用户名: 密码: 验证码:
高精度GPS定位及地壳形变分析若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高精度GPS定位和形变分析两个相关联的主题,本文在GPS相位观测模型、各项误差改正、差分GPS的基准、模糊度解算、数据处理方案、参考框架、形变分析方法等方面进行了比较系统的研究工作,主要研究内容和结论如下:
     (一)系统分析了非差相位的观测模型和误差模型。
     本文从无线电波传播原理详细推导了非差相位观测方程。阐述了非差GPS和差分GPS定位的一些基本问题。详细讨论了站星距的理论计算方法,重点分析了天线相位中心偏差、对流层延迟误差、地球自转、潮汐负荷等系统偏差改正方法和量级。
     (二)给出了精密定位的轨道改进算法模型。
     GPS卫星定轨的实质是确定轨道参考时刻的初始状态(轨道根数)和摄动参数(一般为光压模型参数),轨道改进算法的实施实质上是精密定轨的过程。本文阐述了GPS卫星轨道改进的原理和实现途径,讨论了GPS卫星运动的动力学模型,并列出了GPS观测方程的未知数及其偏导数的推导过程,通过对变分方程采用数值积分获得观测值对轨道参数的偏导数。
     (三)提出用参数约束平差统一自由网平差方案。
     经典自由网平差、附合网平差、普通秩亏自由网平差、加权秩亏自由网平差等都可以用附有条件的间接平差统一表示。本文推导了一般条件下未知参数的直接解式及其相互转换公式。各种平差问题的解,包括精度估计,只需要根据法方程和不同的基准条件就可以进行相互转换。本文将参数赋有先验精度信息的平差问题定义为参数约束平差,只要对未知参数给予合理的精度约束,参数约束平差可以从数值计算上解决测量中的各种平差问题。当对部分坐标未知数取强约束时等效于经典自由网平差和附合平差;当所有测站取相同的弱约束时等效于普通秩亏自由网平差;当部分测站取相同的弱约束且其它测站的权取相对无穷小时,等效于拟稳平差。合理的参数约束有助于解决法方程病态问题和抵御观测粗差。
     给出了参数约束平差方法解决GPS测量基准问题的两种处理方案,一是在基线处理时对基准站坐标采用强约束,二是对所有站采用松弛约束,获得自由网平差结果,再通过相似变换获得基准条件下的解。
     (四)提出一种新的GPS单历元定位方法——阻尼LAMBDA算法。
     利用参数约束平差的思想,通过对GPS单历元法方程添加阻尼因子(矩阵)的办法解决了法方程的秩亏问题,改善了模糊度协方差矩阵的条件数,并结合LAMBDA方法提出一种新的单历元定位方法——阻尼LAMBDA方法。该方法在一定条件下只需要当前历元的GPS观测数据,无须考虑载波相位的周跳问题,提高了计算速度,放宽了近似坐标的精度要求,因此具有广泛的应用。采用滤波处理后,单历元定位的阻尼LAMBDA方法可以达到与静态定位方法相当的精度(1-2mm)。利用坐标函数约束,可以将阻尼LAMBDA方法用于一些特殊的GPS动态定位,如给定
    
    中科院博士学位论文:高精度GPS定位及地壳形变分析若干问题的研究
    轨道或轨道面的动态测量。结合阻尼L灿超DA方法给出了GPS定姿的两种处理方案,在GPS单历
    元动静态定姿的实验中达到很高的成功率。阻尼LA”BDA方法同样适用于少数历元的GPS快速静
    态定位,单历元伪距与相位联合定位是阻尼L月超DA方法的一个特例。
    (五)论述了建立地球参考框架的意义,研究了绝对板块运动模型的建立方法,计算出基于
     I几FZ000的板块运动模型ITRF2000yEL和哑恨,I伙咫00OyEL.
     参考框架问题实质上是一个坐标系问题.本文详细论述了地球参考框架与板块运动之间的关
    系。地球参考框架中的站坐标速度所反映的板块运动应该满足整体无旋转特性,即总角动量为零.
