晶铬-镍-铁合金的电流效率、晶体结构、物理和化学性能等进行了比较,结果表明脉冲电沉积获得的纳米晶较直流电沉积获得的纳米晶在各方面都优秀。
     通过动电位扫描、计时电流等电化学方法,详细研究了纳米晶铬、纳米晶铁-镍-铬合金箔、纳米晶铬-镍-铁合金在10%H_2SO_4、10%NaOH、3.5%NaCl中的电
    
    中南大学博士学位论文
    摘要
    化学行为,还用在空气中放置的方法研究了其在空气中的耐蚀性能,并与文献报
    道的非晶态铬一镍一铁合金的耐蚀性进行了比较,结果表明本文所获得的纳米晶镀
    层具有优良的耐蚀性,并且具有优良的电催化析氢性能;通过对纳米晶镀层的电
    阻率和磁饱和度测定,表明纳米晶铁一镍一铬合金箔以及铬一镍一铁镀层具有比常规
    合金更高的电阻率和磁饱和度,是很好的电磁材料;通过扫描电镜(S EM)对镀
    层表面形貌的研究,表明镀层结晶细致均匀,镀层光亮,无针孔和微裂纹,晶粒
    尺寸小于IOOnln,具有很长的晶界,因而耐蚀性优异;由于晶粒尺寸在纳米范围
    内,因而电阻率和磁饱和度随晶粒尺寸的减小而大幅度提高;通过X一衍射结构
    分析表明纳米晶具有介于非晶态和晶态的结构,是易于氢析出的(111)织构,
    而非常规的(220)织构,因此具有较好的电催化析氢能力。
     通过电化学方法和光谱方法研究了铬一镍一铁合金镀液的陈化和稳定性,cr3份
    的配合形态以及电沉积过程中CrZ‘对电沉积的影响结果:通过电位分析研究表明
    添加剂和稳定剂可以提高合金镀液的缓冲能力;发现在没有稳定剂和添加剂存在
    的条件下,很难获得质量好的厚铬或厚铬合金镀层,电解液的缓冲能力也很差。
     稳态极化曲线研究也表明合适的稳定剂和添加剂使得铬、镍、铁合金电沉积
    成为可能:用交流阻抗法研究了镍、镍一铁、铬一镍一铁在水心MF溶液中沉积的电
    化学过程,分析表明镍、镍一铁和?
Though having disadvantage such as low current efficiency and toxicity, the electrodeposition of traditional chromium or chromium alloy had been employed from heaxvalent chromium electrolyte since the first use of the process. With the more and more attention having been paid to the pollution control and economical efficiency at the present time, it has been hoped to substitute by nontoxicity trivalent chromium electrolyte little by little. While high quality deposition from trivalent chromium electrolyte could only be sustained for short periods and thin deposits obtained of decorative value only, it is difficult to substitute heaxvalent chromium plating in engineering electrodeposits by trivalent chromium plating at all. In order to resolve the problem of substitution for heaxvalent chromium electrodeposits, the technology and mechanism of pulse plating nanocrystalline chromium, chromium-nickel-iron alloys from trivalent chromium electrolyte have been investigated based on the electroplating nanocrystallin
    e iron-nickel alloy foil.
    In this dissertation, methods of plating nanocrystalline iron-nickel alloy foil and iron-nickel-chromium alloy foil, which are used in electromagnet fields, have been studied for the first time based on the electroplating nanocrystalline iron-nickel alloy. The technological parameters, which affect the alloy composition and current efficiency, have also been studied systemically. The optimum technology of iron-nickel alloy foil plating is followed as that: 52g l-11 FeSO4 7H2O,about 3.5 of the concentration ratio of Fe2+ and Ni2+ , 29~34g l-1 stabilizer I , 10g l-1 stabilizer II. with 5 A dm-2 current density ,at 48-52C temperature in the solution of pH restricted between 1.75 and 2.25. The optimum technology of iron-nickel-chromium alloy foil plating is followed as that: 20 g l-1 CrCl3 6H2O,65~70 g l-1 FeSO4 7H2O,180 g l-1 NiSO4 6H2O,45 g l-1 NiCl2 6H2O,45 g l-1 H3BO3, 25~30 g l-1 stabilizer I , and 10g l-1 stabilizer II, 1-5 g l-1brighteners ,0.2-0.5 g l-1 addictives with 10-12 A 玠m" current density
    ,at 58~65C temperature in the solution of pH from2.0 to 2.50. The thickness of alloy foils are up to 50 u m with a mirror-like appearance , uniform composition and delicate grain. The iron-nickel alloy foil contains 46%~48%Ni, 50%~52%%Fe, and a little other elements such as Cr, S, B, C and P, while the iron-nickel-chromium alloy foil contains 65%~70%Fe, 30%~35%Ni, l%~2%Cr% and a little other elements such as S, B, C, O and P. The experiment proved that it is difficult to obtain thick deposits with >2% Cr from aqueous solution by direct current plating.
