用户名: 密码: 验证码:
铝硅矿物的热行为及铝土矿石的热化学活化脱硅
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文为“国家重大基础研究发展规划(‘973’计划)”项目资助课题。
     为了有效利用储量丰富的中低铝硅比铝土矿石,并为拜耳法氧化铝生产工艺提供优质原料,本文采用热重分析、差热分析、红外光谱分析、X-射线粉晶衍射分析和高分辨率固体核磁共振分析技术,系统研究了铝土矿中的常见铝硅矿物的加热相变规律,以及铝土矿石的热化学活化脱硅行为,开发了铝土矿热化学活化脱硅新工艺,获得了以下一些主要结果:
     1)铝硅矿物的热行为
     叶蜡石:在580℃以下,叶蜡石主要脱去吸附水,其结构和物相基本没有变化。从580℃左右开始失去羟基,八面体阳离子中心Al的配位方式由六配位Al~(Ⅵ)变为五配位Al~Ⅴ、四配位Al~(Ⅳ)。随着温度的提高,五配位Al~Ⅴ将向四配位Al~(Ⅳ)和六配位Al~(Ⅵ)转化。脱羟基的同时,(Si-O)四面体层中Si-O-Si(Al)的键角增大,原子间的相互连结被削弱。但失去羟基后的脱水叶蜡石仍然保持着类似于叶蜡石的层状骨架结构。
     脱水动力学研究表明,叶蜡石的脱水反应遵循随机成核与长大规律,反应表观活化能E=128 362.3 J.mol~(-1)、表观频率因子A=688 716.6 min~(-1)。
     温度达到1100℃后,脱水叶蜡石层状骨架结构破裂,生成无定形SiO_2。但此时也开始有少量莫来石晶体形成。超过1200℃后,无定形SiO_2将逐渐转化成方石英。
     高岭石:420℃~660℃时,高岭石失去羟基转变成偏高岭石,八面体结构中Al由六配位Al~(Ⅵ)变为五配位Al~Ⅴ和四配位Al~(Ⅳ),但更高温下五配位Al~Ⅴ将转变为六配位Al~Ⅵ和四配位Al~Ⅳ。脱羟基作用导致高岭石的氢氧铝八面体结构层发生严重地畸变和破坏。
     脱水动力学研究表明,高岭石晶体结构中内、外羟基失去的顺序不同,使反应机制在α=0.7左右时发生转变。当0<α<0.7时,脱水反应遵循二维扩散控制规律。反应表观活化能E=159 682.0 J.mol~(-1)、表观频率因子A=1.007×10~(10) min~(-1)。
     980℃以后,偏高岭石分解生成无定形SiO_2,同时由四配位Al~Ⅳ、六配位Al~Ⅵ组成立方结构的γ-Al_2O_3。1100℃左右,无定形SiO_2和γ-Al_2O_3重新结合生成莫来石。1200℃以后,无定形SiO_2将转化为方石英。
     伊利石:400℃以下,吸附水和层间水的脱去使伊利石的晶格沿C轴方向产生膨胀。500℃~750℃时,伊利石失去羟基转变成脱水伊利石,Al的配位方式由六配位Al~Ⅵ转变为四配位Al~Ⅳ。但脱水伊利石仍然保持着伊利石的基本层状骨架结构。
     在1090℃左右,脱水伊利石的层状骨架结构破裂,转化成非晶态的富SiO_2玻璃相,当温度达到1100℃以后,开始有莫来石生成。
     一水硬铝石:在490℃~580℃左右失去晶体结构中的羟基,转变为α-Al_2O_3。α-SiO_2:在热处理过程中的结构和物相基本保持不变。
     以上研究表明,热处理过程中铝硅矿物的结构、物相将产生一系列变化。在热作用下,铝硅酸盐矿物发生高温固相反应,层状结构中的硅被活化为具有较高活性的无定形
    
    博士学位论文.铝硅矿物的热行为及铝土矿石的热化学活化脱硅
    5102,这为热化学活化脱硅新工艺的开发提供了理论基础。
     同时,综合运用多种测试技术系统研究得到的,有关铝硅酸盐矿物从室温一1200℃
    下的结构、物相变化规律,也可为硅酸盐、耐火材料等行业领域,以及这些非金属矿物
    的深加工利用提供理论指导和借鉴。研究结果具有较大的学术价值和实际意义。
     2)铝土矿石的热化学活化脱硅
     热化学活化过程中,由叶蜡石、高岭石和伊利石生成非晶态物质—无定形5102
    或富510:玻璃相是实现铝土矿石热化学活化脱硅的基础。温度高于1100℃以后的莫来
    石生成反应导致无定形5102的减少。
     碱浸脱硅中,只有无定形5102才能溶解于NaOH溶液被脱除,而脱水叶蜡石、偏
    高岭石、脱水伊利石、莫来石以及a一510:均不能与NaOH反应,对脱硅没有贡献。但与
    无定形510:的溶解同时发生的水合铝硅酸钠(钠硅渣)沉淀反应,使溶液中的NaZsiO3
    又返回精矿,导致脱硅效果变差。
     研究表明,在碱浸过程中,高岭石的钠硅渣沉淀反应最弱,生成的水合铝硅酸钠化
    学组成类似于沸石NaZo.A12O3,x 5102·nHZO;伊利石的钠硅渣沉淀反应最为剧烈,生成
    的水合铝硅酸钠组成为N助6A196Si9603s4和0.95N赴O·A1203·3.255102·4.79玩O;叶蜡石的
    钠硅渣组成为O.95Na2O.A12O3’3.25SiO2·4.79H20。因此,高岭石碱浸脱硅效果最好,而
    伊利石的脱硅效果最差。
     与纯矿物的热化学活化脱硅规律一样,经活化处理,铝土矿中的伊利石、叶蜡石和
    高岭石将转化成无定形5102,而在1 100℃以上的温度下,将有莫来石生成。在碱浸过
    程中,活化矿中的无定形5102与NaOH反应生成NaZSIO3进入溶液被脱除,但在无定
    形5102溶解的同时,伴随有钠硅渣的生成。
     对于含硅矿物以伊利石、叶蜡石为主的铝土矿,在热化学活化脱硅过程中生成的钠
    硅渣主要由N助沫1965196035;和0.95N处。·A12O3·3.255102·4.79玩O两者组成。
     对含伊利石12.5%、叶蜡石6.0%、高岭石3.2%,刀S=5.85的河南铝土矿热化学活
    化脱硅试验结果表明,其适宜的活化温度为1 100℃一1150℃,活化时间为12Omin~60min。
    适宜的浸出?
Thermal behaviors of silicon aluminium minerals and desilication technology from bauxite ores by thermochemical activation (TCA) have been investigated by using TG, DTA, IR, XRD and 29Si, 27A1 MAS NMR in this thesis. Following conclusions are achieved:
    1. Thermal behaviors of silicon aluminium minerals