    根据IT盯2000核心站速率计算的板块运动模型ITRf2000vEL,速度残差小于lm耐y,与地质
    模型NNR.NUVEL IA基本一致。结果表明,rr盯2000框架是一个近似的无整体旋转参考框架,
    其总角动量为o.158sr。彻a,转动角速度为0.018860舰a,旋转极指向南纬67度、东经156度,
    相当于在地球表面最大的整体位移速度为Zm耐夕(即地固坐标系的整体旋转)。
     区域参考框架的目的是为了突出区域相对形变特征。有了绝对参考框架,确定区域参考框架
    就相对比较容易,选择哪些点作为参考基准本身并不重要,只要求用于区域参考框架的基准点满
    足静止或整体作欧拉旋转即可。对中国大陆的形变分析采用欧亚板块作为区域参考框架,采用
    ITRFZ000定义的位于欧亚刚性板块的19个IGS核心站速率计算出欧亚板块的欧拉矢量为:旋转
    速度为0.255切.0033“肠匆,旋转轴为一101.6士0.7oE,56.3切.6oN。根据整体无旋转准则,修正了
    ITRrZOOOVEL,并获得整体无旋转的NNR一ITRFZ000VEL板块运动模型。区域参考框架不受全
    球整体旋转的影响。
    (六)系统处理了中国地壳运动观测网纵CMoN0c)的GPS基准站数据,获得网络墓准站坐标
    最新时间序列和中国大陆最新速度场。
     本文结合中国地壳运动观测网络GPS基准站数据,给出了高精度GPS数据处理和形变分析
    方法。系统整理和处理了从20()0年6月至2003年12月的观测数据,通过大里的计算工作获得
    可靠的第一手数据处理结果.利用三角多项式拟合方法分析了所有测站高程变化的线性项、周年
    项、两年项和半年项。计算结果表明,中国大陆大部分GP
The main issues relating to high precision GPS positioning and crustal deformation analysis with GPS are: One is how to obtain high precision positioning GPS results; the other is how to extract correct deformation information through reasonable analysis approaches. In this paper, GPS phase observation equation, various error corrections, the datum of differential GPS, ambiguity resolution, data processing schemes, reference frame and deformation analysis methods are systematically studied. The main research works and results are following:
    1 Zero difference phase observation model and error models are analyzed
    Zero difference phase observation equation is derived in detail based on radio propagation principle. A few of basic issues about absolute and relative GPS positioning are expatiated. The calculation of theoretical station-satellite distance is discussed in detail. The error models including antennas phase offsets, troposphere delay errors, Earth rotation, and tidal loadings are numerically analyzed.
    2 The orbit improvement model for high precision positioning is presented
    The essential of GPS orbit determination is determining the orbital initial conditions (orbital elements) and perturbation parameters (usually are radiation model parameters). The implementation of orbit improving for high precision positioning is actually the procedure of precise orbit determination; the dynamic model of GPS satellite motion is studied. The partial derivatives of the measurements with respect to orbital parameters are given through numerical integration with the variation equations.
    3 Proposed the concept that parameter constraint adjustment unifies free network adjustments
    Classical free network adjustment, enclosed network adjustment, general rank-deficient free network adjustment, and weighted rank-deficient free network adjustment can all be expressed by indirect adjustment with conditions. The direct resolution formula of unknown parameters under common situation is given. All kinds of solutions including precision estimations can be transformed each other by means of the normal equations and the datum conditions. We define the adjustment problem with priori accuracy information of unknown parameters as "parameter constraint adjustment". As long as we define proper constraints (weights) to these parameters, the adjustment method almost represents all kinds of adjustments numerically. As defining tight constraints to part of parameters, it is equivalent to classical free network adjustment or enclosed network adjustment; as defining same loose constraints to all parameters, it is equivalent to classical rank-deficient free network adjustment; as defining same
    
    
    
    loose constraints to part of parameters while looser to other parameters, it is equivalent to quasi-stability free network adjustment.
