用户名: 密码: 验证码:
几种构建组织工程关节软骨方法的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软骨病变是骨科较为常见的疾患。创伤、骨软骨炎、骨性关节炎、髌骨软化等均可引起软骨的病损。但关节软骨的病变难以自身修复,自1743年Hunter提出软骨一旦破坏即不可自身修复,两个半世纪过去了,至今软骨病变仍无理想的治疗办法,关节软骨的病变最终导致骨性关节炎而不得不接受关节置换。
     组织工程软骨的研究为修复关节软骨的病变开辟了新途径。1987年瑞典人Britterg进行了第一例临床应用,目前全世界已经有超过10,000例,透明质酸钠和胶原膜复合自体软骨细胞构建的组织工程软骨已经作为产品推广应用。大量文献证明,利用组织工程软骨,能产生类似正常关节软骨的透明软骨组织,且大宗病例长期随访资料证明临床效果优良。
     影响组织工程软骨质量的因素很多,但主要可以概括为三个方面:种子细胞、支架和构建方法。本课题的目的主要是通过比较研究寻找优化的制备组织工程软骨的技术方法,并为临床应用搭建技术平台。
     自体软骨细胞是目前唯一应用于临床的软骨组织工程种子细胞,但成熟软骨细胞扩增困难,自体软骨组织取材有限,如何从极少量关节软骨组织中分离、培养并大量扩增出足够数量和优质的软骨细胞,是组织工程软骨临床应用的瓶颈。取材组织消化获取的原代软骨细胞的数量和活性直接决定了细胞扩增的时间周期、最终获得的细胞的数量、可传代次数和细胞的质量,从而进一步影响组织工程软骨修复的质量。本实验从兔的关节软骨做起,观察组织块剪切的大小、消化收集步骤以及胰酶和胶原酶浓度等对获取软骨细胞的影响,证明对少量关节软骨组织,用培养基配制的0.2%的胶原酶直接消化一步收集细胞的方法是比较优化的消化分离细胞的方法。成熟软骨细胞传3~4代后增殖逐渐缓慢,趋向停滞,无法达到组织工程软骨所需要的细胞数量,通过对软骨细胞培养中培养基、添加成份、血清及生长因子等方面的优化组合研究,表明添加了维生素C、脯氨酸、胰岛素、非必须氨基酸等成分的软骨
    
    博士论文:几种构建组织工程关节软骨方法的比较研究
    中国人民解放军军医进修学院
    细胞培养基对软骨细胞生长更有利。继之对8例成年人关节软骨细胞体外培
    养条件进行研究,结果表明使用20%胎牛血清效果优于10cy0;人AB血清优于
    胎牛血清;10%人血清的浓度是足够而且合适的;FGF一2、TGF一pl、PDGF一bb、
    HGF四种因子单独使用最佳促增殖浓度分别为:SOng/m1、ing/m1、Ing/ml、
    Zong/ml。sng/ml FGF一2与一ng/ml TGFpl组合是一种比较好的适于成年人关
    节软骨细胞生长的因子组合,它在促进软骨细胞增殖的同时,也较好的保持
    了软骨细胞的分化表型。
     本实验通过在兔膝关节陈旧性软骨缺损模型上对三种自体软骨细胞移植
    方法—自体软骨细胞骨膜下注射、骨膜下细胞团块移植和细胞复合胶原支
    架的比较研究,我们发现骨膜下细胞团块移植是比较好的修复软骨缺损的手
    段,操作简单,修复效果好。
     本实验用目前研究较多的三种支架—胶原、脱钙骨基质(DBM)和PLGA
    组成工程软骨,观察其对修复兔膝关节软骨陈旧性缺损的效果,结果表明胶
    原蛋白海绵是比较好的组织工程软骨支架材料,DBM需要进一步研究改进材料
    孔径,而PLGA由于其代谢产物的毒性作用,对关节软骨修复的效果较差。
     由于自体关节软骨组织来源困难,造成关节再损伤,本实验利用藻酸凝
    胶包埋同种异体软骨细胞修复兔膝关节软骨缺损,取得了很好的修复效果,
    表明同种异体软骨细胞作为软骨组织工程的种子细胞是可行的,可以作为对
    自体软骨组织取材困难、培养失败的替代方法;通过对脂肪组织来源干细胞
    的分离、培养、鉴定、定向分化过程及修复兔关节软骨缺损的实验研究,表
    明脂肪千细胞是较好的软骨组织工程干细胞来源。
Articular cartilage defects resulted from trauma, osteoarthritis and osteochondritis diseases is a major challenges for the orthopedic surgeons. Because of the unique feature of articular cartilage which is avascular and the differentiated chondrocytes trapped within compact matrix, mobilization of regenerative cells to areas of injury is insufficient; cartilage tissue has a limited self-regenerative capacity. None of the current surgical options for treating cartilage defects are satisfactory, including lavage and debridement, shaving the cartilage surface, perforating the underlying subchondral bone, periosteal or perichondrial or cartilage transplantation and osteotomy. These procedures are insufficient to resurfacing large articular cartilage defect with lasting hyaline-like cartilage. Cartilage damage may lead to gradual degeneration of joint and ultimately artifical prosthesis needed.
    Engineered cartilage tissue offers a new strategy for the repair and regeneration of damage or diseased articular cartilage. The first clinical application of autologous chondrocyte implantation (ACI) was reported by Mats Brittberg in 1987. Since then, more than 10,000 cases have been performed worldwide. ACI-P is considered as the first generation tecqnic which is injected autologous chondrocytes beneath the periosteal flap. The second generation (ACI-M) is base on the type I /III collagen membrane or hyaluronate derived scaffold. Now all three procedures are used extensively worldwide. ACI or tissue engineered cartilage has shown very promising results, and high percentage of hyaline-like cartilage tissue would present in the cartilage defects. Retrospective studies of more than 1,000 cases over 10 years showed that 74% had good to excellent results
    Many factors influence the quality of tissue engineered cartilage and the key
    
