用户名: 密码: 验证码:
各向异性介质中的场地微动理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
场地微动的观测研究应用于场地地震反应分析,可以表征场地地震动特性的某些参数,是确定场地动力特性、预测场地的地震动影响特性和建筑物抗震能力调查的一种非常方便、非常重要的手段。
     目前,场地微动的理论研究与工程应用基本上是基于各向同性(包括覆盖土层和基岩各向同性)的假设前提。事实上,场地土往往具有各向异性。从弹性波理论出发,分析土介质各向异性及其对场地微动、场地动力特性的影响,开展各向异性介质中的场地微动理论及应用研究具有重要的理论意义和实际应用价值,选题具有先进性。
     从各向异性介质的弹性波理论出发,本文系统地分析了各向异性土介质中地震波的传播特性。由于土介质的波速度存在各向异性,波速测试的方法及波型的选抒对测试结果有显著影响。目前单一的测试方法获得的速度信息不能全面反映场地的动力特性,从而影响场地地震反应分析结果,因而场地速度测试与分析中考虑各向异性是必要的。
     首次对各向异性土介质中的场地微动进行了数值模拟研究,分析了入射波频率对场地微动的影响以及场地动力特性随着深度的变化特征。在理论分析和数值模拟的基础上,研究了各向异性介质的场地微动机制。从弹性波理论、土动力学及场地地震反应分析理论出发,首次提出了场地微动主轴概念,分析了各向异性场地微动与土动力学参数之间的关系;系统地研究了各向异性主轴的确定和分析方法。这一首次系统研究为各向异性场地地震反应分析提供了理论基础。
     本文研究了土介质的各向异性对土动力特性的影响,研究了场地微动对土体稳定性的影响及其与各向异性主轴的关系。考虑卓越周期对地震反应的影响,在工程结构的抗震设计中,提出对结构主要自振周期的禁区约束处理应充分考虑场地卓越周期的各向异性影响的思想,分析了卓越周期计算和禁区约束处理方法,同时对各向异性场地微动观测和分析处理技术进行了研究。各向异性介质中的场地微动理论与应用研究,具有一定的创新性。
     对目前场地分类方法进行了初步分析,提出场地分类应考虑反应谱的各向异性,以及利用场地微动各向异性特征的分类思想和方法。考虑结构的复杂性和输入地震包括多维地震及各向异性影响的重要性,提出了利用场地微动的各向异性特征参数作为多维输入地震选择和调整参考因子的初步想法和实现方法。
     本文仅仅研究了覆盖土层各向异性对场地微动的影响。实际上,场地介质对场地微动的影响还包括覆盖层的非均匀性、基岩的非均匀性及其各向异性等因素,这些都有待下一步研究。
The study of ground microtremor can be applied to analysis on the response of ground seismic, characterization of some speciality of ground seismic. It's one of the most important and convenient methods for determining the dynamic properties of the soil , predicting the characteristics of ground seismic, and studying of the shock resistance of the architecture.
    At present, the study of theory and the engineering application on ground microtremor are based on the hypothesis of isotropy basically. In fact, the characteristic of the soil is usually anisotropy. It is important and useful to study the theory and the application of ground microtremor in the anisotropy soil, influence of the anisotropy to the ground microtremor, the dynamic properties of the ground based on the theory of elastic wave. This is one of the leading topic in the area of the seismology .
    Based on the theory of elastic wave in anisotropy medium, the characteristic of the seismic wave is analyzed in this paper. Wave field in anisotropy medium is quite different from that of in isotropy medium. As the influence of the characteristic of anisotropy, the wave modes and the surveying method have important effect on the results of the velocity, then the velocity will affect the calculation of the fundamental period. Therefore, considering the anisotropy in study and analysis of the ground velocity testing is necessary.
    In this paper, the characteristics of the ground microtremor in anisotropy soil, the influence of the frequency of the incident wave to the characteristics of the ground microtremor, and the variation of the ground characteristics with depth have been studied. The mechanism of the ground microtremor has been studied based on the analysis of theory and numerical modeling. The conception of the principal axis has been put forward. The method for determining of the principal axis has been studied systematically in this article. This study make up the foundation of the analysis of the ground response.