    Presented two schemes to solve datum issues of GPS surveying using parameter constraint adjustment: One scheme is using tight constraints to the stations standing for datum at baseline processing step; the alternative is realized by following two steps: First, to obtain the results of free network adjustment using loose constraints to all stations, then transform the solutions into the results under datum condition through coordinate similarity transformation.
    4 Proposed a new method for single epoch GPS positioning--damped LAMBDA algorithm
    Based on the concept of parameter constraint adjustment, through adding a damped factor (matrix) into the normal equation of single epoch GPS positioning to solve rank-deficient problem, the ill-condition of ambiguity covariance matrix is ameliorated. Combining with LAMBDA method, we put forward a
    new method for single epoch GPS positioning--damped LAMBDA algorithm. This method only
    uses one epoch observation data, no need considering cycle-slip problem. The accuracy requirement of the approximate coordinates can be relaxed, and ambiguity search time is saved. This method can be used in many cases. With help of filtering or smoothing, damped LAMBDA algorithm can reach l-2mm level pr
引文
Argus, D. F., Richard G Gordon (1991). NO-NET-Rotation Model of Current Plate Velocities Incorporation plate motion model Nuvel-1, Geophysical research letters, 1991,18(11):2039-2042.
    Bar-Sever, Y. E. (1996). A new model for GPS yaw attitude. Journal of Geodesy, 1996, (70): 714-723.
    Beutler, G., E.Brockmann, U.Hugentobler, et al.(1996). Combining consecutive short ares int long arcs for precise and efficient GPS Orbit Determination. Journal of Geodesy, 1996(70):287-299.
    Bisnath, S.B., D.kim and Richard B. Langley (2001). A new approach to an old problem: cartier-phase cycle slips. GPS world, 2001, 12(5): 46-51.
    Bisnath, S.B., V.B. Mendes and R.B. Langley (1997). Effects of Tropospheric Mapping Functions on Space Geodetic Data. Prepared for the IGS Analysis Center Workshop, Jet Propulsion Laboratory, Pasadena, Calif., U.S.A., 12-14 March.
    Blewitt, G. (1999). An automated editing algorithm for GPS data. Geophysical Research Letters, 1999, 17(3): 199-202.
    Boucher C., Z.Altmimi (2001). ITRS.PZ-90 and WGS 84: current realizations and the related transformation parameters. Journal of Geodesy, 2001 (75):613-619.
    Brunner F.K, H. Hartinger, L. Troyer (1999). GPS signal diffraction modeling: the stochastic SIGMA-δ model. Journal of Geodesy, 73(5): 259~267.
    DeMets C, Gorden G .R, Angus D F and Stein S. (1994). Effect of recent revision to the geomagnetic reversal time social on estimates of current plate motions. G. R. Lett. 1994,21(20): 2191-2194.
    Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology. Documentation for GAMIT GPS Analysis Software. 1998.7
    Dong, D., T.A. Herring, R.W. King (1998). Estimating regional deformation from a combination of space and terrestrial geodetic data. Journal of Geodesy, 1998(72):200-214.
    Dragen, H., T.S. James, and A. Lambert (2000). Ocean Loading Correetinns for Continuous GPS: A Case Study at the Canadian Coastal site Holberg. Geophysical Research Letters, 2000, 27(14):2045-2048.
    Euler H. J. and Landau H. (1992). Fast ambiguity resolution on-the-fly for real-time applications, Proceedings of the 6th international Geodetic symposium on satellite positioning, Columbus, Ohio, 17-20 March, 1992.
    Feigl K. L., Duncan C. Aguew, Yehuda bock, et al. (1993). Space Geodetic Measurement of Crustal Deformation in Central and Southern California, 1984-1992. Journal of Geophysical Research, 1993, 98(B12): 21677-21712.
    Fliegel H. F., T.E. Gallini, and E.T. Swift (1992). Global Positioning System Radiation Force Model for Geodetic Applications, Journal of Geophysical Research, 1992,97(B1):559-568.