    For the first time, some new methods of pulse plating nanocrystalline chromium, and chromium-nickel-iron alloy deposits from trivalent chromium chloride -N, N-dimethylformamide (DMF) solution have been studied systemically. The effects on electrodeposit rate, current efficiency, alloy composition, surface appearance and grainsize by pulse plating periods, duty cycle, concentration of different metal ions, cathodic average current density, pH of electrolyte, operation temperature, stirring velocity and plating time from chloride-N, N-dimethylformamide solution have been studied systemically for the first time. All the nanocrystalline deposits have been
    
    
    
    
    obtained at room temperature with a mirror like appearance. The thickness of nanocrystalline chromium-nickel-iron alloy deposit was up to 80 um. Nanocrystalline chromium-nickel-iron alloy deposits contain 40%~60%Cr, 10%~40%Ni, 10%~30%Fe and a little other elements such as S, B, C, O and H. The optimum technology of bright nanocrystalline chromium plating is followed as that:0.8~l ,2mol l-1 CrCl3 6H2O ,period is 100ms,duty cycle is from 0.3-0.5,average current density is from 18-20A ?dm'2 ,at temperature about 30C in the solution of pH restricted at 0.9. The optimum technology of bright nanocrystalline chromium-nickel-iron alloy plating is followed as that: period is 100ms,duty cycle is from 0.3-0.5,average current density is from 18-20A dm-2 ,at temperature about of 30C in the
引文
[1] 罗勤慧,沈孟生,丁益,等,三价铬离子的水解聚合作用的研究,化学学报,1982,40(2):125~132。
    [2] Liebreich E,German Patent,1924,448526,GB.Patent 1924,243046.
    [3] O.Bornhauser, Societe, D'Electro-chimine D'Electro-Metallurgoe Et.Des.Acieries Electriques D' ugine,German Patent,608757(17.1.35).
    [4] Taylor F.,Chromium plating, US.Patent, 1958,2822326.
    [5] Roggendorf W.,Chrome plated parts and chrome plating method, US.Patent, 1972, 3661733.
    [6] 曾华梁,吴仲达等编著,电镀工艺手册,北京,机械工业出版社,1987年。
    [7] Ward; John J. B., Barnes,Clive, Chromite coatings, electrolytes, and electrolytic method of forming the coatings,US. Patent, 1979, 4137132.
    [8] Ward; John Joseph Bernard, Barnes Clive, Trivalent chromium electroplating baths and method, US. Patent, 1978,4107004.
    [9] Bride.J.E., Low valence decorative chromium plating,Plating ,1972,59 (11): 1027~1032.
    [10] Crowther.J.C.,Chromium electroplating baths,US.Patent, 1977,4053374.
    [11] Ward.J.J.B.,Barnes.C., Trivalent chromium plating baths ,US.Patent, 1979, 4157945.
    [12] 水谷芳村,Chromium plating method,公开特许公报,昭1981,56-112493
    [13] Ninagawa Yoichi,Kyo Sunao,Production unsaturated acetal,公开特许公报,1986,昭61-22037.
    [14] Barclay.D.T.,Vigar.J.M.L.,Trivalent chromium electroplating solution and process, US.Patent, 1983, 434007.
    [15] Barclay.D.T.,Electrodeposition of chromium and its alloys,US.Patent, 1985,4507178
    [16] 焦书高,三价铬电镀装饰铬,电镀于环保,1984,4(1):47~48。
    [17] 姚守拙,李克平,用EDTA为络合剂的三价铬镀铬工艺研究,电镀与环保,1985,5(6):1~4。
    [18] 张丕俭,邹立壮,王晓玲三价铬甲酸镀铬液稳定性的研究,电镀与精饰,1997,19(1):19~21。
    [19] Barclay.D.J., Morgan; W.M.,Vigar; J.M, Electrodeposition of chromium and its alloys, US.Patent, 1985, 4502927.
    [20] Seub.E.J., Brown.L.A.,Control of anode gas evolution in trivalent chromium plating bath,US.Patent, 1985,4543167.
    [21] 钱达人,陈国中,无氟稀土添加剂镀铬的研究,电镀与涂饰,1996,18(3),23~27。
    [22] Baraclay.D.T.,Deeman.N.,Such.T.E and Vigar.J.M.L., Proc.10th.World Congress on Metal Finising Kyoto, 1980,79~85.
    [23] Smart.D.,Such.T.E.,and Wake,S.J., Novel trivalen chromium electroplating bath,Trans.lnst.Metal.Finishing, 1983,61 (3): 105~110.
    [24] W.Canning Materials.Ltd., Bath for electrodeposition of chromium,UK.Patent, 2093861A (8.9.82)
    [25] J.C.Crowther and S.Renton, Recent developments in trivalent chromium plating, Electroplating and metal finishing, 1975, (9): 7~14.
    [26] Sekimoto Masao, Matsumoto Yukiei, Kuroda Kyohei ,et al,Electrolytic chromium plating method using trivalent chromium,US.Patent, 1996,5560815.
    
    
    [27] T.M.Harris, G.M.Whimey and I.M.Croll, The Electrodeposition of Ni-Fe-Cr alloys for magnetic Thin Film Application, Electrochem.Soc., 1995,142(4): 1031-1034.
    [28] A.Vertest,A.Watson,C.U.Chisholm., et al, A Comparative study of mossbauer spectroscopy and X-ray diffraction for Elucidation of the microstructure of Electrodeposited Fe-Cr-Ni Alloys, Electrochemical Acta 1987, 32(12): 1761~1767.
    [29] J. Kruger. J.P.Nepper, Aachan, Galvanische Abscheidung Von Eisen_chron-Nickel-Legierungen miat moduliertem strom, Metall oberflache, 1986,40(3): 107-110.
    [30] K-L Lin, C-J Hsu and J-T Chang, Electroplating of Ni-Cr ON steel with pulse plating, Journal of materials Engineering and Performance, 1992,1 (3), 359~362.
    [31] A.Watson,E.Kuzmann,M.R.El-sharif, et al, The value of mossbauer spectroscopy in the elucidation of the microstructure of electrodeposited alloys,Trans I.M.F., 1988,66: 84~88.
    [32] M.R.El-sharif, A.Waston,C.U.Chisholmt, et al, The sustainned deposition of thick coating chromium/nickel and chromium/nickel/iron alloys and their properties,Trans. I.M.F.,1988: 34~40.