    The effect of the anisotropy to the soil dynamics has been studied in this article. The effects of ground microtremor to the stability of the soil, and the relationship to the stability of the soil and principal axis have also been studied. Taking account of the effect of the fundamentally period to the ground response, the design of seismic structures considering structural vibration period restraint should respect the influence of the anisotropy of the fundamental period. A method considering fundamental
    
    
    period of the principal axis for the structural vibration period restraint has been put forward. The observation measurement and processing technique with wavelet have been studied.
    The method of the soil category is analyzed in this paper. Method for the classification of soil considering the characteristics of anisotropy of the ground microtremor , and method for the selection of the earthquake time history considering anisotropy are put forward respecting to the ground microtremor.
    In this paper, only the effect of the anisotropy of the earth covering was considered. In fact characteristics of the soil including the heterogeneity of the earth covering, the heterogeneity and the anisotropy of the base rock are also important factors that affect the characteristics of the ground microtremor. All of these will be studied further in the future.
引文
1. Field E H H,.Jacob K H. Using microtremors to assess potential earthquake siteresponse: Acase study in Flushing Meadows, New York City. Bull. Seim. Soc. Am. 1990, 80:1456-1480
    2. Lermo J. Site effect evaluation using spectral ratios with only onestation. Bull. Seismol. Soc. Am 1993, 83 (5), 1574-1594
    3. Lermo J.,Chavez-Garcia J. Are microtremors useful in site response evaluation?Bull. Seismol. Soc. Am 1994,84, 1350-1365
    4. Ohmachi, T., Nakamura, Y. and Toshinawa, T. (1991), "Ground Motion Characteristics in the San Francisco Bay Area detected by Microtremor Measurements", Proc. 2nd. Int. Conf. on Recent Adv. In Geot. Earth. Eng. AndSoilDyn., 11-15 March, St. Louis, Missouri: 1643-1648.
    5. Lermo, J., Francisco, S. and Chavez-Garcia, J. (1992), "Site Effect Evaluation using microtremors: areview(abstract)", EOS 73, 352.
    6. Field, E.H. and Jacob, K.H. (1993), "The Theoretical Response of Sedimentary Layers to Ambient SeismicNoise", Geophys. Res. Let., 20, 2925-2928.
    7. Lather, C. and Bard, P.Y (1994), "Numerical and Theoretical Investigations on the Possibilities and Limitations of Nakamura's Technique", J. Phys. Earth, 42, 377-397.
    8. Field, E.H. and Jacob, K.H. (1995), "A Comparison and Test of Various Site Response Estimation Techniques,Including Three That Are Not Reference Site Dependent", Bull. Seism. Soc. Am., Vol. 85, No.4, 1127-1143.
    9. Nakamura, Y. (1996)," Real Time Information Systems for Seismic Hazards Mitigation UrEDAS, HERAS and PIC", Quarterly Report ofRrRl, Vol. 37, No. 3, 112-127.
    10. Nakamura, Y. (1997), "Seismic Vulnerability Indices For Ground and Structures Using Microtremor", World Congress on Railway Research in Florence, Italy, November 1997.
    11. Konno, K. and Ohmachi, T. (1998), "Ground-Motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor", Bull. Seism. Soc. Am., Vol. 88, No.1, 228-241
    12. Bard P.Y. (1998), " Microtremor Measurements: A Tool For Site Effect Estimation?", Manuscript for Proc. of 2 ,,~ International Symposium on the Effect of Surface Geology on Seismic Motion, Yokohama, Japan, 1-3 Dec, 1998.
    
    
    13. Nakamura, Y., Gurler, E.D. and Saita, J. (1999), "Dynamic Characteristics of Leaning Tower of Pisa Using Microtremor-Preliminary Results", Proc. 25th JSCE Earthquake Eng. Symposium, Vol. 2, 921-924.