    Frei E., Beutler G. (1990). Rapid Static Positioning Based on The Fast ambiguity resolution approach "FAFA", Theory and first results, Manuscripta Geodaetica, 1990, No.15: 325-356.
    Georg Gassner, Andreas Wieser (2002). GPS software development for monitoring of landslides. Proceedings FIG ⅩⅫ
    
    Congress Washington, D.C.USA, April,2002.
    Goad, C. (1986). Precise positioning with the Global Positioning System, Proceedings of the Third International Symposium on Inertial Technology for Surveying and Geodesy, 16-20 September, 1986, Banff, Canada, pp745-756.
    Goad, C., Remmondi B. W. (1984). Initial Relative Positioning Results Using the Global Positioning System, Bulletin Geodesique, 1984,58:193-210.
    Gupta SK, MK Low and CW Tan (1998). A aew approach to simulate GPS measurement. In PLANS'98, 1998, 236-242.
    Han S.(1997). Quality-control issues relating to instantaneous ambiguity resolution for real-time GPS kinematic positioning. Journal of Geodesy, 1997,(71): 351~361.
    Hatch R. (1989). Ambiguity resolution in the fast lane, ION GPS-89, Colorado, 27~29, September, 1989: 45~50.
    Heroux E, Kouba J., Collins P., et al. (2001). GPS Carrier-Phase Point Positioning With Precise Orbit Products, the International Symposium on Kinematic Systems in Geodesy, Geomaitcs and Navigation 2001, Banff, Canada, 2001.
    Herring T. A,, James L. Davis, and Irwin I. Shapiro (1990). Geodesy by Radio Intefferometry: the Application of Kalman Filtering to the Analysis of Very Long Baseline Interferometry Data. Journal of Geophysical Research, 1990,95(B8): 12561-12581.
    Herring, T. A. (1992). Modeling Atmospheric Delays in the Analysis of Space Geodetic Data, in Proceeding of Refraction of Transatmospheric Signals in Geodesy, edited by J. C. D. a. T. A. Th.Spoelstra, pp. 157-164, Publications on Geodesy, The Hague, Netherlands, 1992.
    Hofmann-Wellenhof C,H.Lichtenegger, and J.Collins (1997). Global Positioning System Theory and Practice, Fourth, revised edition[M], printed in 1997.
    Horemuz, M., L.E.Sjoberg (2002). Rapid GPS ambiguity resolution for short and long baselines. Journal of Geodesy, 2002, (76): 381-391.
    Hugentobler U., S. Schaer, et al. (2001). Documentation for Bemese GPS Software Version 4.2. Bern, 2001.
    Kim Donghyun and Richard B. Langley(2000). GPS ambiguity resolution for long-baseline kinematic applications, Paper presented at the 2nd GEOIDE Annual Conference, Calgary, Canada, 25-26 May, 2000.
    Kleusberg, A. (1986). Kinematic Relative Positioning Using GPS Code and Carder Beat Phase Observations, Marine Geodesy. 1986, 10(3): 257-274.
    Kursinski E.R., G.Hajj, et al. (1997). Observing Earth's Atmosphere with Radio Occultation Measurements Using GPS. Journal of Geophysical Research, 1997, 102:23429-23465.
    Lanyi, G. (1984). Tropospberic delay effects in radio intefferometry, in Tracking and Data Acquisition Prog. Rept. 42-78, vol. April-June 1984, pp. 152-159, JPL., Pasadena, Calif., 1984.
    Linfield, R., Y. Bar-Sever, et al. (1997). Comparison of Global Positioning System and Water Vapor Radiometer Wet Tropspheric Delay estimates. h ttp:/ /tmo.jp l.nasa.go v /tmo/progress_report/ 4 2-13 0/13 0D.pdf
    Lichten, S.M. and S.B. James(1987). Strategies for high prrecision GPS orbit determination, Journal of Geophysical
    
    Research, 1987, 92(C12):12751~12762.
    Liu Genyou, Zhu Yaozhong, Zhu Callian (2002). Damped LAMBDA Algorithm for Single Epoch GPS Positioning, 2002 International Symposium on GPS/GNSS, Wuhan, China, Nov.6-8, 2002.