    Pyrophyllite: Under thermal treatments, dehydroxylation of pyrophyllite (Al2O3 4SiO2 H2O) takes place at the temperature of about 580℃. The six-coordinate of aluminium in octahedrons is converted into five-coordinate or four-coordinate on dehydroxylation of aluminium ions in oxygen octahedrons containing OH groups. However, the five-coordinate Al shifts into four-coordinate Al and five-coordinate Al again with the temperature increase. The bond angle of Si-O-Si (Al) in the silica tetrahedral sheet rises, and the linkage between atoms weakens. But the obtained dehydrated pyrophyllite has a layered structure similar to the initial pyrophyllite.
    The kinetic of dehydration reaction investigated by non-isothermal thermogravimetric analysis shows that the dehydroxylation of pyrophyllite agrees with the mechanism of random
    nucleation: f(α) = (l-α)-[-ln(l-α)] 3. The value of the apparent activation energy E and
    apparent pre-exponential Arrhenius factor A of the reaction is attained as 128 362.3 Lmor'and 688 716.6 min'1, respectively. The kinetic equation of dehydration is:
    da 688716.6
    At the temperature of about 1100℃, the layered structure of dehydrated pyrophyllite collapses and is transformed into amorphous SiO2, but the reconstruction of amorphous substance above 1100℃ forms mullite (3Al203-2SiO2). As the temperature increases, the mulltization is enhanced, and the recrystallization of the amorphous SiO2 into cristobalite will occur when the temperature exceeds 1200℃.
    Kaolinite: During dehydroxylation at 420α~660α, the kaolinite (Al2O3-2SiO2-2H2O) is converted into a thermally stable product of meta-kaolinite. The six-coordinate of aluminium in oxygen octahedrons containing of OH groups change into five-coordinate or four-coordinate on dehydroxylation. Breaking of some bonds lead octahedrons in kaolinite to be destroyed and distorted, the increase of defect in crystal lattice results in the meta-kaolinite as X-ray amorphous substance.
    The kinetic results of dehydration reaction show that the mechanism of dehydroxylation of kaolinite changes when the thermal weight loss is about α=0.7 because the OH groups in interlamellar space associated with the alumina sheets lose more easily than those in the intralamellar space between the silica and alumina sheets. When 0    
    
    /() =[-ln(l -)]"1 . The apparent activation energy E and apparent pre-exporiential Arrhenius
    factor A of the reaction are found to be 159 682.0 J.mol"1 and 1.007X 1010 min"1, respectively. The kinetic equation of dehydration is:
    da 1.007x10
    '?
    dT ft
    At the temperature of about 980, the decomposition of the meta-kaolinite produces amorphous Si02 and a pinel-like phase y-AOa, and this procedure is exothermic. The formation of the y-AOa is the result of reconstruction of four-coordinate of Al ions and six-coordinate Al ions. The six-coordinate of oxygen octahedrons without OH groups are formed by the change of five-coordinate Al again.