    
    elements include cells, scaffolds and transplanting methods. The purpose of this study was to establish a simple, safe, effective and low-cost procedure to construct engineered articular cartilage, which can be used for clinical treatment.
    Autologous chondrocyte is still the only one permitted in clinical usage. Even the limit cartilage tissue could be obtained from biopsies, and the limit capacity of proliferation of mature chondrocytes. The first technical challenge is in vitro generation of human chondrocytes from the little biopsies ranged from 200 to 300 milligrams. Isolating chondrocytes from the biopsy is the first key process and the quantity of living cells obtained will determine directly proliferating quantity and quality of the collection cells, So, size of cutting cartilage pieces, procedures for digesting and the methods of collecting cells, the proper concentration of trypsine and collagenase were studied, The resaults showed that for adult human articular cartilage biopsies, cutting the biopsies to sand-like, digesting with 0.2% collagenase in medium, and collecting cells by one step may be the optimum procedure. Different medium, different cytokines, and different serum were also compared, The results showed that: 1,Adding some supplement substances such as vitamin C, proline, insulin and none essential amino acids (NEAA) are necessary. 2, The optimal concentration of four cytokines,FGF-2, TGF-P1, PDGF-bb and HGF, when used separately, is 50ng/ml, 1ng/ml, 1ng/ml, 20ng/ml respectively. While 5ng/ml FGF-2 combined with Ing/ml TGFbeta1 could achieve the best effect, adding PDGF-bb, HGF or both could not enhance proliferation.3, Human AB serum is better than fetal bovine serum (FBS), the proper concentration of human AB serum is 10% .
    Three transplanting materials of ACI were applied in the full-thickness defects in femoral condyles of adult rabbits, 1, chondrocytes, 2,conglomeration of chondrocyte, 3,chondrocyte-seeded collagen scaffold, all transplanted beneath the periosteal flap. The primary results showed that last two methods had better results
    
    than that of chondrocytes injecting. Also we compared the methods for fixing periosteal flap, and
引文
[1] Kim HKW,Moran ME, Salter RB, et al. the potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. J Bone Joint surg, 1991, 73-A(9): 1301-1315.
    [2] Susan M. Rapp. ACI, microfracture show similar results: More patients implanted with autologous chondrocytes failed or had reoperations, but repair quality was better. Orthopaedics Today International, September/October 2002.
    [3] Hangody L, Sukosd L, Szigeti I, et al. Arthrosciopic autogenous osteochondral mosaiplasty. Hungarian. J Orthoo Trauma, 1996, 39: 49-54.
    [4] Hangody L, Karpati Z,Szigeti I et al. Clinical Experimented with the mosaic technique. Review Osteology, 1996, 4:32-36.
    [5] Skala R, Fox C F, Fung B. Preface. In Tissue Engineering. New York: Alan R Liss Inc, 1988:1.
    [6] Heineken FG and Skalak R. Tissue Engineering: A Brief Overview, J Biomechanical Engineering 1991, 113: 111.
    [7] Brittberg M, Lindahl A, NilssonA, et al. Treatment of deep cartilage detects in the knee with autologous chondrocyte transplantation. N Engl J Med, 1994, 331: 889-895.
    [8] Lindahl A, Brittberg M, Peterson L. Cartilage repair with chondrocytes: clinical and cellular aspects. Tissue enginee(?)ing of cartilage and bone, Wiley, Chichster 2003 P175-189.
    [9] Peterson L, Minas T, Nilsson A, et al. The long term outcome of autologous chondrocyte transplantation for full thickness chondral defects of the knee. Clin Orthop Rel Res 2000, 374: 212-34.
    [10] Cao Y, Vacanti JP, Paige KT, et al. Transplantation of chondrocytesutilizing a polymer cell construction to produce tissue engineered cartilage in the
    
