用户名: 密码: 验证码:
空间关系模糊描述及组合推理的理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实世界是无限复杂和巨大的系统,其中的现象和过程之间存在着各种复杂的关系,是一种连续而自然的现实模型;而GIS是一个有限的、离散的系统,其中的数字模型是被人们经过认知、抽象和描述后的离散模型。这种有限与无限、连续与离散、原始与抽象、自然与认知之间的差异,导致了GIS中的数据、分析模型、处理方法和可视化等带有不确定性。一方面,由于受数据、认知和分析处理中不确定性的影响,空间关系也具有不确定性;另一方面,现有的空间关系描述方法所能够描述的概念与人们经常使用的空间语言之间总存在着一些差异。由于现有的空间关系描述方法是基于二值逻辑的确定性方法,基本上不能描述这种不确定性和差异性,因而这些方法计算得到的对象间的空间关系和现实世界中对应现象间的关系不一致,从而使得基于空间关系的空间数据查询和处理所得到的结果与现实相差较大或不是用户所期望的,限制了空间关系在GIS中的使用。基于这样的认识,本文提出了空间关系的模糊描述方法和一种细节方向关系的描述和推理模型,模糊方法能够描述空间关系的不确定性,而细节方向关系能够以自然语言的方式处理空间关系,从而减小了描述方法所能描述的概念与自然语言的差异性,并从理论、方法、技术和原型实验等几个方面进行了研究和论述,主要内容包括:
     (1)全面分析了影响空间关系不确定性的因素,指出空间关系不确定性受空间数据不确定性、认知不确定性和分析处理不确定性等3个方面的影响。空间关系描述必须全面考虑这3个因素,而不是分开处理,即这3个不确定性因素应该在一个统一的框架下分析和处理。
     (2)提出了模糊形态运算。把基于经典集合的数学形态学基本算子扩展到基于模糊集的模糊形态算子,使之能够处理模糊数据。模糊形态算子能够同时处理模糊和非模糊数据,能够提高处理的精度。
     (3)分析了空间数据位置不确定性和属性不确定性对拓扑关系的影响,提出了对象拓扑空间模糊划分隶属函数及拓扑关系模糊描述的隶属函数,形成了模糊九交模型。模糊九交模型能把模糊对象和精确对象的拓扑关系集中在一个框架中统一描述,能够同时描述位置不确定性和属性确定性对拓扑关系的影响;研究了模糊拓扑关系的矢量和栅格算法,该矢量算法能够保证有较高的精度和较高的速度。
     (4)把粗糙集方法引入方向关系处理,提出了方向关系粗糙推理方法。模糊对象和精确对象可以用下粗和上粗两个集合统一描述,用它们的差集体现了数据的不确定性;同样,方向关系也可以用下粗和上粗两个集合来近似表示,它们的差集体现了方向关系的不确定性;方向关系推理的结果也可以用下粗和上粗两个集合来近似表示,它们的差集表示了推理结果的不确定性。
     (5)分析了空间数据位置不确定性、属性不确定性及认知不确定性对方向关系的影响,提出了方向关系的模糊隶属函数,形成了方向关系模糊描述矩阵,并研究了模糊方向关系模糊描述的性质。模糊描述方法能够把模糊对象和精确对象集中在一个框架内,通过隶属度来统一描述数据的模糊性、认知的模糊性和分析处理的模糊性。
    
     (6)提出了一种新型方向关系描述模型一一细节方向关系模型。细节方向
    关系包括内部、边界和环部等3个方向关系,把它们和外部方向关系、拓扑关系
    组合使用,不仅可以描述现有方法不能描述的空间关系概念,而且可以提高空间
    关系的分辨率。另外,由于细节方向关系还能够描述参照对象的形状和岛屿及其
    位置,因而可以描述参照对象形状比较复杂时的方向关系,还可以描述一些与凹
    部有关的空间关系概念,如“线对象穿过面对象的东部凹区”等。
     (7)基于细节方向关系,研究了自然语言空间关系的形式化定义。从自然
    语言空间关系所涉及到的基本拓扑和方向术语出发,结合细节方向关系的优势,
    首先研究了基本方向术语的空间范围划分;然后把拓扑关系、外部方向关系和细
    节方向关系组合,给出了自然语一言空间关系的定性定义;最后从外部方向关系的
    细化及拓扑关系和细节方向关系的度量两方面入手,对自然语言空间关系的定义
    作了进一步的改进和限制,从而形成了最终的形式化定义。
     (8)基于细节方向关系,组合外部、内部、边界和环部方向关系,提出一
    种基于1个参照系的方向关系推理方法,弥补了现有的基于2个参照系的方向关
    系推理方法的不足。把方向关系推理分为四种类型,利用组合表、定理、证明和
    实例相结合的方式,提出了一个完整的基于细节方向关系的方向关系推理方法。
     (9)提出了分辨两个方向关系之间关系的九交模型,分别研究了根据单种
    方向关系和组合多种方向关系推理拓扑关系的理论和方法。九交模型能够区分基
    于1个参照系的两个内部方向关系间的50种不同关系,共有5大类;能够区分
    两个边界方向关系间的61种不同的关系,共有巧大类,其中每个大类对应着一
    条推理规则。该方法包括11张组合表、13张图例、27条规则,全面论述了根据
    单种和多种方向关系推理拓扑关系的方法和结果。
     (10)提出了细节方向关系的不确定性描述方法。分别利用粗糙集和模糊集
    方法对细节方向关系的不确定性作了处理,它们均能一个框架中描?