    Lu Gang, Lachapelle G (1992). Statistical Quality Control for Kinematic GPS Positioning. Manuscripta Geodaetica, 1992, No.17: 270~281.
    McCarthy D. D. IERS Technical Note 21. 1996.
    McClusky S., S. Balassanian, A. Barka, et al.(2002): Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J.G.R., 2002, vol. 105, No.B3:5695-5719.
    McDonald Keith D (2002). The modernization of GPS: Plans, new capabilities and the future relationship to Galileo, Journal of Global Positioning Systems, 2002: 1(1): 1~17.
    Mertikas S.P., Rizos C. (1997). On-line detection of abrupt changes in the carrier-phase measurements of GPS. Journal of Geodesy, No.71: 469-482.
    Mervart, L(1995). Ambiguity Resolution Technique in Geodetic and Geodynamic Applications of the Global Positioning System, Vol.53 of Geodatisch-geophysikalische Arbeiten in der Schweiz, Schweizerische Geodatische Kommission, Ph.D. thesis.
    Mithail G. Kogan, Grigory M. Steblov, Robert W. King, et al.(2000). Geodetic Constraints on the Rigidity and Relative Motion of North America. G.R. Letters, 2000,27(14):2041-2044.
    Niell, A.E.(1996). Global mapping functions for the atmospheric delay at radio wavelengths, Journal of Geophysical Research. 1996, 101(B2): 3227-3246. ~
    Parkinson B.W., J.J. Spilker, P. Axelrad, P. Enge (ed) (1996). Global Positioning System: Theory and Applications, Vol 1 and 2, American Institute of Aeronautics and Astronautics, Inc, 1996.
    Patrick Sillard, Zuheir Altamimi, Claude Boucher (1998). The ITRF96 realization and its associated Velocity field. Geophysical Research Letters, 1998,25(17):3223-3226.
    Penna N. T., M. P. Stewart. Aliased tide signatures in continous GPS height time series. Geophysical Research Letters,2002,30(23):SDE 1-1~SDE 1-4.
    Pratt, M., B. Buke, and P. Misra (1998). Single-epoch Integer Ambiguity Resolution with GPS-GLONASS LI-L2 Data. ION-98.
    Qi Wang, Pei-Zhen Zhang. Jeffrey T.Freymueller, et al. (2001). Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science, 2001 (294): 574-577.
    Rabbel, W. and Schuh, H. 1986. The influence of atmospheric loading on VLBI experiments. J. Geophy,59: 164-170.
    Remondi, B. W.(1984), Using the Global Positioning System(GPS) Phase Observable for Relative Geodesy: Modeling, Processing, and Results, Dissertation, The University of Texas at Austin, May 1984.
    Remondi, B. W.(1991). Pseudo-kinematic GPS results using the ambiguity function method, Navigation, 1991, Vol.38, No.1, 1991
    Schwarz K.P., et al. (1989). A comparison of GPS kinematic models for the determination of position and velocity along a trajectory .Manuscripta Geodaetica, 1989,14:345~353.
    
    
    Seeber, G., and G. Wubbena (1989), Kinematic Positioning with Carrier phase and On the Way Ambiguity Solution, Procedding of the 5th International Geodetic Symposium on Satellite Positioning , Las Cruces, New Mexico, 1989: 600-610
    Segall P., and J.L. Davis (1997). GPS applications for geodynamics and earthquake studies. Annu. Rev. Earth Planet. Sci., 1997,(25): 301-336.
    Shfaqat Abbas Khan (2000). The Ocean Tide Loading Effect and its Influence on Determination of Heights using GPS. Master thesis ,University of Copenhagen ,May 2000.
    Teunissen, P.J.G. (1991). Differential GPS: Concepts and Quality Control. Proceedings NIN Workshop Global Positioning System.Amsterdam, 27 September.