    14. Konno K, Ohmachi. Ground-motion characteristics estimated from spectral ratio between horizonal and verticaI components of microtremor. Bull. Seismol. Soc. Am 1998,88,228-241
    15. Okada H. Estimation of underground structures down to a depth more than several hundreds of meters using long period microtremors. Proc of the 7th Japan Earthq Eng Symposium. Tokyo:Published by 7th Japan Earthq Eng Symposium Organizing Committee, 1986.211-216
    16. Horike M. Inversion of phase velocity of long period microtremors of the S-wave velocity structure down the basement in urbanized areas. Journal of Physics of the Earth, 1985,38:59-61
    17. Naomi SAKAJIRI et al, Relation between the Nature of Long-period Microtremors and S-wave Velocity structure-Observation in Bachinohe City,物理探查,1990,43 (2),85-96
    18. Tatsuro MATSUOKA, et al, Applicability of Long-Period Microtremor Array Observations for Estimation of Deep Geological Structures-Phase Velocity Inversions Using the Log Data as the Prior Information,物理探查,2000, 53 (1), 12-28
    19. 山本英和,An Experiment for Estimating Phase Velocitiesof Love Waves from Tree-Component Microtremor Array Observations,物理探查,2000, 53 (2),153-166
    20. Kimitoshi ASHIYA. et al, Estimation of Phase Velocities of Multiple Modes by Inversion of Frequency Wavenumber Spectrum and Its Application to Train-Induced Ground Vibrations,物理探查,1999, 52(3)。214-226
    21. Ikuo CHO. et al, Application of Foking Genetic Algorithm fGA to an exploration method using microtremors,物理探查,1999,52 (3), 227-246
    22. Thomsen L, Weak elastic anisotropy, Geophysics, 1986,51(10),1954-1966
    23. Wright J, The effects of transverse isotropy on reflection amplitude versus offset, Geophysics, 1987,52(4),564-567
    24. Nakamura, y Clear identification of fundamental idea of Nakamuras technique and its application 12th WCEE 2000 2656
    25. Ibs-von Seht, M.,Wohlenberg, J. Microtremor measurements used to map thickness of soft sediments. Bull. Seismol. Soc. Am 1999,89,250-259
    
    
    26. Kamiyama M. An empirical method for identifying nonlinear soil amplification of strong earthquake motion. In:10th WCEE Organizing Committee ed. Proc of 10WCEE. Madrid:Published by A A Balkema, 1992,979-984
    27. Tokumi SAITO et al, Ground Vibration Characteristics in the vicinities of the Barajima Indnstrial Arca, Akita city,物理探查,1994,47(2),120-133
    28. Aki K. Local site effects on strong ground motion. Earthquake Engineering and Soil Dynamics Ⅱ-Recent Advances in Ground Motion Evaluation, Geotech Spec Pub, ASCE, 1988(20):103-155
    29. Sugito M. Modelling nonlinear soil amplification of earthquake motion with application to random structural response. Proc of 9WCEE. Tokyo:Published by 9WCEE Organizing Committee, Japan Association for Earthquake Disaster Prevention, 1988,498-494