Real world, in which there are lots of complex relations between phenomena and processes, is an infinitive complex and huge system, and also a continuous and natural real model. However, GIS, in which spatial data are managed, analyzed and processed, is a finite and discrete system, and the digital model stored in GIS is discrete through cognition, abstract and presentation steps. The differences between the infinite and the finite, the continuous and the discrete and the natural and the cognition result in the uncertainty of spatial data, analysis models, process methods and visualization. On the one hand, impacted by the uncertainty of data, cognition and methods, spatial relations are also uncertain. On the other hand, there always exist differences between the concepts described by existing methods of describing spatial relations and spatial language often used by human. Because existing methods of describing spatial relations are certain and can not describe that uncertainty and differences, the relatio
    ns between two spatial objects computed by existing methods are inconsistent with the ones among entities in real world, which makes the results got from query and process based on spatial relations are clearly different with real relations or not the expected ones. Based on above points, the fuzzy methods for describing spatial relations and a model for describing and reasoning direction relations are proposed, and the works covering the issues of theoretic consideration, technology development, and application prototypes are presented. The fuzzy methods can describe the uncertainty of spatial relations, while the detailed direction relations can process the spatial relations in natural language, therefore can decrease the differences between the concepts expressed by existing methods and spatial language .The main contents of this dissertation include following points.
    (1) The three sources of the uncertainty of spatial relations, including the uncertainty of spatial data, the fuzziness of cognition and the uncertainty of process of spatial relations, are proposed. In addition, these three sources must be processed in a united method, not in different methods.
    (2) The fuzzy morphological operators processing fuzzy data are proposed. The basic operators of crisp mathematical morphology based on classic sets are extended to fuzzy operators based on fuzzy set. Therefore, the fuzzy operators can process fuzzy data.
    (3) First, the impacts of uncertainty of position and attribute upon topological relations are analyzed. Second, the fuzzy membership functions of dividing topological space and describing topological relations are proposed. Third, a fuzzy 9-intersection model is formed based on the fuzzy membership functions. The fuzzy 9-intersection model can describe the topological relations between fuzzy objects and crisp objects in a united framework, and deal with the impact of uncertainty of
    
    
    position and attribute on topological relations. Finally, the vector and raster algorithms of fuzzy 9-intersection model are researched. The vector algorithms have better precision and computation speed than raster ones.
    (4) Introducing the methods of rough set into the description of direction relations, the rough methods of reasoning direction relations are proposed. Both fuzzy objects and crisp objects can be expressed by two rough sets, down and up rough sets, and the difference set between up and down rough set shows the uncertainty of spatial data. In the same way, the direction relations also can be approximated by a down and an up rough set, the difference between these two rough sets express the uncertainty of direction relations. The reasoning of direction relations is described by two rough sets, and the difference set represents the uncertainty of reasoning direction relations.
    (5) After analyzing the impacts of uncertainty of position, attribute and cognition upon direction relations, first, the fuzzy membership functions of direction relations and there similarities are presented; seco
引文
[1] 陈晓勇.数学形态学与影像分析.北京:测绘出版社,1991.
    [2] 何新贵.模糊数据库系统.北京:清华大学出版社,1994.
    [3] 黄幼才、刘文宝、李宗华等.GIS空间数掘误差分析和处理.武汉:中国地质大学出版社,1995.
    [4] 何新贵.模糊知识处理的理论与技术.长沙:国防工业出版社,1998.
    [5] 郭仁忠.空间分析.武汉:武汉测绘科技大学出版社,1997.
    [6] 张祖勋、张剑清.数字摄影测量学.武汉:武汉测绘科技大学出版社,1997.
    [7] 刘普寅、吴孟达.模糊集理论及其应用.长沙:国防科技大学出版社,1998.
    [8] 熊金城.点集拓扑讲义(第二版).北京:高等教育出版社,1998.
    [9] 史文中.空间数据误差处理的理论与方法.北京:科学出版社,1998.
    [10] 周成虎、骆剑承、杨晓梅等.遥感影像地学理解与分析.北京:科学出版社,1999.
    [11] 耿素云、屈婉玲、张立昂.离散数学.北京:清华大学出版社,1999.
    [12] 崔屹.图像处理与分析——数学形态学方法与应用[M].北京:科学出版社,2000.
    [13] 王志海等译.数据仓库.北京:机械工业出版社,2000.
    [14] Lotfi A.Zadeh著,阮达,黄崇福编译.模糊集与模糊信息粒理论.北京:北京师范大学出版社,2000.
    [15] 刘炳初.泛函分析.北京:科学出版社,2000.
    [16] Han Jiawei.Kamber Micheline著.范明,孟小峰译.数据挖掘——概念与技术.北京:机械工业出版社,2001.
    [17] 张文修、吴伟志、梁吉业等.粗糙集理论及方法.北京:科学出版社,2001.
    [18] 黄梯云,智能决策支持系统.北京:电子工业出版社,2001.
    [19] 史忠植.知识发现.北京:清华大学出版社,2002.
    [20] 陈军.Voronoi动态空间数据模型.北京:测绘出版社,2002.
    [21] 章毓晋.基于内容的视觉信息检索.北京:科学出版社,2003.
    [22] 孙玉国.拓扑关系描述与2D T-String空间关系表达.武汉测绘科技大学博士论文,1993.
    [23] 舒红.概念、形式化和逻辑时空数据建模原理初探.武汉测绘科技大学博士学位论文,1997.
    [24] 李成名.基于Voronoi图的空间关系描述、表达与推断.武汉测绘科技大学博士论文,1998.