    Teunissen, P.J.G. (1995). The Least-Squares Ambiguity Decorrelation Adjustment: A Method for Fast GPS Integer Ambiguity Estimation, Journal of Geodesy, 1995, 70: 65-82.
    Tikhonov A N, Arsenin V Y. Solutions of Ⅲ-posed Problems. Washington: Winston and Sons, 1977.
    Urhan H., Tubitak-Bilten, Hodgart M. S., Gleason S., Unwin, M. J. (2003). Instantaneous Attitude Determination of LEO satellite by GPS Using Direct Orthogonalisation. Proceedings of ION GPS/GNSS 2003, Portland, OR, September 2003.
    Webb, F. H., and J. F. Zumberge (1995), An Introduction to GIPSY/OASIS Ⅱ, JPLD-11088, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, July 17-21, 1995.
    Yehuda Bock, Rosanne M. Nikolaidis, and Paul J. de Jongle (2000). Instantaneous geodetic positioning at medium distances with the Global Positioning System.Journal of Geophysical Research, 2000, 105(B12):28223-28253.
    Zhu Wenyao, Wang Xiaoya et al. (2000). Crustal motion of Chinese mainland monitored by GPS. Science in China(series D). 2000,43(4): 394-399.
    Zumberge J F, Heflin M B, Jefferson D C, et al.(1997). Precise Point Positioning for the Efficient and Robust Analysis of GPS Data from Large Networks. Journal of Geophysical Research, 1997, 102(B3): 5005-5017.
    陈俊勇(1997).中国地壳运动观测网络简介.测绘通报,1997,(2):8~15.
    陈俊勇(2002),.我国建立现代大地基准的思考.武汉大学学报信息科学板,2002,27(5):441-444.
    陈永奇(1997).一种检验GPS整周模糊度解算有效性的方法.武汉测绘科技大学学报,1997,22(4):342-245.
    陈永奇,James Lutes(1998).单历元GPS变形监测数据处理方法的研究.武汉测绘科技大学学报,1998,23 (4):324~363.
    崔希璋,於宗俦,陶本藻,刘大杰,于正林(1992).广义测量平差.北京:测绘出版社,1992.
    丁国瑜,卢演等(1989).板内块体的现代运动(1:14000000).中国岩石圈动力学地图集(马杏垣主编),北京:中国地图出版社,1989.
    懂鸿闻,顾旦生,李国智等(1998).中国东部地区地壳垂直运动规律及其机制研究.测绘学报,1998,27(1):16-23.
    独知行.基于力学模式的大地测量反演理论及应用.中科院测地所博士学位论文,2001.
    段五杏,吴显兵(2001).Shemeck海潮系数对中国GPS网的适用性分析.测绘通报,2001,(10):18-19,37.
    鄂栋臣,刘经南,叶世榕(2000).利用事后广域差分GPS方法处理北极GPS数据.武汉测绘科技大学学报,2000,25(5):396-399。
    
    
    高布锡(1997),天文地球动力学原理.北京:科学出版社,1997.
    颐国华,张晶(2002).中国地壳运动观测网络基准站GPS观测的位移时间序列结果.大地测量与地球动力学,2002,22(2):61-67.
    胡建国,成英燕,丁继新,常晓涛(2000).我国高精度GPS陆海垂直运动监测网的建立与精度分析,测绘学报,2000,29(4):289-292.
    胡明城(1994).现代大地测量学(下).北京:测绘出版社,1994.
    胡明城(2000).全球定位系统(GPS)的最新进展(上).测绘科学,2000,25(4):54~58.
    黄立人(2001).GPS观测结果变形分析的参考框架及其合理性.测绘学报,2001,30(1):16-20.
    黄立人(2002)..地壳运动的参考框架.大地测量与地球动力学,2002,22(3):102-108.
    黄立人,马青(1999).确定三维网中相对稳定点组的一种方法.地壳形变与地震,1999,19(3):12-17.
    黄立人,王敏(2000).中国大陆现今地壳水平运动.地震学报,2000,22(3):257-262.
    黄维彬(1992),.近代平差理论及其应用.1992,北京:解放军出版社.