    [33] A. Watson,A.M.H.Anderson,M.R.El-sharif and C.U.Chisholm, The role of chromium Ⅱ catalysed olation reactions in the sustained deposition of chromium and its alloys from environmentally acceptable chromium Ⅲ electrolytes,Trans. I.M.F annual technical conference ,York,UK. 1990.
    [34] A.Watson,C.U.Chisholm and M.R.El-sharif, The role of chromium Ⅱ and Ⅳ in the electrodeposition of chromium-nickel alloys from trivalent chromium—amide electrolytes,Trans. I.M.F, 1986,64: 149~153.
    [35] S.K.Ibrahim,A.Waston and D.T.Gawne, The role of formic acid and methanol on speciation rate and quality in the electrodeposition of chromium from trivalent electrolytes, Trans.I.M.F., 1997,75(5): 181~188.
    [36] 孙玉莲,江玉和,周肇季,三价铬镀液沉积黑铬镀层的研究,电镀与环保,1987,7(4):9~10。
    [37] 沈暮昭,胡志彬,甲酸盐在三价铬镀液中的电位作用,电镀与精饰,1987,9(6):3~6。
    [38] 沈暮昭,刘艳,胡志彬,三价铬镀液中的络合-缔合作用,电镀与精饰,1989,11(3):3~9。
    [39] 许振华,黄炽荣,引进三价铬(Envirochrome)工艺实验研究,电镀与涂饰,1986,8(3):31~34。
    [40] 姚守拙,李克平,氨基羧酸体系三价铬镀铬的研究,电镀与环保1986,8(1)8~11。
    [41] 张新,李惠东,段淑贞,等,常见杂质离子对三价铬电镀的影响,材料保护,1996,29(1):14~16。
    [42] 车承焕,三价铬镀铬工艺试验,电镀与环保,1987,7(2):6~8。
    [43] 李惠东,段淑贞,张新,三价铬镀液电镀硬铬的研究,电镀与涂饰,1993,15(4):
    [44] 李惠东,三价铬镀铬工艺与机理的研究,博士学位论文,北京科技大学,1994年。
    [45] 卢燕平,吴继勋,304不锈钢电沉积条件的探讨,中国腐蚀与防护学报,1993,13(2),177~183。
    [46] 卢燕平,吴继勋,叶志远,糖精在铁镍铬合金电沉积中的作用,材料保护,1992,25(5)13~16。
    [47] 卢燕平,叶忠远,吴继勋,电镀不锈钢新工艺初探,电镀与精饰,1989,14(4):16~18。
    [48] 卢燕平,吴继勋,叶忠远,电镀不锈钢新工艺初探,表面技术杂志,1993,142:106~109。
    [49] 卢燕平,吴继勋,叶志远,电沉积方法制备不锈钢镀层,北京科技大学学报,1989,11(2):162~166。
    
    
    [50] 郭鹤桐,覃奇贤,刘淑兰,复合电镀不锈钢镀层的研究,电镀与精饰,1991,13(1):4~7。
    [51] 冯绍彬,刷镀不锈钢的研究,材料保护,1992,25(9):20~22。
    [52] 李东林,郭芳洲,电镀铁-镍-铬合金铁-镍合金相结构及相分离,南方冶金学报,1993,14(1):26~31。
    [53] 赵晴,刘伯生,赵先明,DMF/水体系铬-镍-铁合金电沉积研究,表面技术,1993,22(6):8~10。
    [54] 赵晴,刘伯生,赵先明,DMF/水体系铬-镍-铁合金电沉积研究,电镀与环保,1994,14(1):8~10。
    [55] 王先友,蒋汉瀛,甲酸盐中三价铬电镀液的电化学研究,表面技术,1995,24(4):17~20。
    [56] 王先友,蒋汉瀛,郭炳昆,非晶态镀铬液的电化学研究,材料保护,1996,29(7):1~3。
    [57] 何湘柱,龚竹青,蒋汉瀛,非晶态铁镍合金电沉积研究,材料保护,1998,31(9):19~21。
    [58] 何湘柱,龚竹青,蒋汉瀛,等,非晶态铁-镍-磷合金电沉积研究,湘潭矿院学院学报,1998,13(4):28~35。
    [59] 陈磊,龚竹青,黄志杰等,电沉积镍-铬合金的研究,电镀与涂饰,1998,17(4):4~6。
    [60] Zaki.N..Economics of trivalent chromium plating,Kearny, N.J.1990.
    [61] Y.B.Song and D.T.Chin, Pulse plating of hard chromium from Trivalent baths, plating&surface finishing, 2000, (9): 80~87.
    [62] G.Hong,K.S.Slow, G.Zhiqiang and A.K.Hsieh, Hard Chromium plating from trivalent chromium solution, Plating&surface finishing,2001,(3): 69~74.
    [63] 屠振密,杨哲龙,汪沧海,等,三价铬镀液电解时阴极附近pH值的测定,21~23。
    [64] 屠振密,杨哲龙,汪沧海,等,三价铬电镀机理研究,材料保护,1985,8(3):14~16。
    [65] 黄长山,李长鸣,张宏图,关于三价铬电镀铬层增厚问题的研究,电镀与精饰 1992.14(6):3~6。
    [66] 孙大梁,张玉华等译,镀Ni和镀Cr新技术,科学技术出版社,1992年,236。
    [67] 李家注,林安,三价铬电镀研究现状,2003,36(3):8~13。
    [68] Potter.R.J, Schiffrin D.J, Chromium alloy coatings—a new method preparetion, J. Electrochem.Soc., 1986,133(3): 547~555.
    [69] Fawctt. W. R; Markusova. K, The kinetics of electroreduction of Cr(Ⅲ) at mercury in dimethylformamide solutions, J. Electronanal. Chem., Interfacial Electrochem., 1989,270(1-2): 119~135.