    [25] 艾廷华.城市地图数据库综合的支撑数据模型与方法研究.武汉测绘科技大学博士论文,2000.
    [26] 戴红磊.矢量GIS中位置不确定性度量与传播的理论和方法.武汉测绘科技大学博士论文,2000.
    [27] 杜清运,2001.空间信息的语言学特征及其自动理解机制研究.武汉大学博士论文.
    [28] 曹菡.2002.空间关系推理的知识表示与推理机制研究.武汉大学博士论文.
    [29] 李德仁、彭美云、张菊清.GPS中线要素的定位不确定模型研究.武汉测绘科技大学学报,1995,20(4):283-288.
    [30] 刘文宝、黄幼才、李宗华.GIS数字曲线复杂性的度量与误差建模中趋势项
    
    的分离.武汉测绘科技大学学报,1995,20(4):289-295.
    [31] 陈军、崔秉良.用Voronoi方法为Maplnfo扩展拓扑功能.武汉测绘科技大学学报,1997,22(3):195-200.
    [32] 舒红、陈军、杜道生等.而向对象的时空数据模型.武汉测绘科技大学学报.1997,22(3):229-233.
    [33] 张景雄、杜道生.基于模糊场的ε-误差带模型.武汉测绘科技大学学报,1997,22(3):212-215.
    [34] 陈军、赵仁亮.GIS空间关系的基本问题与研究机制.测绘学报,1999,28(2):95-102.
    [35] 张景雄、杜道生.位置不确定性与属性不确定性的场模型.测绘学报,1999,28(3):244-249.
    [36] 刘文宝、邓敏、夏宗国.矢量GIS中属性数据的不确定性分析.测绘学报,2000,29(1):76-81.
    [37] 蒋刚毅、郑义、郁梅、陈燕华等.关于彩色图象处理的形态学算子研究.中国图象图形学报,2000,5(4):293—299.
    [38] 曹菡、陈军、杜道生.空间目标方向关系的定性扩展描述.测绘学报,2001,30(2):162—167.
    [39] 赵学胜、陈军.基于球面四元三角网剖分的层次空问推理.测绘学报,2001,30(4):355—360.
    [40] 方裕、楚放.空间查询优化.中国图象图形学报,2001,6(4):307-314.
    [41] 陆峰、李小娟、周成虎等.基于特征的时空数据模型:研究进展与问题探讨.中国图象图形学报,2001,6(9):830-835.
    [42] 吉根林,孙志军.数据挖掘技术.中国图象图形学报,2001,6(8):715-721.
    [43] 史文中、王树良.GIS数据之属性不确定性的研究.中国图象图形学报,2001,6(9):918-924.
    [44] 刘文宝、邓敏.GIS图上地理区域空间不确定性的分析.遥感学报,2002,6(1):45-49.
    [45] 刘亚彬、刘大有、王金鹤.利用人工神经网络推断曲线间的空间关系.中国图象图形学报,2002,7(1):63-68.
    [46] 陈致宇、陈世权.认知思维的模糊性问题.模糊系统与数学,16(1):1—6,2002.
    [47] 闫浩文、郭仁忠.用Voronoi图描述空问方向关系的理论依据.武汉大学学报·信息科学版,2002,27(3):274-278.
    [48] 李大军、龚健雅、谢刚生、杜道生.GIS中线元熵不确定带研究.中国图象图形学报,2002,7(11):1214-1219.
    [49] 陈晓秋、骆剑承、周成虎.基于多特征的遥感影像分析——一个新的视角.国土资源遥感,2003(1):5-7.
    [50] 王生生、刘大有、胡鹤、王新颖等.近似空间关系代数ASAR及应用.中国图象图形学报,2003,8(8):946-950.
    [51] 李大军、龚健雅、谢刚生、杜道生.GIS中线元误差熵带研究。武汉大学学报·信息科学版,2002,27(5):462-466.
    [52] 李大军、龚健雅、谢刚生、杜道生.GIS面元的误差熵模型.测绘学报,2003,32(1):31-35.
    [53] 李大军、龚健雅、谢刚生、杜道生.GIS线元的平均熵不确定带.遥感学报,
    
    2004,8(1):9-13.
    [54] 范爱民、郭达志.误差熵不确定带模型.测绘学报,2001,30(1):48—53.
    [55] Abdelmoty A I, Williams M H. Approaches to the representation of qualitative spatial relationships for geographic databases. In: Advanced Geographic Data Modeling: Spatial Data Modeling and Query Language for 2D and 3D applications, 1994:204-216.
    [56] Abdelmoty A I, El-Geresy B A. A general approach to the representation of spatial relationships. Technical Report CS-95-6, Department of Computer Studies, University of Glarnorgan, Wales, 1995.
    [57] Abdelmoty A. I, El-Geresy B A. A general method for spatial reasoning in spatial databases. In: Pissinou N, Silberschatz A, Park E K and Makki K (eds.), Proceedings of the 1995 ACM CIKM International Conference on Information and Knowledge Management, CIKM-95, Baltimore, USA, ACM press, 1995: 312-318.
    [58] Agouris P, Gyftakis S, Stefanidis A. Using a fuzzy supervisor for object extraction within an integrated geospatial environment. In: International Archives of Photogrammetry and Remote Sensing, Columbus, Ohio, Vol. ⅩⅩⅫ, Part Ⅲ/1, 1998: 191-195.
    [59] Agumya A, ttunter G J. Responding to the consequences of uncertainty in geographical data. International Journal of Geographical Information Science, 2002, 16(5): 405-417.