    The further increase of the temperature to 1 100 results in the appearance of mullite, which is the recrystallization results amorphous SiC and y-AOs. After thermal treatment above 1200, the amorphous SiC2 is transformed into cristobalite.
    Elite: On thermal treatment, illite firstly loses its hydroscopic water and interlayer water at the temperature of below 400. The dehydration process causes the expansion of crystal along C-direction. With the increase of the temperature up to 500~750, the OH groups split off from the structural framework of illite. Dehydroxylation reactions occur and illite is transformed into dehydrated illite. The six-coordinate of aluminium in oxygen octahedrons wi
引文
[1] 刘中凡.世界铝土矿资源综述.轻金属,2001,5:7~12.
    [2] 赵祖德.世界铝土矿和氧化铝工业.北京,科学出版社,1994,第一版.
    [3] 张国斌.推广铝矿选矿技术 促进氧化铝工业发展.轻金属,2001,3:3~6.
    [4] 欧阳坚,卢寿慈.我国铝土矿资源特征与选矿加工研究.矿产综合利用,1995,2:24~26.
    [5] 谢珉.铝土矿选矿试验研究.有色金属,1995,6:12~16.
    [6] 方启学,黄国智,葛长礼,廖新秦.我国铝土矿资源特征及其面临的问题与对策.轻金属,2000,10:8~10.
    [7] 于传敏.铝土矿选矿为氧化铝工业发展开辟一条新路.轻金属,2000,9:3~6.
    [8] 张文帅.我国铝工业能源消耗的基本情况.世界有色金属,2001,1:29~31.
    [9] 刘磊.氧化铝市场回顾与展望.世界有色金属,2001,4:40~41.
    [10] 杨巧芳,赵清杰.我国氧化铝工业现状及世纪初发展战略探讨.世界有色金属,2001,6:24~26.
    [11] 李章存.铝的能耗分析.轻金属,1995,5:3~5.
    [12] 徐平坤,董应榜.刚玉耐火材料.北京,冶金工业出版社,1996,第一版.
    [13] 陆钦芳.关于我国氧化铝工业竞争能力的几点思考.轻金属,1997,1:3~7.
    [14] 陆钦芳.关于我国氧化铝工业竞争力和发展对策的探讨.轻金属,2001,5:3~6.
    [15] 毕诗文.铝土矿的拜耳法溶出.北京,冶金工业出版社,1997,第一版.
    [16] 王祝堂,梁雁翔.铝消费量计算方法及各国人均消费量.轻金属,2001,1:53~57.
    [17] 段素云.加入WTO后对我国氧化铝工业的影响.世界有色金属,2001,8:55~58.
    [18] 曲献通.21世纪我国铝土矿资源可持续发展战略.世界采矿快报,2000,4:32~35.
    [19] 潘海娥,冯国政.氧化铝和铝土矿的非冶金应用.矿产保护与利用,2002,2:49~52.
    [20] 李裕伟.第三步战略目标面临的矿产资源形势初探.中国地质,1994,6:8.
    [21] 尹中林,顾松青,秦正.发展我国氧化铝工业应注意的几个问题.轻金属,2001,8:9~13.
    [22] 蒋昊,李光辉,胡岳华.铝土矿的铝硅分离.国外金属矿选矿,2001,5:24~29.
    [23] 杨重愚.氧化铝生产工艺学.北京,冶金工业出版社,1993,第一版.
    [24] Grondeva,V. I.,仲崇波译.铝土矿的微生物选矿.国外金属矿选矿,1989,11:9~11.
    [25] 索洛日,商维群译.细菌在矿物工程中的应用.国外金属矿选矿,1991,5:1~10.
    [26] 胡岳华,蒋昊,邱冠周,王淀佐.—水硬铝石型铝土矿铝硅浮选分离溶液化学.中国有色金属学报,2001,1:125~130.
    [27] 关明久,陈东.对高铝粘土工业应用选矿技术的探讨.轻金属,1985,2:1~4.
    [28] 谢珉.论铝土矿选矿的必要性和可行性.国外金属矿选矿,1991,7~8:69~76.
    [29] 张国斌.铝土矿选矿及尾矿综合利用.轻金属,1998,9:3~6.
    [30] 梁爱珍,李庭惠.—水硬铝石型铝土矿的浮选及其前景.有色金属(选矿部分),1981,6:6~11.