    李延兴,胡新康,赵承坤(1999).GPS监测网数据处理方案研究.测绘学报,1999,28(1):62-66.
    李毓麟,刘经南,葛茂荣,陈俊勇(1996).中国国家A级GPS网的数据处理和精度评定.测绘学报,1996,25(2):81-86.
    李征航,徐德宝,董艳英,刘彩璋(1998).空间大地测量理论基础.武汉:武汉测绘科技大学出版社,1998。
    林继华,刘序俨,郭逢英等(1997).福建沿海的海平面变化及其影响.地壳形变与地震,1997,17(4)
    刘大杰,施一明,过静君(1997).全球定位系统(GPS)的原理与数据处理.上海:同济大学出版社,1997。
    刘根友(2001a).单频GPS接收机动态定位的相位与伪距联合算法及其周跳检测.地壳形变与地震,2001,21(3):26-31.
    刘根友(2001b).剥蚀法计算GPS观测网独立环闭合差.测绘工程,2001,10(1).
    刘根友,朱才连,任超(2001c).GPS相位与伪距的联合实时定位算法.测绘通报,2001,(10):10-11.
    刘根友,欧吉坤,任超(2002).高精度GPS处理中的坐标约束问题.大地测量与天文地球动力学进展(韩天岂先生八十寿辰论文集),2002,湖北科技学技术出版社。
    刘根友,朱耀仲,朱才连(2003a).一种GPS网与经典地面网坐标转换的新方法.工程勘察,2003,(1):42-45.
    刘根友(2003b).GAMIT/GLOBK软件使用的坐标系及其相互转换.测绘工程,2003,12(3):31-23.
    刘根友(2003c).一种GPS测定姿态的新方法:具有坐标函数约束的单历元阻尼LAMBDA算法.测绘科学,2003,28(3):36-38.
    刘根友,欧吉坤(2003d).GPS单历元定向和测姿算法及其精度分析.武汉大学学报·信息科学版,2003.28(6):732-735
    刘根友,朱耀仲,韩保民(2004a).GPS单历元定位的阻尼LAMBDA算法.武汉大学学报·信息科学版,2004,29(3):195-197.
    刘根友,欧吉坤(2004b).具有坐标函数约束的动态定位算法.武汉大学学报信息科学版,2003,29(5):389-393.
    刘基余,李征航,王跃虎(1993).全球定位系统原理及其应用.北京:测绘出版社,1993.
    刘经南,叶世容(2002).GPS非差相位精密单点定位技术探讨.武汉大学学报·信息科学版,2002,2796):234-239.
    罗少聪(2001).大气负荷响应计算误差估计模型.武汉大学学报·信息科学版,2001,26(3):217-221.
    罗少聪(2003).大气负荷效应问题研究.中科院博士论文,2003.
    刘经南,施闯,许才军,姜卫平(2001).利用局域复测GPS网研究中国大陆快体现今地壳运动速度场.武汉大
    
    学学报·信息科学版,2001,26(3):189-195.
    刘焱雄,H B IZ,陈永奇(2000).GPS气象学中垂直干分量延时的精确确定.测绘学报,2000,29(2):172-180.
    欧吉坤(1999),粗差的拟准检定法(QUAD法),测绘学报,1999.28(1):15-20.
    任美锷(2002).海平面研究的最新进展.南京大学学报(自然科学版),2002,36(3):269-279.
    隋立芬(2001).高精度GPS网的统一与数据处理若干问题的研究.中国人民解放军信息工程大学博士论文,2001.
    孙付平(1995).现代板块运动的测量和研究:空间大地测量方法.天文学进展,1995,12(2):132-142.
    陶本藻(1984).自由网平差与形变分析.北京:测绘出版社,1984.
    王琪,张培震,牛之郡等(2001).中国大陆现地壳运动与构造变形.中国科学(D辑),2001,31(7):529-536.
    王琪,张培震,马宗晋(2002).中国大陆现今构造变形GPS观测数据与速度场.地学前缘,2002,9(2):415-429.