    [60] Ahlqvist O, Keukelaar J, Oukbir K. Rough classification and accuracy assessment. International Journal of Geographic Information Science, 2000, 14(5): 475—496.
    [61] Ahlqvist O, Keukelaar J, Oukbir K. Rough and fuzzy geographical data integration. International Journal of Geographical Information Science, 2003, 17(3): 223-234.
    [62] Allen, J.F. Maintaining knowledge about temporal intervals. Communications of ACM, 1983, 26(11): 832-843.
    [63] Altman D. Fuzzy set theoretic approaches for handing imprecision in spatial analysis. International Journal of Geographical Information Science, 1994, 8(3): 271-289.
    [64] Barrera R, Buchrnann A. Schema definition and query language for a geographical database system. IEEE Transactions on Computer Architecture: Pattern Analysis and Image Database Management, 1981(11): 250-256.
    [65] Benenson I, Omer I. Multi-scale approach to measuring residential segregation and the case of Yaffo, Tel-Aviv. GeoComputation, 2000.
    [66] Bennett B. Modal Logics for Qualitative Spatial Reasoning. Bulletin of the IGPL, 1995, 4(1):23-45.
    [67] Bennett B. Logical Representations for automated reasoning about spatial relationships. PhD thesis, School of Computer Studies, University of Leeds, 1997.
    [68] Bennett B, Cohn A G; Wolter F, Zakharyaschev M. Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelligence, 2002,
    
    17(3):239-251.
    [69] Bittner T, Stell J G. Rough sets in approximate spatial reasoning. In: Ziarko W, Yao Y (Eds), Proceedings of Rough Sets and Current Trends in Computing, Banff. Lecture Notes in Computer Science. 2001:445-453.
    [70] Bittner T, Stell J G. Approximate qualitative spatial reasoning. Spatial Cognition and Computation, 2002(2): 435-466.
    [71] Blaser A D. Sketching Spatial Queries. Ph.D. Thesis, the University of Maine. 2000.
    [72] Bordogna G, Chiesa S. A fuzzy object-based data model for imperfect spatial information integrating exact objects and fields. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2003, 11(1): 23-41.
    [73] Bruns H. T, Egenhofer M. J. Similarity of spatial scenes. In: Seventh International Symposium on Spatial Data Handling (SDH '96), Delft, The Netherlands, Kraak M J, Molenaar M (eds.), 1996:31-42.
    [74] Car A, Frank A. General principles of hierachical spatial reasoning: the case of wayfinding. In: the Proceedings of 6th International Symposium on Spatial Data Handling, 1994.
    [75] Car A. Hierarchical spatial reasoning: theoretical consideration and its application to modeling wayfinding. Ph.D. thesis, Dept. of Geoinformation, Technical University Vienna, 1997.
    [76] Chang S K. Elements of a visual language, IEEE Software Magazine, 1987, 4(1): 29-39.
    [77] Chang S K, Shi Q Y, Yan C. W. Iconic indexing by 2D strings. IEEE Transactions on Patter Analysis and Machine Intelligence PAMI-9, 1987, 413-428.
    [78] Chang S K, Jungert E, Li Y. Presentation and retrieval of symbolic pictures using generalized 2D strings. In: Proceeding of SPIE Visual Communications and Image Processing Conference, 1989:1360-1372.
    [79] Chang S K. A visual language compiler for information retrieval by visual reasoning. IEEE Transactions on Software Engineering, Special Section on Visual Programming, 1990, 1136-1149.
    [80] Chang S K, Orefice S, Tucci M, Polese G. A methodology and interactive environment for iconic language design. The International Journal of Human-Computer Studies (IJHCS), 1994(41): 683-716.
    [81] Chang, S. K., Costagliola G., Pacini G., Tucci M., Tortora G., Yu B., Yu J. S. Visual language system for user interfaces. IEEE Software, 1995, 33-44.
    [82] Chen J, Li C M, Li Z L, Gold C. A Voronoi-based 9-intersection model for spatial relations. International Journal of Geographical Information Science, 2001, 15(3): 201-220.
    [83] Cheng T, Molenaar M, Lin Hui. Formalizing fuzzy objects from uncertain classification results. International Journal of Geographical Information Science. 2001, 15(1):27-42.
    [84] Cheng T. Fuzzy object: their changes and uncertainties. Photogrammetric Engineering & Remote Sensing, 2002, 68(1):41-49.
    
    
    [85] Claramunt C, Jiang B. Hierarchical reasoning in time and space. http://www.ecole-navale.fr/fr/irenav/cv/claramunt/Clara&JiangSDH.pdf. 2000.
    [86] Clementini E, Sharma J, Egenhofer M J. Modeling Topological spatial relations: strategies for query processing. Computers and Graphics. 1994, 18(6): 815-822.
    [87] Clementini E, Felice P D, Koperski K. Mining multiple-level spatial association rules for objects with a broad boundary. Data & Knowledge Engineering, 2000, 34(3): 251-270.
    [88] Clementini E, Felice P D. A spatial model for complex objects with a broad boundary supporting queries on uncertain data. Data & Knowledge Engineering, 2001, 37(3): 285-305.
    [89] Cohn AG, Bennett B, Gooday J, Gotts NM. Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica, 1997, 1(1): 1-44.
    [90] Crosetto M, Tarantola S. Uncertainty and sensitivity analysis: tools for GIS-based model implementation. International Journal of Geographical Information Science, 2001, 15(5): 415-437.