    [31] 黄利明,杨井刚,张宝丽,李宏勋.高铝矾土工艺矿物学及其分选特性.第三届全国选矿学术讨论论文集,1991.
    [32] 潘扬球,龚自祥.平果铝土矿-1毫米矿泥回收利用的试验研究.广西冶金,1988,2:21~22.
    [33] 关明久.我国耐火级铝土矿选矿研究进展概况.轻金属,1989,2:1~5.
    [34] 贺飞丽.采用重选-浮选流程提高铝硅比的试验研究.有色金属(选矿部分),1995,5:8~10.
    
    
    [35] 肖松文,罗立群,梁经冬.国内外铝土矿选矿研究概况.广西冶金,1992,4:4~8.
    [36] 关明久.国外铝土矿选矿试验及生产实践概况.轻金属,1991,6:1~5.
    [37] Eygeles, M. A. et al., Selective flotation of kaolinite-hydrargillite. Tsvetnye Met., Jan., 1970 : 84~86.(in Russian)
    [38] Kuznetsov, V. P. et al., Flotation of porous hydrargillite-kaolinite bauxite. Leningrad, 1972 : 143~145.(in Russian)
    [39] Ishchenko, V. V. et al., Action of sodium hexametaphosphate and sodium oleate upon bauxite minerals. Izv VUZ Tsvet Metall., 1972, 5 : 8~12. (in Russian)
    [40] Ishchenko, V. V., Pysicochemical interaction of bauxite-forming minerals with flotation reagents.Nauch Tech. Konf. Ureal. Politeckh Inst. 1972. 1973, 1: 10~11. (in Russian)
    [41] Salatic, D. et al., Floatability of boehmite and kaolin with anionic collectors. Tray. Com. Int. Etude bauxite, Alumina Alum., 1979, 15 : 157~159.
    [42] 王学诗.脱硅技术的创新与脱硅概念的拓展.轻金属,2001,2:27~29.
    [43] Ishchenko, V. V., et al. Flotation of silica from bauxite. Izv VUZ Tsvet Metall., 1974, 3: 7~11. (in Russian)
    [44] Anishchenko, N. M. et al., Interaction of cation reagents in the flotation of chamosite-gibbisite bauxites. Izv VUZ Tsvet Metall., 1972, 4 : 12~16. (in Russian)
    [45] Zsolt Csllag,Miomir Ceh等,王人霓译.—水硬铝石型铝土矿的富集作用.国外金属矿选矿,1985,7:1~7.
    [46] 骆兆军.铝土矿磨矿及反浮选体系分散/凝聚的理论研究与实践.长沙,中南大学博士后研究工作报告,2001年.
    [47] Fulda, W., Ginsberg. H., Tonerde und Aluminium, I Teil, 1951:132~181.
    [48] 尼,拉伊兹曼,著,高守正,张梅枝译.联合法处理低质铝原料生产氧化铝.1990,郑州铝厂:328~336.
    [49] 仇振琢.铝土矿预脱硅的改进.轻金属,1985,9:9~12.
    [50] 程汉林.烧结法氧化铝生产的节能与降耗——低品位铝土矿焙烧预脱硅研究.长沙,中南工业大学硕士学位论文,1995.
    [51] 刘今,程汉林,吴若琼.低铝硅比铝土矿预脱硅研究.中南工业大学学报,1996(27),6:666~670.
    [52] 刘永康.—水硬铝石铝型土矿化学选矿脱硅中焙烧过程的研究.长沙,中南工业大学博士学位论文,1997.
    [53] 罗琳.—水硬铝石型高硅铝土矿化学选矿脱硅与综合利用研究.长沙,中南工业大学博士学位论文,1997.
    [54] 罗琳,刘永康,何伯泉.—水硬铝石-高岭石型铝土矿焙烧脱硅热力学机理研究.有色金属,1999(51).1:25~29.
    [55] Zolotovski, B. P., Taraban, E. A., Buyanov, R. A, Thermochemical activation of crystalline compounds. Flash reaction process, edited by Thomas William Davies, Kluwer Academic Publishers. NATO ASI Series, Series E: Applies Science-1995, Vol.282: 73~94.
    [56] 陆学善.相图与相变.合肥,中国科学技术大学出版社,1990,第一版.
    [57] Kuo-Chung, Liu, Gareth Thomas.,Time-temperature-transformation curves for kaolinite-α-Alumina. J. Am. Ceram. Sot., 1994(77), 6:1545~1552.
    [58] Johnson, Sylvia M., Pask., Joseph A., Influence of impurities on high-temperature reactions of
    
    kaolinite. J. Am. Ceram. Soc., 1982(65), 1 : 31~35.