    [70] Sarnaik K.M.,et al,Cyclic voltammetric study of chromium(Ⅲ) reduction in different supporting electrolytes,J.Etectrochem.Soc.India, 1989,38(4): 283~287.
    [71] 王先友,电化学方法制各非晶态铬的理论及工艺研究,博士学位论文,中南工业大学,1996年。
    [72] Song Yubao, Study of pulse plating and reaction mechanism of trivalent chromium deposition process, PhD paper, Clarkson University ,Canada,2000,8.
    [73] Geoffery, Russell and Thomas.M.Holzberlein, Cylindrical onset waves, 1969,40(8): 3071~3074.
    [74] Xia,X.H,Schuster, R,Kirchner, V, Ertl,G, The growth of size-determined Cu clusters in nanometer holes on Au(Ⅲ) due to a balance between surface and electrochemical energy, J.Electroanal. Chem., 1999,461: 102~106.
    [75] U.Erb.A.M.EI-Sherik,G.Palumbo and K.T.Aust, Synthesis structure and properties of electroplated nanocrystalline materials,NanoStr.Mat., 1993,2: 383~389.
    [76] 喻敬贤,陈永言,黄清安,杨汉西,纳米光亮镀锌层的结构研究,高等学校化学学
    
    报,1999,20(1):107~110。
    [77] McMahon,G. and U.Erb., Structure transitions in electroplated Ni-P aloys,1989,8(7): 865~868.
    [78] D.Osmola, E.Renaud,U.Erb,L.Wong,G.PalumboandK.T.Aust,Synthesis ofnanocrystalline Co-W alloys,Proc.Mat.Res.Soc.Symp., 1993,286: 191~196.
    [79] A.M.Alfantazi,U.Erb, Synthesis of nanocrystalline Zn-Ni alloy coatings,Journal of Materials Science letters, 1996,15,1361~1363.
    [80] 黄令,许书楷,周绍民,等,纳米晶镍-铝合金电沉积层的结构与性能,应用化学,1999,16(2):38~41。
    [81] S.K.Ghosh,A.K.Grover, G.K.Dey and M.K.Totlani, Nanocrystalline Ni-Cu alloy plating by pulse electrolysis,Sur.Coat.Tech.,2000,126: 48~63.
    [82] Yitzhak Mastai and Gary Hodes, Size quantization in electrodeposited CdTe nanocrystalline films,J.Phys.Chem., 1997,101B: 2685~2690.
    [83] Li Yajie,Xu Dongsheng, Chert Dapeng, et al, Electrochemistry preparation and characterization ofCdS nanowire arrays,物理化学学报, 1999, 15 (7): 577~580.
    [84] Wolfgang Kautek, Susanne Reetz and Simone Pentzine, Template electrodeposition of nanowire arrays on gold foils fabricated by pulsed-laser deposition, Electrochem. Acta., 1995,40(10): 1461~1468.
    [85] 潘善林,张浩力,彭勇,等,模板合成法制备金纳米线的研究,高等学校化学学报,1999,20(10):1622~1624。
    [86] L.Wang, K.Yu-Zhang, A.Acetrot, EBonhomme and M.Troyon, TEM study of electrodeposited Ni/Cu multilayers in the form of nanowires,Thin.Solid.Films., 1996,288,86~89
    [87] 桂枫,姚素薇,电镀纳米金属多层膜研究现状,电镀与环保,2000,20(1):3~5。
    [88] 张宝莲,卢荣玲,吴鸣鸣,用电沉积方法制备纳米迭层膜材料,北京工业大学学报,1998,24(2):71~76。
    [89] 薛江云,吴继勋,杨德钧,电沉积铜钴纳米多层膜的机理研究,电化学,1997,3(4):401~407。
    [90] 喻敬贤,陈永言,黄清安,纳米金属多层膜的电化学制备与性能研究的现状材料保护,1997,30(7):1~3。
    [91] Muller, Bernd, Ferkel. Hans, Properties of nanocrystalline Ni/Al2O3 composites,Z,Metallkd, 1999,90: 868-871
    [92] A.M.El-Sherik, U.Erb,G.Palumbo and K.T.Aust, Deviations from Hall-perch behaviour in as-prepared nanocrystalline nickel, Scripta Metallurgica et Materialia, 1992,27: 1185~1188.
    [93] 吴秋允,孙年祥,王雨晨,等,电镀纳米镍的结构及热稳定性,材料研究学报,1997,11(3):313~315。
    [94] A.M.El-Sherik,U.Erb,G.Palumbo et al, Deviation from hall-perch behaviour in As-prepared nanocrystalline Ni,Scripta Metallurgica et Materialia, 1992,27(9): 1185~1188.
    [95] M.J.Aus,B.Szpunar, U.Erb,A.M.El-sherik,G.Palumbo and K.Aust, Magnetic properties of bulk nanocrystalline nickel, Scripta Metallurgica et Materialia, 1992,27: 1639~1643.
    [96] M.J.Aus, B.Szpunar, U.Erb, A.M.El-sherik, G.Palumbo and K.Aust, Electral resistivity of bulk nanocrystalline nickel, J.Appl.Phys., 1994,75: 3632~3634.
    [97] G. Palumbo, D.M.Doyle, A.M.El-sherik, U.Erb and K.Aust, Intercrystalline hydrogen transport in nanocrystalline nickel, Scripta Metallurgica et Materialia, 1991,25: 679~684.
    [98] R.Rofagha, R.Langer, A.M.El-sherik, U.Erb ,G. Palumbo and K.Aust, The corrosion
    
    behaviour of nanocrystalline nickel, Scripta Metallurgica et Materialia, 1994, 25: 2867~2872.