    [91] Davis TJ, Keller C P. Modeling uncertainty in natural resource analysis using fuzzy sets and Monte Carlo simulation: slope stability prediction. International Journal of Geographical Information Science, 1997, 11(5):409-434.
    [92] Devogele T, Parent C, Spaccapietra S. On spatial database integration. International Journal of Geographic Information Systems, Special Issue on System Integration, 1998, 12(4): 335-352.
    [93] Dragicevic S, Marceau D J. A fuzzy set approach for modeling time in GIS. International Journal of Geographical Information Science, 2000, 14(3):225-245.
    [94] Düntsch I, Wang Hui, McCloskey S. Relations algebras in qualitative spatial reasoning. Fundamental Informaticae, 1999, 39(3): 229-248.
    [95] Egenhofer M J, Towards a spatial query language: user interface considerations. In: 14th International Conference on Very Large Databases, 1988: 124-133.
    [96] Egenhofer M J. A formal definition of binary topological relationships. In: Third International Conference on Foundations of Data Organization and Algorithms (FODO), Paris, France, Litwin W, Schek H(eds.), Lecture Notes in Computer Science, Vol. 367, Springer-Verlag, 1989: 457-472.
    [97] Egenhofer M J, Frank A, Jackson J. A topological data model for spatial databases. In: Symposium on the Design and Implementation of Large Spatial Databases, Santa Barbara, CA. Buchmann A, Gunther O, Smith T, Wang Y (eds.), Lecture Notes in Computer Science, Vol. 409, Springer-Verlag, 1989: 271-286.
    [98] Egenhofer M J, Franzosa R. Point-Set topological spatial relations. International Journal of Geographical Information Systems, 1991, 5(2): 161-174.
    [99] Egenhofer M J, Herring. J. Categorizing binary topological relations between regions, lines and points in geographic databases, Tech. Rep. Department of Surveying Engineering, University of Maine, Orono, ME., 1991.
    [100] Egenhofer M. J. Reasoning about binary topological relations. In: Second
    
    Symposium on Large Spatial Databases, Zurich, Switzerland, Gunther O, Schek H J (eds.), Lecture Notes in Computer Science, Vol. 525, Springer-Verlag, 1991: 143-160.
    [101] Egenhofer M J, Al-Taha K. Reasoning about gradual changes of topological relationships. In: Frank A, Campari I, and Formentini U (eds.), Theory and Methods of Spatio-Temporal Reasoning in Geographic Space, Pisa, Italy, Lecture Notes in Computer Science, Vol. 639, Springer-Verlag, 1992:196-219.
    [102] Egenhofer M, J, Sharma J. Assessing the consistency of complete and incomplete topological information. Geographical Systems, 1993, 1 (1): 47-68.
    [103] Egenhofer M J. A model for detailed binary topological relationships. GeoInformatica, 1993, 47(3&4): 261-273.
    [104] Egenhofer M J, Sharma J. Topological relations between regions in R2 and Z2. In: Advances in Spatial Databases--Third International Symposium on Large Spatial Databases, SSD "93, Singapore, Abel D. and Ooi B C (eds.), Lecture Notes in Computer Science, Vol. 692, Springer-Verlag, 1993:316-336.
    [105] Egenhofer M J. Definition of Line-Line relations for geographic databases. In: Proceedings 16th International Conference on Data Engeneering, 1993: 40-46.
    [106] Egenhofe M J. Spatial SQL: a query and presentation language. IEEE Transactions on Knowledge Engineering and Data Engineering, 1994, 6(1): 86-95.
    [107] Egenhofer M. J, Cliementini E, Difelice P. Topological relation between regions with holes. International Journal of Geographical Information Science, 1994, 8(2): 129-144.
    [108] Egenhofer M J. Deriving the composition of binary topological relations. Journal of Visual Languages and Computing, 1994, 5(2): 133-149.
    [109] Egenhofer M. J. Pre-Processing queries with spatial constraints. Photogrammetric Engineering & Remote Sensing, 1994, 60(6): 783-790.
    [110] Egenhofer M J, Clementini E, and Difelice P. Evaluating inconsistencies among multiple representations. In: Sixth International Symposium on Spatial Data Handling, Edinburgh, Scotland, 1994:901-920.
    [111] Egenhofer M J, Mark D. Modeling conceptual neighborhoods of topological Line-Region relations. International Journal of Geographical Information Systems, 1995, 9(5): 555-565.
    [112] Egenhofer M. J. Multi-Modal spatial querying. In: Seventh International Symposium on Spatial Data Handling (SDH '96), Delft, The Netherlands Kraak M J, Molenaar M (eds.), 1996: 1-15.
    [113] Egenhofer M. J. Spatial-Query-by-Sketch. In: IEEE Symposium on Visual Languages, Boulder, COM. Burnett, Citrin W (eds.), 1996: 60-67.
    [114] Egenhofer M J. Query processing in Spatial-Query-by-Sketch. Journal of Visual Languages and Computing, 1997, 8(4): 403-424.
    [115] Egenhofer M J, Shariff A R. Metric details for Natural-Language spatial relations. ACM Transactions on Information Systems, 1998, 16(4): 295-321.
    [116] Erwig M, Schneider M. Spatial-Temporal predicates. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(4): 881-901.
    
    
    [117] Esterline A C, Dozier G, Homaifar A. Fuzzy spatial reasoning. In: Mesiar R, Riecan B (eds.), Proceedings of the International Fuzzy Systems Association World Congress, IFSA'97. Prague: Academia Press, 1997: 162~167.