    [59] Leonard, A.J., Structure analysis of the transition phases in the kaolinite-mullite thermal sequence. J.Am. Ceram. Soc., 1977(60), 1~2 : 37~43.
    [60] Pask, Joseph A., Tormsia, Antoni P., Formation of mullite from Sol-Gel mixtures and kaolinite. J. Am.Ceram. Soc., 1991(74), 1:2367~2373.
    [61] Chakraborty, Akshoy K., Resolution of thermal peaks of kaolinite in thermomechanical analysis and differential thermal analysis studies. J. Am. Ceram. Soc., 1992(75), 7:2013~2016.
    [62] Okada kiyoshi, Otsuka Nozomu, Ossaka joyo, Characterization of spinel phase formed in the kaolinmullite thermal sequence. J. Am. Ceram. Soc., 1986(69), 10 : 251~253.
    [63] Mazumdar, S., Mukherjee, B., Structural characterization of the spinel phase in the kaolin-mullite reaction series through lattice energy. J. Am. Ceram. Soc., 1983(66), 9: 610~612.
    [64] Sonuparlak Birol, Sarikaya Mehmet, Aksay, Ilhay A., Spinel phase formation during the 980℃ exothermic reaction in the kaolinite-to-mullite reaction series. J. Am. Ceram. Soc., 1987(70), 11:837~842.
    [65] Chakravorty Akshoy Kumar, Ghosh dilip kurnar, Kaolinite-mullite reaction series: the development and significance of a binary aluminosilicate phase. J. Am. Ceram. Soc., 1991(74), 6 : 1401~1406.
    [66] Klug, Frederic J., Prochazka Svante, Alumina-silica phase diagram in the mullite region. J. Am.
    [67] a Brindley, G. W., Nakahira, M., The kaolinite-mullite reaction series: Ⅲ, The high temperature phases. J. Am. Ceram. Soc., 1959(42), 7: 319-324.b Brindley, G. W., Mckinstry, H.A., The kaolinite-mullite reaction series: Ⅳ, The coordination of aluminum. J. Am. Ceram. Soc., 1961(44), 10 : 506~507.
    [68] Charkraborty, A. K., Ghosh, D. K., Reexamination of the kaolinite-to-mullite reaction series. J. Am.Ceram. Soc., 1978(61), 3~4:170~173.
    [69] Percival, H. J., Duncan, J. F., Interpretation of the kaolinite-mullite reaction sequence from infrared absorption spectra. J. Am. Ceram. Soc., 1974(57), 2 : 57~61.
    [70] Bulens, M., Leonard, A., Delmon, B., Spectroscopic investigations of the kaolinite-mullite reaction sequence. J. Am. Ceram. Soc., 1978(61), 1~2 : 81~84.
    [71] Grim, R. E., Bradley, W. F., Rehydration and dehydration of clay minerals. Am. Mineral., 1948(33):50~59.
    [72] Grimshaw, R. W., Heaton, W. E., Robert, A. L., Constitution of refractory clays, Ⅱ Thermal analysis method. Trans. Ceram. Soc.(Engl.), 1954(44): 76~92.
    [73] Mcvay, T. M., Thompson, C. L., X-ray investigation of the effect of heat on China clay. J. Am. Ceram.Soc., 1928(11): 829~847.
    [74] Parmelee, C. W., Rodriguez, A. R., Catalytic mullitization of kaolinite by metallic oxides. J. Am. Ceram. Soc., 1942(25), 1 : 1~10.
    [75] Bradley, W. F., Grim, R. E., High-temperature effect of clay and related minerals. Am. Mineral. 1951 (26): 182~201.
    [76] 林彬荫,吴清顺.耐火矿物原料.北京,冶金工业出版社,1987,第一版.
    [77] 张实,张惠芬.高岭石的热稳定性和热处理产物的DTA,IR和EPR研究.矿物岩石,1992(12),2:28~33.
    [78] 高琼英,张智强.高岭石矿物高温相变过程及其火山灰活性.硅酸盐学报,1989(17),6:541~548.
    
    
    [79] 刘长龄.硅铝尖晶石在自然界的发现.硅酸盐学报,1985(13),2:190~197.
    [80] 王银叶,马智,秦永宁.天然矿高岭石制备莫来石复合纳米晶微观结构表征.硅酸盐学报,2000(28)1:68~70.
    [81] 陈大梅,姜泽春,张惠芬.我国叶蜡石的差热和红外光谱研究.矿物学报,1991(11),1:92~96.
    [82] 陈大梅,姜泽春,张惠芬.叶蜡石的热物理特性研究.矿物岩石,1991(43),1:45~50.
    [83] 张振禹,汪灵.叶蜡石加热相变特征的X射线粉晶衍射分析.硅酸盐学报,1998(26),5:618~623.