    30. Sugito M. Modelling non-linear ground motion amplification factor by local soil parameters. In:10th WCEE Organizing Committee ed. Proc of 10WCEE Vol. 3. Madrid:Published by A A Balkema, 1992,216-221
    31. Takashi T. Seismic response behaviour of soft deposits. Proc of 9WCEE.Tokyo:Published by 9WCEE Organizing Committee, Japan Association for Earthquake Disaster Prevention, 1988,423-428
    32. Nakamura, y. A method for dynamic characteristics estimation of subsurface using microtremor on ground surface. Quarterly Report of RTRI(Railway Technical Research Inst .1989,30,25-33
    33. Seo, K.,Applications of microtremors as a substitute of seismic motion-reviewing the recent microtremors joint research in different sites, Quarterly Report of RTRI(Railway Technical Research Inst.1989,30,25-33
    34. Delgado, et al, Mapping soft soils in the Segura river valley(SE Spain):a case study of microtremors as an exploration tool. Journal of Applied Geophysics 45(2000),19-32
    35. Delgado, Microtremors as a Geophysical Exploration Tool:Application And limitations, Pure and Applied Geophysics, 2157(2000),1445-1462
    36. Tasuro MATSUOKA, et at, Determination of Dynamic Characteristics of Low-storied Houses by means of Transfer Function of Microtremor Measurements,物理探查,1987, 40 (2),117-128
    37. Tasuro MATSUOKA, et al, Evaluation of the Dynamic Characteristics of Wooden Houses in an Area for Assessment of Earthquake Damage:Use of the Results of
    
    Vibration-tests through Microtramor Measurements,物理探查,1988, 41(5),360-371
    38. J.F. Scmblat, A.M. Duval, P. Dangla:Numcrical analysis of seismic wave amplification with expcriments, Soil Dynamics and Earthquake Engineering, 19(2000),347-362
    39. C.R. Bates, D.R. Phillips,Multi-component seismic surveying for near surface investigations:examples from central Wyoming and Southern England, Journal of Applied geophysics, 44(2000),257-273
    40. A. Ojeda, J. Escallon, Comparison between different techniques for evaluation of Predominant periods using strong ground motion records and microtremors in Pereira Colomibia, Soil Dynamics and Earthquake Engineering, 20(2000),137-143
    41. A.M. Puzrin, A. Shiran, Effects of the constitutive relationship on seismic response of soils. Part Ⅱ, The site amplification study, Soil Dynamics and Earthquake Engineering, 19(2000),319-331
    42. Masanobu Oda et al, Microstructural interpretation on Reliquefaction of Saturated Granular Soila Under Cyclic Loading, Journal of Geotechnical and Geoenvironmental Engineering May, 2001,416-423
    43. John N. louie, Faster, Better:Shear-wave velocity to 100meters Depth From Refraction Microtramor Arrays. Bulletin of the Seismological Society of America, 20001,91(2),347-364
    44. Cheng-Hsing chen, Hwang-Chieh chiu, Anisotropic seismic ground responses identified From the Rualian Vertical array, Soil Dynamics and Earthquake Engineering, 17(1998),371-395