    [99] E.Toth-Kadar, Hungarian Patent,1984, 195 982.
    [100] A. Brenner, Electrodeposition of Alloys, Academic Press, N.Y., 1963, vol Ⅱ, Chapter 35.
    [101] 唐致远,刘建华,赵秉英,喷射电沉积纳米晶镍的研究,2000,22(5):1~4。
    [102] Imre Bakonyi, Eniko Toth-Kadar, Lajos Pogany ,et al , Preparation and characterization of d.c-plated nanocrystalline nickel electrodeposits,Surface& Coating Technology, 1996,78: 124~136.
    [103] Y. Nakamura,N.Kaneko,M.Watanabe,H.Nezu, Effects of saccharin and aliphatic alcohol on the electrystalline of nickel,Jour.Appl.Electrochem.,1994,24: 227~232.
    [104] 葛福云,许家园,姚士冰,等,糖精对电沉积镍的结构与电化学活性的影响,厦门大学学报(自然科学版),1994,33(2):182~185。
    [105] S.Kaja, H.W.Pickering and W.R.Bitler, Effect of pH on the microstructure of nickel electrodeposits: a TEM study, Plating Surface and Finishing, 1988,75(1): 58~61.
    [106] K.S.Gill,B.Davis,W.C.Cooper and U.Erb, The effect of pH on the growth morphology of thick nickel electrodeposits, Plating Surface and Finishing,1990,77(11): 68~72.
    [107] McMahan.G, and Erb.U., Structural transitions in electroplated Ni-P alloys, J. Mater.Sci.Lett., 1989,8(7): 865~868.
    [108] C.Cheung,U.Erb and G.Palumbo, Application of grain boundary engineering concepts to alleviate intergranular cracking in alloys 600 and 690,Materials Science and engineering, 1994, AI85: 39~43.
    [109] 周震,阎杰,王先友,等,纳米材料的特征及其在电催化中的应用,化学通报,1998,4:23~26。
    [110] 黄清安,王龙彪,王银平,电沉积法制备高活性析氢电极,电镀与涂饰,1998,17(4),34~37。
    [111] R.Schulz,J.Y.Huot,M.L.Trudeau, et al, Nanocrystalline Ni-Mo alloys and their application in electrocatalysis,J.Mater.Res., 1994,9(11): 2998~3008.
    [112] Adriana N. Correia, Sergio A. S. Machado and Luis A. Avaca, Studies of the hydrogen evolution reaction on smooth Co and electrodeposited Ni-Co ultramicroelectrodes, Electrochemistry. Communications, 1999,1, 600-604.
    [113] Yukimi Jyoko,Satoshi Kashiwabara,Yasunori Hayashi, et al, Characterization of electrodeposited magnetic nanostructures,Journal of magnetism and magnetic materials, 1999,198~199: 239~242.
    [114] 严东生,纳米材料的合成与制备,无机材料学报,1995,10:1~6。
    [115] J.L.Duvail,S.Dubois and L.Piraux, Electrodeposition of patterned magnetic nanstructures J.Appl.Phys., 1998,84(11): 6359~6365.
    [116] 苏育志,龚克成,纳米结构材料的模板合成方法,材料科学与工程,1999,17(4):17~21。
    [117] Eniko Toth-Kadar, Imre Bakonyi,Lajos Pogany, et al, Microstructure and electrical transport properties of pulse-plated nanocrystalline nickel electrodeposits, Surface and coating Technology, 1996, 88, 57~65.
    [118] A.J.Avila和M.J.Brown, Design factors in pulse plating, platting 1966—1970.
    [119] 朱瑞安,郭振常编著,脉冲电镀,电子工业出版社,北京,1987年。
    [120] A.J.Avila, The sine wave pluse platter, Frist Internationalsymposium on pulse plating. 1979,April, 19-20.
    [121] J.Cl.Puippe,N.IbI,Zurich, Linitartion of useful Range of conditions in Pulse plating sve
    
    capacity Effects, Second International symposium on Pulse plating, 1981, 10,6—7.
    [122]. R.Olson. Applications of pulse plating ,Plating and surface Finishing1981, 68(2): 38~39.
    [123] Y.Fukumoto., Y. Kawashima and T. Hayashi; Electrodeposition of palladium-nickel alloys using pulse-current electrolysis, Plating and Surface Finishing,1986, 73(3): 62~66.
    [124] Natter, H.,Hempelman,R.,Nanocrystalline copper by pulsed electrodeposition: the effect of organic addictives,bath temperature and pH,J.Phys.Chem., 1996,100(50): 19525~19528.
    [125] Sun Ya-ping,Riggs,Jason,E.,Rollins, et al,Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,J.Phys.Chem.,1999,103(1): 77~82.
    [126] Saber, K.H.,Koch.C.C.,Fedkiw, P.S., Pulse current electrodeposition of nanocrystalline Zinc,2003,341 (1/2): 174~181.
    [127] Eniko Toth-Kadar, Imre Bakonyi,Lajos Pogany et al, Microstructure and electrical transport properties of pulse-plated nanocrystalline nickel electrodeposits, Surface and coating Technology,1996,88: 57~65.
    [128] A.M.El-sherik,U.Erb, Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition, Jouenal of materials science,1995,30: 5743~5749.
    [129] Natter, H.,Schmelzer, M., Janssen.S.,Nanocrystalline metals and oxides Ⅰ: pulse electrodeposition,Berichde B unsengeseuschafl/physical chemistry chemical physics, 1997,101(11): 1706~1713.
    [130] Pouderoux, RI.,Bonino,J.P., Plating Ni-P multilayers alloys,Current pulse effects on the microstructural and methanical properties,Surface and coating technology, 1991,45(1~3): 161~170.