    [118] Frank A U. Qualitative spatial reasoning: cardinal directions as an example. In: Mark D and White D (Eds.), Auto-Carto 10, Baltimore, USA, ACSM-ASPRS, 1995: 148-167.
    [119] Frank A U. Qualitative spatial reasoning about distances and directions in geographic space. Journal of Visual Languages and Computing, 1992, 3: 343-371.
    [120] Freksa C. Using orientation information for qualitative spatial reasoning. In Frank A, Campari I., and Formentini U (eds), Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. Springer-Verlag, Berlin, 1992:162-178.
    [121] Freksa C, Barkowsky T. On the relation between spatial concepts and geographic objects. In Burrough P, Frank A (eds.), Geographic objects with undetermined boundaries, London: Taylor & Francis, 1995.
    [122] Freundschuh S M, Egenhofer M. J. Human conceptions of space: implications of geographic information systems. Transactions in GIS, 1997, 2(4): 361-375.
    [123] Gohn A G, Gotts N M. The 'Egg-Yolk' representation of regions with indeterminate boundaries. In: Proceedings of GISDATA-Specialist Meeting on Spatial Objects with Undetermined Boundaries, London: Taylor & Francis, 1996.
    [124] Goodchild M F. Geomatics and geographic information science: trans-century directions and applications. In: Li D, Gong J, Chen X, et al. Spatial Information Science, Technology and Its Applications. Wuhan: Wuhan Technical University of Surveying and Mapping Press. 304~311.
    [125] GoodChild M F. Future directions in geographic information science. Geographic Information Science, 1999, 5(1): 1-8.
    [126] Goodchild M F, Egenhofer M, Kemp K, Mark D, Sheppard E. Introduction to the Varenius project. International Journal of Geographical Information Systems, 1999, 13(8): 731-745.
    [127] Goyal R. Similarity Assessment for Cardinal Directions between Extended Spatial Objects. Ph.D. Thesis, the University of Maine, 2000.
    [128] Goyal R, Egenhofer M. J. Consistent queries over cardinal directions across different levels of detail. In: Tjoa A M, Wagner R, Zobaidie A A (eds.), 11th International Workshop on Database and Expert Systems Applications, Greenwich, U.K., 2000: 876-880.
    [129] Goyal R, Egenhofer M J. Similarity of cardinal directions. In: Jensen C, Schneider M, Seeger B, Tsotras V(eds.), Seventh International Symposium on Spatial and Temporal Databases, Los Angeles, CA, Lecture Notes in Computer Science, 2121, Springer-Verlag, 2001: 36-55.
    [130] Hagen A. Fuzzy set approach to assessing similarity of categorical maps. International Journal of Geographical Information Science, 2003, 17(3): 235-249.
    
    
    [131] Hernández D. Relative representation of spatial knowledge: The 2D case. In: Mark D, Frank U (Eds.), Cognitive and Lingusitic Aspects of Geographic Space, Kluwer Academic Publishers, Dordrecht, 1991: 373-385.
    [132] Holt A, Macdonell S G, Benwell G L. Assessing the degree of spatial isomorphism for exploratory spatial analysis: some test results, In: Abrahart R. J. (eds.), Proceedings of the Third International Conference on GeoComputation, GeoComputation 98', University of Bristol, England.
    [133] Hornsby K, Egehofer M J. Identity-based change: a foundation for spatio-temporal knowledge representation. International Journal of Geographical Information Science, 2000, 14(3): 207-224.
    [134] Ji M. Using fuzzy sets to improve cluster labeling in unsupervised classification. International Journal of Remote Sensing, 24(4): 657-671, 2003.
    [135] Jiang H, Eastman J R. Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 2000, 14(2): 173-184.
    [136] Jung-Hong. Hong, Egenhofer M J, Frank A. On the robustness of qualitative distance and directions reasoning. In: Peuquet D(eds.), Autocarto 12, Charlotte, NC, 1995: 301-310.
    [137] Koperski K, Han J. Discovery of spatial association rules in geographic information databases. In: Proc. 4th International Symposium. on Large Spatial Databases (SSD'95), Portland, Maine, 1995: 47—66.
    [138] Koperski K, Han J, Adhikary J. Spatial data mining progress and challenges, In: Proc. ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Montreal, Canada, 1996.
    [139] Lee Y C, Chin F L. An iconic query language for topological relationships in GIS. International Journal of Geographical Information System, 1995, 9(1): 25-46.
    [140] Lee S Y, Hsu F J. 2D C-string: a new spatial knowledge representation for image database systems, Pattern Recognition, 1990, 23(10): 1077-1087.
    [141] Leung Y, Zhang Jiang-She, Xu Zong-Ben. Clustering by scale-space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1396-1450.
    [142] Lin Hui, Huang Bo, SQL/SDA: A query language for supporting spatial data analysis and its web-based implementation. IEEE transaction on knowledge and data engineering, 2001, 13(4): 671-682.
    [143] Lin T Y. Granular fuzzy sets: a view from rough set and probability theories. International Journal of Fuzzy System, 2001, 3(2):373-340.
    [144] Luke B T, 1995, Fuzzy sets and fuzzy logic, http://members.aol.com/btluke/fuzzy01.htm.
    [145] Mennis J L, Peuquet D J, Qian Liu jian. A conceptual framework for incorporating cognitive principles into geographical database representation. International Journal of Geographical Information Science, 2000, 14(6): 501-520.