    45. J. Yang, Saturation effects on horizontal and vertical motion in a layered soil-bedrock system due to inclined SV waves, Soil Dynamics and Earthquake Engineering,21(2001),527-536
    46. M. Bour et al,On the use of microtremor recordings in seismic microzonation ,Soil Dynamics and Earthquake Engineering 17(1998)465-474
    47. Postma G.W, Wave propagation in a stratified media,Geophysics, 1955,20,780-806
    48. Sergei V Zatsepin, Stuart Crampin, Modelling the compliance of crustal rock- I response of shear wave splitting to differential stress,RAS, GJI, 1997,129,477-494
    49. Stuart Crampin, Sergei V Zatsepin, Modelling the compliance of crustal rock-
    
    Ⅱresponse to temporal changes before earthquake, RAS, GJI, 1997,129,495-506
    50. Stnart Crampin, Scismic-wave propagation through a cracked solid:polarization as a possibledilatancy diagnosLic,1978 Geophys, J.R.astro soc, 1978,53,467-496
    51. Stuart Crampin, Effective anisotropic elastic constaats for wave propagation through cracked solids, Geophys, J.R. astro soc, 1984,76,135-145
    52. Field, E. H Spectral Amplification in a sedimenet-filled vally Exhibiting Clear Basin edage indueced waves,,1996 Bull. Seismol .Soc. Am. 86,991-1005
    53. Rebecca L. Saltzer, James B. Gaherty and Thomas. H. Jordan, How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth? 2000RAS, GJI 141,374-390
    54.刘曾武,概述常时微动的研究及在工程中的应用,世界地震工程,1992,8(1),17-19
    55.王振东,微动应用技术讲座,国外地质勘探技术,1990,No4,,No7,,No8,
    56.汤厚杰,地微振(常时微动)测试(microtremor),林宗元主编,岩土工程试验监测手册,辽宁科学技术出版社,1994,848-855
    57.范昌隆,利用综合地脉动法测定剪切波速度,勘察科学技术,1995,第4期,53-56,52
    58.杨学林,吴世明,关于地脉动信号及其工程应用,第七界土力学及基础工程学术会议论文集,中国建筑工业出版社,1994,661-664
    59.杨学林,吴世明,利用短周期地脉动推断深层地基S波速度,振动工程学报,1997,10(2)169-175
    60.章在墉,李文艺,陶能付,长周期地面脉动在地震小区划中的应用,同济大学学报,1994,22(4),421-426
    61.郭明珠,宋泽清,论地脉动场地动力特性分析中的Nakamura方法,世界地震工程,2000,16(2),88-92
    62.郭明珠,谢礼立,高尔根等,利用地脉动进行场地反应分析研究综述,世界地震工程,1999,15(3),14-18
    63.李昊,地脉动测试分析技术与工程应用,勘察科学技术,2000,(6)
    64.刘财,韩文明,周辉等,关于微动信息基本性质的初步研究,长春地质学院学报,1994,24(2),197-209
    65.黄兴建,地面脉动分析,四川地震,1994,第2期,1-5
    66.胡强,程耀东,齐津,大地脉动数据的分析与建模,浙江大学学报(自然科学版),1997,31(6)767-773
    67.李昊,胡钧,地脉动测试在核电厂址勘察中的分析与应用,西部探矿工程,2000,第
    
    6期
    68.石玉成,西北地区戈壁砂砾石场地的脉动特征,华南地震,1996,16(2),46-52
    69.石玉成,黄土场地的脉动特征及地震工程意义,兰州大学学报(自然科学版),2001,37(5),105-110
    70.彭远黔,李雪英,高登平,场地脉动观测数据处理方法的差异性研究,山西地震,2000,No2,18-22
    71.王雪峰,吴世明,不同传感器在桩基完整性检测中的应用,工程勘察2000年第4期
    72.吴世明,陈云敏,曾国熙,利用表面波谱分析法测试土层波速,地震工程与工程振动,1988,3)(4)
    73.杨学林,陈云敏,蔡袁强等,利用地脉动确定地基自振频率,岩土工程学报,1995,17(4),51-55
    74.何开明,孟广魁,班铁等,用地脉动研究银川沉积地层的地震波放大特性,西北地震学报,1999,21(4)383-388
    75.蒋乐群,叶建庆,刘学军等,丽江大研镇震灾分布和地脉动测量结果之间的相关性,地震研究,1997,20(1),125-13l
    76.李白基.秦嘉政,罗娣华等,云南丽江峡谷场地放大,地震学报,1999,21(2)175-179
    77.熊建国,许贴燕,分层土自振特性分析,地震工程与工程振动,1986,16(4),21-35
    78.郑柱坚,场地卓越周期的测定及其在建筑抗震设计中的应用,工程抗震,2000,第1期,36-39