    [131] S.K.Ghosh,A.K.Grove,G.K.Dey, et al,Nanocrystalline Ni-Cu alloy plating by pulse electrolysis,Surface and coating technology,2000,126: 48~63.
    [132] Behnke,J.F.,Prieto,A.L.,Stacy.A.M.,Electrodeposition of CoSb_3 nanowires, International conference on thermoelectrics,I.C.T.proceedings,1999, 451~453.
    [133] S.Strbac,O.M.Magnussen and R.J.Behm, Nanoscale pattern formation during electrodeposition: Ru on reconstructured Au(111), Physcal Review letters, 1999, 83(16), 3246~3249.
    [134].李东林,刘建平,郭芳洲,华建荣,在水溶液体系中周期换向脉冲电流电镀铁镍铬合金研究,南方冶金学院学报,1995,16(1):72~76。
    [135] 张立德,纳米材料,化学工业出版社,2000年,53~59。
    [136] Mahoney Richard, Closing the loop for aluminum package,Materials world, 1999,7(3): 133~134.
    [137] Bergun,Drum side treated foil:advanced Cu foil multilayer printed circuit board applications, Circuit world, 1995,22(1): 10~13.
    [138] 赵奇金,李日辉,赵德厚等,电解法生产镍箔的工业应用,金属学报,1997,33(11)1194~1198。
    [139] 赵奇金,李日辉,赵德厚等。电解法生产镍箔工艺优化研究,有色金属,1996,2,47~49。
    [140] 赵奇金,李日辉,赵德厚,电沉积工艺条件对镍箔机械性能的影响,稀有金属,1999,23(3),205~208。
    [141] Katashinskij,V.R,Vishnyakov, L.R.,Bojko,P.A., et al,Procedding aluminum foil wastes to sheet materials, Poroshkovaya metallurgiya, 1995,1-1: 12~16.
    [142] N.Moelder, RJ.Schilling,J.H.He,V.Saile,H.O.Moser, W.Menz, X-ray absorption analysis of electroplated permalloys used in microfabrication,Material Research Society Symposium Proceedings, 1996,437,237~242.
    
    
    [143] S.A.Watson, Application of nickel electroforming in Europe,Electroplating &Metal Finishing, 1975,28 (5): 6~15.
    [144] Han jeongnan,Pyun Su-I,Yang Tae-Hyun, Rols of thiourea as an inhibitor in hydrogn absorption into palladium electrode, J.Electrochemical.Soc.,1997,144 (12): 4266~4272.
    [145] Vitkin,A.I.,Paramono,V.A.,Filatova, N.G., The technology of thin ferrum production by electrolytic method,Stal' n2,1991,Feb2,79~82.
    [146] S.Suto,K.Matsuno,K.Sano,K.Matsui, Bending of amorphous alloys, J.Materials Processing Techology, 1992,33(3): 215~227.
    [147] S.B.Lalvani,K.Mondal,N.Sathisuksanoh, characterization of Ni-P and Fe-P by X-ray absorption spectroscopy, J.Materials Science Letters,2001, 20(12): 1097~1098.
    [148] Chen xiaoyi, Guo daxia, Luo jingyuan, Corrosion behavior of amorphous Fe-Cr-P alloy platingfoils,Acta. Metallurgica Sinica,SeriesB: ProcessMetallurgy&Miscella neous, 1988,1 (2): 158~161.
    [149] 赵奇金,电解法制取镍-铁合金箔工艺的同归正交设计,金属学报,2000,36(7):723~727。
    [150] A.Cziraki,B.F.ogarassy, I.Gerocs, etal, Microstructure and growth of electrodeposited nanocrystalline nickel foils,Journal of materials science, 1994,29, 4771~4777.
    [151] F.Dalla Torre,M.Victoria, Van Swygenhoven, Nanocrystalline electrodeposited Ni: Microstructure and tensile properties, Acta.Materialia,2002,50(15): 3957~3970
    [152] A.Robertson,U.Erb,G.Palumbo, Practical application for electrodeposited nanocrystalline materials,Nanostructured Materials, 1998~1999,125,1035~1040.
    [153] N.Moelder, RJ.Schilling,J.H.He,V.Saile,H.O.Moser, W.Menz, X-ray absorption analysis of electroplated permalloys used in microfabrication, Material Research Society Symposium Proceedings, 1996, 437, 237~242.
    [154] Homas M.Harris,Gina M.Whitney and Ian M.Croll,the electrodeposition of Ni-Fe-Cr alloys for magnetic thin film application,J.Electrochem.Soc., 1995,142(4): 1031~1034.
    [155] Tokihiko yokoshima, Manabu Kaseda,Masahiro Yamada, et al, Increasing the resistivity of electrodeposited high Bs CoNiFe thin film,I.E.E.E. Transactions on magnetics,1999,35(5): 2499~2501.
    [156] N.V.Myung and K.Nobe, Electrodeposited iron group thin-film alloys structure property relationship,J.Electrochemical Society,2001,148(3): 136~144.
    [157] Virginia Costa.K, Parameters influencing the electrodeposition of Ni-Fe alloys,Surface and Coating Technolgy, 1997,96, 135~139.
    [158] J.Harkans, Effect of plating parameters on electrodeposited Ni-Fe,J.Electrochem. Soc., 1981,128(1): 45~49.
    [159] J.Harkans, On the role of buffer and anions in Ni-Fe electrodeposition, J.Electrochem. Soc., 1979,126(11): 1861~1867.
    [160] M.Cherkaoui,E.Chassaing and K.VU.Quang, Pulse plating of Ni-Cu alloys,Surface and coating technology, 1988,34, 243~252.