    [84] 李文英.我国几个矿区叶蜡石X射线粉品衍射研究.矿物学报,1989(9),4:378~382.
    [85] 蔡秀成,张惠芬,富毓德,唐荣炳.天然叶蜡石及其热处理产物的电子顺磁共振(EPR)研究.矿物学报,1991(10)1:16~22.
    [86] 陈全庆,卢星,王幼文.叶蜡石加热过程相交的电子显微镜研究.硅酸盐学报,1988(16),5:385~392.
    [87] Pedro J. Sanchez-Soto, Jose L. Perez-Rodriguez, Formation of mullite from pyrophyllite by mechanical and thermal treatments. J. Am. Ceram. Soc., 1989(72), 1:154~157.
    [88] Pedro J. Sanchez-Soto, Manuel Macias, Jose L. Perez-Rodriguez, Effects of mechanical treatment on X-ray diffraction Line broadening in pyrophyllite. J. Am. Ceram. Soc., 1993(76), 1 : 180~184.
    [89] Wardle Ronald, Brindley, G. W., The crystal structures of pyrophyllite, 1To, and of its dehydroxylate.Am. mineral., 1972(57), 1:732~750.
    [90] Brindeley, G. W., Wardle Ronadle, Monoclinic and triclinic forms of pyrophyllite and pyrophyllite anhydride. Am. Mineral., 1970(55): 1259~1272.
    [91] Raynor, J. H., Brown, G., Structure of pyrophyllite. Clays Clay minerals, 1996(13):73~84.
    [92] Grim, R. E., Bray, R. H., Bradley, W. F., The mica in argillaceous sediments. Am. Mineral., 1937(22):813~829.
    [93] Grim, R. E., Bradley, W. F., Investigation of the heat on the clay minerals illite and montmorillonite. J.Am. Ceram. Soc., 1940(23), 1:242~248.
    [94] Hyslop, J. F., Mcmurdo, A., The thermal expansion of some clay minerals. Trans. Ceram. Soc. (Engl.), 1938 (37): 180~182.
    [95] 周张健,陈代璋.伊利石的物化性能及其高温演化.矿物岩石,1999(19),3:20~22.
    [96] 周张健,格中漪,陈代璋.浙南渡船头伊利石矿的热膨胀性及其机理研究.矿物岩石,1996(16),3:7~12.
    [97] 李余增.热分析.北京,清华大学出版社,1987,第一版.
    [98] 宋鸿恩.热天平.北京,计量出版社,1985,第一版.
    [99] Wendlandt, W. W., Thermal methods of analysis. 1974, 2Ed.
    [100] 沈兴.差热、热重分析与非等温固相反应动力学.北京,冶金工业出版社,1995,第一版.
    [101] Farmer, V. C.著,应育浦,汪寿松等译.矿物的红外光谱.北京,科学出版社,1982.
    [102] 闻辂.矿物红外光谱学.重庆,重庆大学出版社,1989,第一版.
    [103] 彭文世,刘高魁.矿物红外光谱图集.北京,科学出版社,1982,第一版.
    [104] 李树棠.晶体X射线衍射学基础.北京,冶金工业出版社,1990,第一版.
    [105] Warren, B. F., X-ray diffraction, Addison Wesley, 1969.
    [106] Klug,H.P.,Alexander,L.E.,宋世雄等译.X射线衍射技术(多晶和非晶质材料).北京,冶金工业出版社,1986.
    [107] Mehring, M., Principles of high resolution NMR in solids. Springer-Verlag, 1983, Second revised
    
    and enlarged edition.
    [108] Slichter, C. P., Principles of magnetic resonance, I Springer series in solid-state sciences Springer-Verlag, 1993, Third enlarged and updated edition.
    [109] 裘祖文,裴奉奎.核磁共振波谱.北京,科学出版社,1989,第一版.
    [110] 徐平坤.蜡石.北京,冶金工业出版社,1996,第一版.
    [111] 宋世谟,香雅正.化学反应速率理论.北京,高等教育出版社,1990,第一版.
    [112] 孙康.宏观反应动力学及其解析方法.北京,冶金工业出版社,1998,第一版.
    [113] 费罗因德,F.,陶瓷和矿物的热转变.矿物的红外光谱(Farmer,V. C.著,应育浦等译),北京,科学出版社,1982:381~383.
    [114] Mackenzie, K. J. D., Brown, I. W. M., Meinhold, R. H., Bowden, M. E.,Thermal reactions of pyrophyllite studies by high-resolution solid-state ~(27)Al and ~(29)Si nuclear magnetic resonance spectroscopy. J. Am. Ceram. Soc., 1985(68), 5:266~272.
    [115] Watanabe, T., Shimizu, A., Masuda, A., Saito, H., Studies of ~(29)Si spin-lattice relaxation times by paramagnetic impurities in clay minerals by magic-angle spinning ~(29)Si and EPR. Chem. Lett., 1983(18):1293~1296.