    [146] Malerba D, Appice A, Vacca N. SDMOQL: An OQL-based data mining query
    
    language for map interpretation tasks. In: Proc. of the Workshop on Database Technologies for Data Mining (DTDM'02), in conjunction with the Ⅷ International Conference on Extending Database Technology (EDBT'02), Prague, Czech Republic, 2002: 25-27.
    [147] Mark D. Cognitive and linguistic aspects of geographic space: report on a workshop. NCGIA Techical Paper 88-3, 1988.
    [148] Mark D. Languages of spatial relations: initiative two specialist meeting report. Santa Barbara, CA: National Center for Geographic Information and Analysis, Report 89-2, 1989.
    [149] Mark D, Egenhofer M. An evaluation of the 9-intersection for Region-Line relations. In: GIS/LIS'92, San Jose, CA, 1992: 513-521.
    [150] Mark D, Frank A. U. NCGIA Initiative 2 "Languages of Spatial Relations", Closing Report, 1992.
    [151] Mark D, Egenhofer M. J. Modeling Spatial Relations Between Lines and Regions: Combining Formal Mathematical Models and Human Subjects Testing. Cartography and Geographical Information Systems, 1994, 21(3): 195-212.
    [152] Mark D, Egenhofer M. J. Calibrating the meanings of spatial predicates from natural language: Line-Region relations. In: Waugh T, Healey R (eds.), Sixth International Symposium on Spatial Data Handling, Edinburgh, Scotland, 1994: 538-553.
    [153] Mark D, Egenhofer M. J. Topology of prototypical spatial relations between lines and regions in English and Spanish. In: Proceedings, AutoCarto 12, Charlotte, North Carolina, 1995: 245-254.
    [154] Mark D, Comas D, Egenhofer M. J, Freundschuh S, Gould M, Nunes J. Evaluating and refining computational models of spatial relations through Cross-Linguistic Human-Subjects testing. In: Frank A, Kuhn W(eds.), Spatial Information Therory-A Basis for GIS, International Conference COSIT'95. Semmering, Austria. 1995: 553-568.
    [155] Mark D. Spatial Representation: A cognitive view. In: Maguire D J, Goodchild M F, Rhind, D W, Longley P (eds), Geographical Information Systems: Principles and Applications, Second edition, 1999:81-89.
    [156] Mark D, Freksa C, Hirtle S C, Lloyd R, Tversky B. Cognitive models of geographical space. International Journal of Geographical Information Science, 1999, 13(8): 747-774.
    [157] Openshaw S. Developing appropriate spatial analysis methods for GIS. In: Maguire D J, Goodchild M F, Rhind D W, Geographical Information Systems: Principles and Applications. Longman London, pp389-402.
    [158] Pacheco J, Escrig M T, Toledo F. Qualitative spatial reasoning on Three-Dimensional orientation point objects. In: Sixteenth International Workshop on Qualitative Reasoning, Catalunya, Spain, 2002.
    [159] Papadias D, Theodoridis Y, Sellis T, Egenhofer M J. Topological relations in the world of minimum bounding rectangles: a study with R-Trees. SIGMOD'95, San Jose, CAM. Carey and D. Schneider (eds.), SIGMOD RECORD 24(2): 92-103, 1995.
    
    
    [160] Papadias D, Theodoridis Y. Spatial relation, minimum bounding rectangles, and spatial data structures. International Journal of Geographical Information Science, 1997, 11(2): 111-138.
    [161] Papadias D, Egenhofer M J. Hierarchical spatial reasoning about direction relations. GeoInformatica, 1997, 1(3): 251-273.
    [162] Papadias D, Theodoridis Y. Spatial relations, minimum bounding rectangles, and spatial data structures. International Journal of Geographical Information Science, 1997, 11(2): 111-138.
    [163] Papadias D, Karacapilidis N, Arkoumanis D. Processing fuzzy spatial queries: a conguration similarity approach. International Journal of Geographical Information Science, 1999, 13(2): 93-118.
    [164] Papadias D, Mamoulis N, Cwi, Delis V. Approximate Spatio-Temporal retrieval. ACM Transactions on Information Systems, 2001, 19(1): 53-96.
    [165] Park S C, Piramuthu S, Shaw M J. Dynamic rule refinement in knowledge-based data mining system. Decision Support System, 2001(31): 205-222.
    [166] Pawlak Z. Rough sets. International. Journal. Computation Information, 1982, 11:341—356.
    [167] Peuquet D, Z. Ci-Xiang. An algorithm to determine the directional relationship between arbitrailly shaped polygons in the plane. Pattern Recognition, 1987, 20(1):65-74.
    [168] Power C, Simms A, White R. Hierarchical fuzzy pattern matching for the regional comparison of land use maps. International Journal of Geographical Information Science, 2001, 15(1): 77-100.
    [169] Robinson V B. A perspective on geographic information systems and fuzzy sets. In: Proceedings of North American Fuzzy Information Processing Society Proceedings, IEEE, New Orleans, LA, 2002: 1-6.
    [170] Rodriguez M A, Egenhofer M J. Putting similarity assessments into context: matching functions with user's intended operations. In: Bouquet P, Serafini L, Brezillon P, Castellani F (eds.), CONTEXT-99, Trento, Italy, Lecture Notes in Artificial Intelligence, Vol. 1688, Springer-Verlag, 1999: 310-323.
    [171] Rodriguez M A, Egenhofer MJ, Rugg R. Assessing semantic similarities among geospatial feature class definitions. In: Interoperating Geographic Information Systems, Second International Conference, Interop'99, Zurich, Switzerland, Vckovski A, Brassel K, and Schek H-J(eds.), Lecture Notes in Computer Science, Vol. 1580, Springer-Verlag, 1999:189-202.