    [161] 渡边澈等编著,于维平,李荻等,非晶态电镀方法及应用,北京航空航天大学出版社,北京,1992年。
    [162] Rung-Ywan Tsai,Shinn-Tyan Wu, Influence of pulse plating on the crystal structure and orientation of chromium, J.Electrochem.Soc., 1991,138, 2622~2626.
    [163] C.Cheung,U.Erb and G.Palumbo, Application of grain boundary engineering concepts to
    
    alleviate intergranular cracking in alloys 600 and 690,Materials Science and engineering, 1994,AI85: 39~43.
    [164] 吴文健,曾芳仔,电沉积Ni-Cr-Fe-P非晶态耐蚀合金镀层,材料保护,1998,31(3):9~11。
    [165] Larissa Domnikov, Deposition of stainless steel from chloride bath,Metal finishing, 1970,2: 57~60.
    [166] M.Sarojamma and T.L.Rama Char, Electrodeposition of iron-chromium-nickel alloys,Metal finishing, 1972,9: 36~42.
    [167] 涂抚洲,蒋汉瀛,Ni-Fe-P,Ni-W-P合金与镀层性能,材料保护,1999,32(10):12~13。
    [168] S.Gowri&B.A.Shenoi, Stress in chromium-nickel-iron alloy deposits,metal finishing, 1972,6: 30~34.
    [169] Frederic Lantelme,Khalid Benslimane and Marius Chemla, Electrochemical properies of solutions of CrCl_2 and CrCl_3 in molten alkali chlorides,J.Electroanal.chem., 1992,337: 325~335.
    [170] C.U.Chisholm and G.Watson, Factors affecting chromium-nickel alloys deposited from a methanol-dimethylformamide bath,Electrodeposition and surface treatment,1973/74,2: 381~393
    [171] M.Perrin,P.Poullen,G.Mousset, et al, Reduction electrochimique des cations complexes formes par dissolution dans le N,N-dimethylformamide des sels de chrome du type CrX_3,6H_2O,Electrochimica Acta 1979,24: 73~78.
    [172] 李东林,郭芳洲,电镀铁-镍-铬以及铁镍合金相组成研究,电镀与涂饰,1994,16(2):9~13。
    [173] J.C.Kang, S.B.Lalvani, Electrodeposition and characterization of amorphous Fe-Ni-Cr-based alloys, J.Appl. Electrochem., 1995,25: 376~383.
    [174] 郭鹤桐,覃奇贤编著,电化学教程,天津大学出版社出版,2000年,297。
    [175] 张祥麟,康衡,配位化学,中南工业大学出版社,长沙,1986年。
    [176] E.T.D.Lo and T.W.Swaddle, Substitution at chromiumⅢ centers in aprotic solvents.Ion pairing, anation and solvent exchange in N,N-dimethylformide, Inorganic Chemistry, 1976,15(8): 1881~1886.
    [177] Cheng,D.S.H.,Reiner, A., E.Hollax, Activation of hydrochloric acid-CrCl_3·6H_2O solution with N-alylamines ,J.Appl.Electrochem., 198,15: 63~70.
    [178] Stunzi,H.,Spiccia, L,Rotzinger, F.E, et al, Early stage of Hydrolysis of Cr~(3+) in aqueous solution: 4.stability constants of the Hydrolytic dimer, trimer and tetramer at 25℃ and I=1.0M, Inorg.Chem., 1989,28: 66~71.
    [179] Bard.A.J.,Parson,R.,Jordan,J.,Standard potentials in aqueous solutions,Marcel Dekker,New York, 1985.
    [180] Perrin,D.D.,Stability constants of metal-ion complexes,Part B,Pergamon Press,Oxford, 1983.
    [181] 龚竹青编著,理论电化学导论,中南工业大学出版社,长沙,1987年。
    [182] I.Epelboin,M.Joussellin and R.Wiart, Impedance measurements for nickel depositeion in sulfate and chloride electrolytes,J.Electroanal.Chem., 1981,119,61~71.
    [183] 舒余德,陈白珍,冶金电化学研究方法,中南工业大学出版社,长沙,1990年。
    [184] A.K.Hsieh,Y.H.Ee and K.N.Chen, Electrochemistry of chromium deposition from thiocyanato trivalent system,Metal Finishing, 1993,91 (4): 53~57.
    [185] 江琳才,简素碧,铬(Ⅲ)离子的阴极还原过程研究,高等学校化学学报,1985,10(5):551~553。
    [186] I.Drela, J.Szynkarczuk,J.Kubicki, Electroduction of chromium -acetate complex to metallic chromium on the copper electrode,Electrochimica Acta,1988,33(4): 589~592
    
    
    [187] R.J.Potter and D.J.Schiffrin, The electrochemistry of chromium(Ⅲ)in molten KSCN,J.Electrochem. Soc., 1986,133(3): 547~555.
    [188] I.Drela, J.Szynkarczuk,J.Kubicki, Electroduction of chromium -acetate complex to metallic chromium on the copper electrode, Electrochimica Acta,1988,33(4): 589~592
    [189] I.Bimaghra and J.Crousier, Electrodeposition of copper from sulphate solution -influence of the cations, Materials chemistry and physics, 1989, 21: 109~122.
    [190] J.Szynkarczuk,I.Drela and J.Kubicki, Electrochemical behaviour of chromium(Ⅲ) in the presence of formic acid-1, elechimica Acta, 1989,34(3): 399~403.
    [191] 何湘柱,龚竹青,蒋汉瀛,三价铬离子水溶液电沉积非晶态铬的电化学,中国有色金属学报,2000,10(1):95~99。
    [192] J.N.Howarth,D.Pletcher, The electrodeposition of chromium from chromium(Ⅲ) solutions-a study using microelectrodes,J.Appl.Electrochem., 1988,18: 644~652.