    [116] Smith, K. A., Kirkpatrick, R. J., Oldfield, E., Henderson, D. M., High resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates. Am. Mineral., 1983(68), 11~12: 1206~1215
    [117] Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G., Grimmer, A. R-., Structure studies of silicates by solid-state high-resolution ~(29)Si NMR. J. Am. Chem. Soc., 1980(102), 15: 4889~4893.
    [118] Frost, Raymond L. and Barron, Peter F., Solid-state silicon-29 and aluminum-27 nuclear magnetic resonance investigation of the dehydroxylation of pyrophyllite. J. Phys. Chem., 1984(88), 25:6206~6209.
    [119] 29-Si 27-Al magic-angle spinning nuclear magnetic resonance study of the thermal transformation of pyrophyllite. J. Am. Ceram. Soc., 1993(76), 12:3024~3028.
    [120] Sanz, J., Serratosa, J. M., Distinction of tetrahedrally and octahedrally coordinated al in phyllosilicates-by NMR spectroscopy. Am. Mineral., 1984(19): 113~115.
    [121] Smith, J. V., Blackwell, C. S., Nuclear magnetic resonance of silica polymorphs. Nature(London), 1983(303):223~225.
    [122] Ramdas, S., Klinoworks, J., A simple correlation between isotropic ~(29)Si NMR chemical shifts and T-O-T angles in zeolite frameworks. Nature(London), 1984(308):521~523.
    [123] Grim, Ralph E., Clay mineralogy, Mcgraw-hill series in the geological sciences, 1953:46~52.
    [124] Ramesh, A., Kozinski, J. A., ~(29)Si, ~(27)Al and ~(23)Na solid-state nuclear magnetic resonance studies of combustion-generated ash. Fuel 80, 2001:1603~1610.
    [125] Giese, R. F., Datta, P., Hydroxyl orientation in kaolinite, dickite and nacrite. Am. Mineral., 1973(58):471~479.
    [126] Suitch, P. R., Mechanism for dehydroxylation of kaolinite, dickite, and nacrite from room temperature to 455℃. J. Am. Ceram. Soc., 1986(69), 1: 61~65.
    [127] Anthony, Gaylord D., Gran, Paul D., Kinetics of kaolinite dehydroxylation. J. Am. Ceram. Soc., 1974(57), 3:132~135.
    [128] Johnson, H. B., Kessler Frank, Kaolinite dehydroxylation kinetics. J. Am. Ceram. Soc., 1969(52), 4:
    
    199~204.
    [129] Brindley, G,W., Sharp,J. H., Patterson, J. H., Achar, B. N. N., Kinetics and mechanism of dehydration process :I Temperature and vapor pressure dependence of dehydroxylation of kaolinite. Am. Mineral., 1967(52), 1~2:201~211.
    [130] Brindley, G. W., Nakahira, M., Kinetics of dehydroxylation of kaolinite and halloysite. J. Am. Ceram.Soc.,1957(40),10:346~350.
    [131] Redfern, S. A. T., The kinetics of dehydroxylation of kaolinite. Clay minerals, 1987(22): 447~456.
    [132] Holt, J. B., Cutler, I. B., Wadsworth, M. E., Rate of dehydroxylation of kaolinite in vacuum. J. Am.Ceram. Soc., 1962(45), 133~136.
    [133] Criado, J. M., Ortega, A., Real, C., Torres De Tores, E., Re-examination of kinetics of dehydro-xylation of kaolinite. Clay Minerals, 1984(19): 653~661.
    [134] Hancock, J. D., Sharp, J. H., Method of comparing solid-state kinetic data and its application of kaolinite, brucite and BaCO_3. J. Am. Ceram. Soc., 1972(55), 1 : 74~77.
    [135] Farmer, V. C., Infrared absorption of hydroxyle groups in kaolinite. Science, New York, 1964(145):1189~1190.
    [136] Farmer, V. C., Russel, J. D., The infrared spectra of layer silicates. Spectrochim. Acta, 1964,20:1149~1173.
    [137] Heller-Kallai, L., Reactions of salts with kaolinite at elevated temperatures I. Clay minerals,1978(13): 221~235.
    [138] Temuujin, T., Okada, K., Mackenzie, K. J. D., Jadambaa, Ts., The effect of water vapour atmosphere on the thermal transformation of kaolinite investigated by XRD, FTIR and solid state MAS NMR. J. European. Ceram. Soc., 1998(19): 105~112.
    [139] Kakali, G., Peraki, T., Tsivilis, S., Badogiannis, E., Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied clay science, 2001(20), 73~80.