    王琪,丁国瑜,乔学军,王晓强,游新兆(2000).天山现今地壳快速缩短与南北地块的相对运动.科学通报,2000(14):1543-1547。
    王振杰(2003).大地测量中不适定问题的正则化解法研究.中科院测地所博士论文,2003.
    魏子卿,葛茂荣(1998).GPS相对定位的数学模型.北京:测绘测绘出版社,1998.
    文援兰,杨元喜(2001).我国近海平均海面及其变化研究.武汉大学学报·信息科学版,2001,26(2):127-132.
    熊永良,黄丁发.张献洲(2001).一种可靠的含有约束条件的GPS变形监测单历元求解方法.武汉测绘科技大学学报,2001,26(1):51-56.
    熊永清,朱文耀,张强(2000).ITRF96参考框架中的全球板块运动.测绘学报,2000,29(2):102-108.
    徐菊生,赖锡安,张国安,王庆廷(2001).空间大地测量测定板块运动的新进展及其与地质学成果的比较.地壳形变与地震.2001,21(3):55-65.
    徐绍铨,李征航,李振洪等(1999).隔河岩大坝的外观变形GPS自动化监测系统.测绘科技通讯,1999,(2):5-8.
    许才军,懂立祥,李志才(2000).利用GPS复测资料研究华北块体旋转运动.武汉测绘科技大学学报,2000,25(1):74-78.
    许大欣(1997).GPS精密定位理论及其在地球动力学中的应用.中科院测地所博士学位论文,1997.
    许厚泽,毛伟建(1988).中国大陆的海洋负荷潮汐改正模型.中国科学,1988,(9):984-994.
    许永江,郑贵明,顾国华(2000).中国地壳运动观测网络中的GPS数据流.地壳形变与地震,2000,20(4):50-56.
    叶叔华(1995),.科技导报(北京),1995(1):21-24.
    游新兆,王琪,乔学军等(1998).中国大陆地壳运动GPS观测网.地壳形变与地震,1998,18(增)。
    于道永(1998).秦凰岛沿岸海平面变化与地壳升降.海洋学报,1998,20(3):76-81.
    余学祥,徐绍铨,吕伟才(2002).GPS变形监测信息的单历元解算方法研究.测绘学报,2002,31(2):123-127.
    袁运彬(2002).基于GPS的电离层监测及延迟改正理论与方法的研究,中科院测地所博士学位论文,武汉,2002。
    张飞鹏,董大南,程宗颐等(2002).利用GPS监测中国地壳的垂向季节性变化.科学通报,47(18):1370-1377.
    张强,朱文耀(2000a).中国地壳各构造块体运动模型的初建,科学通报,2000,45(9):967-974.
    张强,朱文耀,熊永清(2000b).关于ITRF96参考架整体旋转性的探讨,地球物理学报,2000,43(5):598-606.
    张守信(1992).外弹道测量与卫星轨道测量基础.北京:国防工业出版社,1992.
    周江文,欧吉坤,杨元喜等(1999),测量误差理论新探.北京:地震出版社,1999。
    
    
    周硕愚,吴云,施顺英,杨福平(2001).中国大陆东南边缘海现时地壳运动与地震动力学综合研究.地壳形变与地震,2001,21(2):1-13.
    周硕愚,张跃刚,丁国瑜等(1998).依据GPS数据建立中国大陆板内块体现时运动模型的初步研究.地震学报,1998,20(4):347-355.
    周旭华,吴斌,李军(2001).高精度大地测量中的海潮位移改正.测绘学报,20001,30(9):327-330.
    周忠谟,易杰军,周琪(1997).GPS卫星测量原理与应用(修订版).北京:测绘出版社,1997.
    朱文耀,程宗颐,王小亚,熊永清(1999).中国大陆地壳运动的背景场.科学通报,1999,44(14):1537-1540.
    朱文耀,符养,李彦(2003).GPS高程导出的全球高程震荡运动及季节性变化.中国科学(D辑),2003,33(5):470-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700