    [193] Tetsuo Saji and Shigeru Aoyagui, Electron-transfer kinetics of transition-metal complexes in lower oxidation state. Part2. The electrochemical electron-transfer rate of the Cr(bipy)~+_3/Cr(bipy)_3 as measured by the galvanostatic double-pulse method,Bulletin of the chemical socety of Japan, 1974,47(2): 389~392
    [194] 何湘柱,非晶态Fe-Ni-Cr合金电沉积工艺及理论研究,博士学位论文,中南工业大学,长沙,1999年。
    [195] 周绍民等编著,金属电沉积—原理与研究方法,上海科学技术出版社,上海,1987年。
    [196] L.Bonou,M.Eyraud,J.Crousier, Nucleation and growth of copper on glass carbon and steel, 1994, 906~910.
    [196] 曹楚南,腐蚀电化学原理,化学工业出版社,北京,1985,252~261。
    [197] 曹楚南,论不可逆电极过程的法拉第阻抗等效电路类型,中国腐蚀与防护学报,1990,10(2):159~168。
    [198] 马厚义,含有电化学吸附中间物的电极过程的交流阻抗理论,山东大学学报,1997,33(1):68~75。
    [199] 马厚义,化学竞争反应对伴有吸附和脱附步骤的电极过程的影响,山东大学学报,1998,34(4):460~469。
    [200] 王云燕,Zn-Fe合金电镀和Zn-Fe-TiO_2复合电镀工艺及基础理论研究,博士学位论文,中南大学,长沙,2002年。
    [201] 尹斌,张祖训,聚苯胺膜电极上计时电流法和计时库仑法理论及验证,分析科学学报,1994,10(3):13~19。
    [202] Noboru Oyama, Shuichiro Ymaguchi,Yoshinori Nishiki, Apparent diffusion cofficients for electroactive anions in coatings of protonated poty(4-vinylpyridine) on graphite electrodes.J.Electroanal.chem., 1982,139: 371~382.
    [203] Michael J.Weaver and Fred C.Anson, Electrode kinetics with specifically adsoprbed reactants the reduction of some isothiocyanato complexes of Cr(Ⅲ) on mercury electrodes,Electroanalytical Chemistry and Interfacial Electrochemistry, 1975,58: 95~121.
    [204] N.Ibl, Some theoretical aspects of pulse electrolysis, Surface and coating technology, 1980,10: 81~104.
    [205] M.Cherkaoui,E.Chassaing and K.VU.Quang, Pulse plating of Ni-Cu alloys,Surface and coating technology, 1988,34: 243~252.
    [206] K.I.Popov, M.D.Maksinovic and B.M.Ocokoljic, Fundamental aspects of pulsating current metal electrodeposition 1: the effect of the pulsating current on the surface roughness and the
    
    porosity of metal deposits, Surface and coating technology, 1980,11: 99~109.
    [207] K.P.Wong, K.C.Chan and T.M.yue, Modelling the effect of complex waveform on surface finishing in pulse current electroforming of nickel, surface and coating technology, 2000, 135: 91~97.
    [208] D.T. Chin and D.Balamurugan, An experimental study of metal distribution in pulse plating, Electrochimica Acta, 1992,37(11): 1927~1934.
    [209] D.T .Chin,J.Y.Wang,O.Dossenbach, et al, Mass transfer in pulse plating: an experimental study with rectangular cathodic current pulses,Electrochimica Acta, 1991,36(3/4): 625~629.
    [210] D.T .Chin,Mass transfer and current-potential relation in pulse electrolysis, J.Electrochem. Soc.,1983,130(8): 1657~1667.
    [211] R.T.C.Choo,J.M.Toguri,A.M.El-sherik and U.Erb, Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating,J.Appl. Electrochem., 1995,25,384~403.
    [212] H.Natter and R.Hempelmann, nanocrystalline copper by pulsed electrodeposition: the effects of organic additives, bath temperature and pH,J.Phys.Chem., 1996,100: 19525~19532.
    [213] Benjamin Scharifker, Theoretical and experimental studies of mulitiple nucleation,Electrochimica Acta, 1983,28(7): 879~889.
    [214] 许书楷,周绍民,某些添加剂对镍在玻璃碳上电结晶的影响,厦门大学学报自然科学版,1987,26(6):705~711。
    [215] Jim.V.Zoval,Rebecca.M.Stiger, Peter.R.Biernacki, et al, Electrochemical deposition of silver nanocrystallines on the atomically smooth graphite basal plane,J.Phys.Chem., 1996,100: 837~844.
    [216] G.J.Hills,D.J.Schiffrin and J.Thompson, Electrochemical nucleation from molten salts—.diffusion controlled electrodeposition of silver from alkali molten nitrates,Electrochimca Acta,1974,19: 657~670.
    [217] F.Palmisano,E.Desimoni,L.Sabbatini, et al, Nucleation phenomena in the electrodeposition of lead onto glass carbon electrodes,J.Appl.Electrochem.,1979,9: 517~525.
    [218] M.Y.Abyaneh and M.Fleischmann, The electrocrystallisation of nickel part1, generalised models of electrocrystalisation, J. Electroanal.Chem., 1981,119: 187~196.
    [219] M.Y.Abyaneh and M.Fleischmann, The electrocrystallisation of nickel part2, comparison of models with the experimental date, J. Electroanal.Chem., 1981,119: 197~208.
    [220] D-T, Chin and S.Venkatesh, A-C Modulation of a rotating zinc electrode in an acid zinc-chloride solution,J.Electrochem. Soc., 1981,128(7): 1439~1442.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700