    [140] Okada, Kiyoshi and Otsuka, Nozomu, Characterization of the spinel phase from SiO_2-Al_2O_3 xerogels and the formation process of mullite. J. Am. Ceram. Soc., 1986(69), 9:652~656.
    [141] Percival, H. J., Duncan, J. F., Foster, P. K., Interpretation of the kaolinite-mullite reaction sequence from infrared absorption spectra. J. Am. Ceram. Soc., 1974(57), 2:57~61.
    [142] Hughes, J. C., The effects of experimental conditions on the 950℃ kaolinite exotherm in some tropical soil clays. Clay minerals, 1979(14): 21~27.
    [143] Amedee Djemai, Etienne Balan, Gullaume Morin, Giancarlo Hernandez, Jean Claude Labbe, Jean Pierre Muller, Behavior of paramagnetic iron during the thermal transformations of kaolinite. J. Am.Ceram. Soc., 2001(84), 5:1017~1024.
    [144] Dominique Massiot, Pascal Dion, Jean francois Alcover, Faiza Bergaya, ~(27)A1 and ~(29)Si NMR study of kaolinite thermal decomposition by controlled rate thermal analysis. J. Am. Ceram. Soc., 1995(78),11:2940~2944.
    [145] Mackenzie, Kenneth J. D., Hartman, J. Stephen, MAS NMR evidence for the presence of silicon in the alumina spinel from thermally transformation kaolinite. J. Am. Ceram. Soc., 1996(79), 11:2980~2982.
    [146] Mackenzie, K. J. D., Brown, I. W. M., Meinhold. R. H., Browden, M. E., Outstanding problems in the kaolinite-mullite reaction sequence investigated by ~(29)Si and ~(27)Al solid-state nuclear magnetic
    
    resonance: I, metakaolinite. J. Am. Ceram. Soc., 1985(68), 6 : 293-297.
    [147] Brown, I. W. M., Mackenzie, K. J. D., Browden, M. E., Meinhold. R. H., Outstanding problems in the kaolinite-mullite reaction sequence investigated by ~(29)Si and ~(27)Al solid-state nuclear magnetic resonance: Ⅱ, High temperature transformations of metakaolinite. J. Am. Ceram. Soc., 1985(68), 6:298~301.
    [148] Sanz, J., Madani, A., Sterratosa, J. M., Moya, J. S., Aza, S., Aluminum-27 and silicon-29 magic-angle spinning nuclear magnetic resonance study of the kaolinite-mullite transformation. J. Am. Ceram. Soc., 1988(71), 10: C-418~C-421.
    [149] Watanabe, T., Shimizu, H., Nagasawa, K., Masuda, A., Saito, H., ~(29)Si-and-~(27)Al-MAS/NMR study of the thermal transformations of kaolinite. Clay minerals, 1987(22): 37~48.
    [150] Jesus Sanz, Iscbel Sobrados, Anal L. Cavalieri, Pilar Pena, Salvador de Aza, Jose S. Moya, Structural changes induced on mullite precursors by thermal treatment: A ~(27)Al MAS-NMR Investigation. J.Am. Ceram. Soc., 1991(74), 10: 2398~2403.
    [151] 郭九皋,何宏平,王辅亚,王德强,张惠芬.高岭石-莫来石反应系列~(29)Si和~(27)Al MAS NMR研究.矿物学报,1997(17),3:250~259.
    [152] 郭九皋,何宏平,王辅亚,王德强,张惠芬.高岭石-莫来石反应系列再考察——~(29)Si和~(27)Al MAS NMR研究.国际地质大会论文集(第16卷),矿物学(蔡爱莉主编).北京,地质出版社,1999,第一版.
    [153] Brindley, G. W., Lematre, J., Thermal oxidation and reduction reactions of clay minerals. In Chemistry of clays and clay minerals. Ed. Newman, A. C. D., London: Longman scientific and technical, 1987:319~364.
    [154] Grim, Ralph E., Clay mineralogy, Mcgraw-hill series in the geological sciences, 1953: 93~97.
    [155] 任磊夫.粘土矿物与粘土岩.北京,地质出版社,1992,第一版.
    [156] Roch, G. R., Smith, M. E., Drachman, S. R., Solid state NMR characterization of the thermal transformation of an illite-rich clay. Clay Clay Minerals, 1998(46), 6: 694~704.
    [157] 李光辉.—水硬铝石型铝土矿焙烧-碱浸脱硅工艺及机理研究.长沙,中南工业大学硕士学位论文,1999.
    [158] 陈万坤,彭关才.—水硬铝石型铝土矿强化溶出技术.北京,冶金工业出版社,1997,第一版:83~90.
    [159] 闰月香,梁乐善,董银宽.铝土矿热分解过程的研究.轻金属,2000,5:27~28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700