    79.高广运,吴世明,周健等,场地卓越周期的讨论与测定,工程勘察,2000,第5期
    80.郑洁红,郭钦华,中山市城区场地地层剪切波速及脉动特征,华南地震,1997,17(2),62-65
    81.陈化然,郭瑞芝,冯德益,地脉动及特殊波形的频谱特性在地震预报中的应用,地震,1998,18(1),75-82
    82.蒋通,脉动的研究及其在地震工程中的应用,世界地震工程,1997,13(4),41-46
    83.朱长春,何彩英,张景绘等,利用地脉动试验识别楼房结构的模态参数,试验力学,1999,14(2),243-250
    84.刘惠珊,地震区的场地与地丛基础,中国建筑工业出版社,1994
    85.俞言祥,胡聿贤,关于上海市建筑抗震设计规程中长周期设计反应谱的讨论,地震工程与工程振动,2000,20(1),27-34马在田等,计算地球物理学概论,上海:同济大学出版社,1997
    86.徐仲达,地震波理论,上海:同济大学出版社,1997
    87.何樵登,地震波理论,北京:地质出版社,1988
    
    
    88.刘洋,李承楚,牟永光,具有倾斜对称轴的横向各向异性介质中的弹性波,石油地球物理勘探,33(2),161-169
    89.刘洋.李承楚,双相各向异性介质中的弹性波传播特征研究,地震学报,1999,21(4)
    90.刘希强,周恕兰,郑治真等,剪切波在双层方位各向异性介质传播中分裂参数的变化特性,地球物理学报,1999,41(5),680-690
    91.寻浩等,横观各向同性介质中的AVO,石油地球物理勘探,1997,32(1),45-56
    92.缪林昌,三分最各向异性介质的数值模拟,地球物理学报,1994,37(增刊)413~423
    93.夏唐代,蔡志强,吴世明等,各向异性成层地基中Ray leigh波弥散特性,振动工程学报,1996,9(2)
    94.周锡元,王广军,苏经宁,场地.地基.设计地震,地震出版社,1991,
    95.国家地震局震害防御司,工程场地地震安全性评价工作规范,地震出版社,1994
    96.中华人民共和国国家标准,地基动力特性测试规范,《GB/T50269-97》,中国计划出版社,1998
    97.建筑抗震设计规范《GBJ11-89》,中国建筑工业出版社,1989
    98.建设部综合勘察研究院,场地地微振测量技术规程,中国计划出版社,1996
    99.谢礼立,李沙白,章文波,唐山响堂三维场地影响观测台阵,地震工程与工程振动,1999,19(2),1-8
    100.中华人民共和国国家标准,工业与民用建筑抗震设计规范,《GBJ11-89》,辽宁科学技术出版社,1990
    101.中华人民共和国国家标准,岩土工程勘察规范,《GBJ50021-94》,中国建筑工业出版社,1995
    102.中华人民共和国行业标准,高层建筑岩土工程勘察规程,《JGJ72-90》,中国建筑工出版社,1991
    103.毛彦龙,胡广韬,毛新虎等,地震滑坡启动剧动的机理研究及离散元模拟,工程地质学报,2001,9(1),74-80
    104.王家鼎,张倬元,李保雄,黄土自重湿陷变形的脉动液化机理,地理科学,1999,19(3),271-275
    105.陈镕,陈竹昌等,横观各向同性层状场地对入射SH波的响应分析,上海力学,1998,19(3)
    106.贺传松,周正华,李山有,场地组合土堆输入地震动的影响,东北地震研究,1999,15(1)53-58
    107.李英明,杨沽,赖明,双向水平地震动峰值特性的相关性研究,重庆建筑大学学报,1999,21(2),5-11,18
    
    
    108.戴国莹,新建筑抗震设计规范简介,建筑结构,2001,31(10),68-71
    109.张之颖,张景绘,卓越周期对反应谱最大值的影响,环境与强度,1999(2),1-6
    110.宋古海,宋东,场地特征周期值的模糊综合评定,西安建筑科技大学学报,1995,27(2)134-139
    111.邓军,唐家祥,时程分析法输入地震记录的选择与实例
    112.杨柏坡,窦立军,地震安全性评价和高层建筑的地震动输入,地震工程与工程振动,2000,20(1),35-41
    113.杨河,李英明,赖明,结构时程分析法输入地震波的选择控制指标,土木工程学报,2000,33(6),33-37
    114.李宏男,结构多维抗震理论与设计方法,北京:科学出版社,1998
    115.谢定义,土动力学,西安:西安交通大学出版社,1988,77-89
    116.张建民,王稳祥,振动频率对饱和砂土动力特性的影响,岩土工程学报,1990,12(1),89-97
    117.付磊,王洪瑾,周景星,初始主应力偏转角对土石坝动力计算结果的影响,水利学报,1999,(2),76-80
    118.王洪瑾,张国平,周克骥,固有和诱发各向异性对击实性粘性土强度和变形特性的影响,岩土工程学报,1996,18(3),1-10
    119.沈瑞福,王洪瑾,周景星,动主应力轴连续旋转下砂土的动强度,水利学报,1996,(1),27-33
    120.李刚,陈新华,周仁根,地震作用下考虑场地特征周期禁区约束的结构优化设计,工程抗震,1996,4,17-19,16
    121.谢官模,谷口健男,靠近振源处土对波传播和结构响应的影响,武汉理工大学学报,2001,23(2),60-62
    122.王越之,各向异性地层应力的推算及深孔地层破裂压力的预测,岩石力学与工程学报,17(3),322-329
    123.江静贝,符圣聪,崔卫国,从不同场地反应谱形状看设计谱的确定,工程抗震,2,1995,47-49
    124.徐惠芬,武汉市城区软土场地的分布类型及动态反应特征,土工基础,1997,11(3),8-12
    125.蔡宏英,周健等,深厚覆盖软土地层多向地震动力反应分析,同济大学学报,2000,28(2),177-182
    126.黄忠邦,高海,项忠权,埋地管线在均匀和非均匀土介质中的地震反应,天津大学学报,1995,28(1)
    127.秦前清,杨宗凯,实用小波分析[M],西安:西安电子科技大学出版社,1994.
    
    
    128.胡昌华,张军波,夏军等,基于MATLAB的系统分析与设计-小波分析[M],西安:西安电子科技大学出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700