    [172] Roy A, Stell J G. Spatial relations between indeterminate regions, International Journal of Approximate Reasoning, 2001, 27(3): 205-234.
    [173] Shariff A R, Egenhofer M J, Mark D. Natural-Language spatial relations between linear and areal objects: the topology and metric of English-Language terms. International Journal of Geographical Information Science, 1998, 12(3): 215-246.
    [174] Sharma J, Flewelling D M, Egenhofer M J. A qualitative spatial reasoner. In: Sixth International Symposium on Spatial Data Handling, Edinburgh, Scotland,
    
    1994: 665-681.
    [175] Skiadopoulos S, Koubarakis M. Composing cardinal direction relations. In: Seventh International Symposium on Spatial and Temporal Databases [C], Los Angeles, California, USA, 2001: 299-317.
    [176] Shek E C, Muntz R R., Mesrobjan E. Extensible parallel query processing for exploratory geoscientific data mining. Data Mining and Knowledge Discovery, 2001(5): 277—304.
    [177] Smith T R, Jiang Y. Knowledge-based approaches in GIS. In: Maguire D J, Goodchild M F, Rhind D W, Geographical Information Systems: Principles and Applications. Longman London, 413-425.
    [178] Stefanidis A, Agouris P, Bertolotto M, Georgiadis C. Scale-and orientation-invariant scene similarity metrics for image queries. International Journal of Geographical Information Science, 2002, 16(8): 749-772.
    [179] Stefanakis E, Vazirgiannis M, Sellis T. Incorporating fuzzy set methodologies in a DBMS repository for the application domain of GIS. International Journal of Geographical Information Science, 1999, 13(7): 657-675.
    [180] Tan Pang-Ning, Steinbach M, Kumar V. Finding Spatio-Temporal Patterns in Earth Science Data. http://www.acm.org/sigkdd/kdd2001/Workshops/TemporalMiningWork shop.html.
    [181] Tang A Y, Adams T M, Usery E L. A spatial data model design for feature-based geographical information systems. International Journal of Geographical Information Systems, 10(5): 643-659, 1996.
    [182] Theobald D M. Topology revisited: representing spatial relations. International Journal of Geographical Information Science, 2001, 15(8): 689-705.
    [183] Theodoridis Y, Papadias D, Stefanakis E. Supporting direction relations in spatial database systems. In: Proceedings of the 7th International Symposium on Spatial Data Handling (SDH'96), 1996.
    [184] Timpf S, Frank A U. Using hierarchical spatial data structures for hierarchical spatial reasoning. In: Spatial Information Theory-A Theoretical Basis for GIS (International Conference COSIT'97). Hirtle S C, Frank A U (eds.), Berlin-Heidelberg, Springer-Verlag. Lecture Notes in Computer Science 1329: 69-83, 1997.
    [185] Ubeda T, Egenhofer M J. Correcting topological errors. In: Advances in Spatial Databases—Fifth International Symposium on Large Spatial Databases, SSD'97, Berlin, Scholl M, Voisard A (eds.), Lecture Notes in Computer Science, Vol. 1262, Springer-Verlag, 1997: 283-297.
    [186] Urbanski J A. The use of fuzzy sets in the evaluation of the environrnent of coastal waters. International Journal of Geographical Information Science, 1999, 13(7): 723-730.
    [187] Voisard A, David B. A database perspective on geospatial data modeling. IEEE transactions on knowledge and data engineering, 2002, 14(2): 226-243.
    [188] Wang Fang Ju. Towards a natural language user interface: an approach of fuzzy query. International Journal of Geographical Information System, 1994, 8(2):143-162.
    
    
    [189] Wolter F, Zakharyaschev M. Qualitative spatio-temporal representation and reasoning: a computational perspective. In: Lakemeyer G, Nebel B (eds), Exploring Artifitial Intelligence in the New Millenium, Morgan Kaufmann, 2002:175-216.
    [190] Worboys M. F. Nearness relations in environmental space. International Journal of Geographical Information Systems, 2001, 15(7): 633-651.
    [191] Zadeh L A. Fuzzy sets. Information and Control, 1965(8): 338-353.
    [192] Zhan F B. Approximate analysis of binary topological relations between geographic regions with indeterminate boundaries. Soft Computing, 1998(2): 28-34.
    [193] Zhan F B. A fuzzy set model of approximate linguistic terms in descriptions of binary topological relations between simple regions. In: Matsakis P, Sztandera L M(eds). Applying Soft Computing in Defining Spatial Relations. Heidelberg: Physica-Verlag, 2001: 179~202
    [194] Zhan F B. How much is region Q covering region R 'a Little Bit,''Somewhat,' or 'Nearly Completely?' In: Cristani M, Bennett B. (Eds.), Proceedings of SVUG01: The First COSIT (Conference on Spatial Information Theory) Workshop on Spatial Vagueness, Uncertainty and Granularity, To be held in Morro Bay, CA, 2001.
    [195] Zhang J X, Stuart N. Fuzzy methods for categorical mapping with image-based land cover data. International Journal of Geographical Information Science, 2001, 15(2): 175-195.
    [196] Zhao Ren liang, Chen Jun, Li Zhi lin. Define and describe k-order spatial adjacency with Voronoi distance. In: Proceedings of Dynamic and Multi-Dimensions GIS, 1999: 77-82.
    [197] Zimmermann K, Freksa C. Qualitative spatial reasoning using orientation, distance, and path knowledge. Applied Intelligence, 1996(6): 49-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700