    shape of a human eat: Plast Reconstr Sung, 1997, 100: 297 302.
    [11] Vacanti CA, Upton J. Tissue engineering morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradble polymer matrices. Clin Plast Surg, 1994, 21: 445-462.
    [12] Alparslan L, Minas T, Winalski CS. Magnetic resonance imaging of autologous choadrocyte implantation. Seminars in Ultrasound, CT, and MRI, 2001, 22(4): 341-351.
    [13] Brittberg M, Peterson L, Sjgren-Jansson E, et al. Articular cartilage engineering with autologous transplantation. J Bone Joint surg, 2003, 85-A: 115.
    [14] Lindahl A, Brittberg M, Peterson L. Cartilage repair with bchondrocytes: clinical and cellular aspects. Tissue engineering of cartilage and bone, Wiley, Chichster, 2003, P175-189.
    [15] Vacanti CA, Upton J. Tissue engineering morphogenesisof cartilage and bone by means of cell transplantation using synthetic biodegradble polymer matrices. Clin Plast Surg, 1994, 21: 445-462.
    [16] Brittberg BM, Peterson L, Sjgren-jansson E, et al. Articular cartilage engineering with autologous chondrocyte transplantation. J Bone Joint surg. 2002, 85-A(Supplement 3): 109-115.
    [17] Mauck RL, Seyhan SL, Ateshian GA, Hung CT. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng, 2002, 30(8): 1046-56.
    [18] 夏万尧,曹谊林,商庆新,等.组织工程化软骨组织形成的最佳细胞浓度和最佳形成时间的实验研究.chinese J Reparative and Reconstrucive Surgery, 1999, 13(4): 244-248.
    [19] Alparslan L, Minas T, Winalski CS. Magnetic resonance imaging of autologous
    
    chondrocyte implantation, Seminars in Ultrasound, 2001, 4: 341-351.
    [20] Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med, 1994, 331: 889-895.
    [21] Robinson D, Ash H, Nero Z, et al. Characteristics of cartilage biopsies used for autologous chondrocytes transplantation, Cell Transplantation, 2001, 203-208.
    [22] 刘刚,胡蕴玉,韩一生.血小板源性生长因子对体外兔关节软骨细胞的生物学行为的影响。骨与关节损伤杂志,2001,11(16):438-440.
    [23] Grumbles RM, Howell DS, Wenger L, et al. Hepatocyte growth factorand its actions in growth plate chondrocytes. Bone, 1996,19:225-261.
    [24] Takebagshi T, Iwamto M, Jikko A, et al. Hepatocyte growth factor modulastes cell motility proliferation and proteoglaycan synthesis of chondrocytes. J Cell Biol, 1995, 129(5): 1411.
    [25] Kim HKW, Moran ME, Salter RB. The potential regeneration for articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg(Am), 1991, 73: 1301-1315.
    [26] Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg(Am), 1994, 76: 579-592.
    [27] Breinan BH, Minas T, Nehrer S, et al. Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model, The journal of bone and joint surgery, 1997, 1439-1451.
    [28] Chestman PJ, Reading A, Smith AU. Homotransplantation of articular cartilage and isolated chondrocytes. J Bone Joint Surg(gr), 1968, 50(2): 184.
    
    
    [29] Peterson L, Menche D, Grande D, et al. Chondrocyte transplantation—an experimental model in the rabbit. In: Transactions from the 30th Annual Orthopedic Research Society. Atlanta, February 7-9, 984. Palatine, Ⅲ: Orthopedic Research Society, 1984:218, abstract.
    [30] Grande DA, Peterman ML, Peterson L, et al. The repair of experimentally produced defects in rabbits articular cartilageby autologous chondrocyte transplantation. J Orthop Res, 1989, 7(2): 208.
    [31] Green AG. Articular cartilage repair: Behavior of rabbit chondrocytes duringtissue culture and subsequent allografting. Clin Orthop, 1977, 124: 237.
    [32] Salter BR, VID DA, Barry S, et al. The biological effect of cantinuous passive motion on the healing of full-thickness defects in articular cartilage. The journal of bone and joint surgery, 1980, 1232-1236.
    [33] Harry B, Marrk E, Moran E, et al. The potential for regeneration of articular cartilage in defects created by chondral shaving and snbchondral abrasion. J Bone and Joint Surg, 1991, 1301-1315.
    [34] 孙明学,王海滨,孟纯阳,等.BMP/DBM关节腔内诱导成骨实验观察.济宁医学学报,1998,21(1):15-17.
    [35] MalejczykJ, RomaniukA. Reactivity of normal rat epiphyseal chondro cytes with monoclonal antibodies recongnizingdifferent leucocyte markers. Clin Exp Immunol, 1989, 75: 477.
    [36] Gertzbein SD, Lance EM. The stimulation of lymphocytes by chondrocytes in mixedcul tures. Clin Exp Immunol, 1976, 24: 102.
    [37] Lance EM. Immunolgical reacitivity towards chondrocytes in tat and man: relevance to autoimmune arthritis, Immunol Lett, 1989, 21: 63.
    [38] Aubin PP, Cheah HK, Davis AM, et al. Long-Term Followup of Fresh Femoral Osteochondral Allografts for Posttraumatic Knee Defects. Clin Orthop.
    
    2001, 391(Suppl): S318-27.
    [39] Beaver RJ, et al. Free osteochondral allografts for post traumatic defects in the knee: a survivorship analysis. J Bone Joint Surg(Br), 1992, 74: 105.
    [40] Shasha N, Krywulak S, Backstein D, et al. Long-term follow-up of fresh tibial osteochondral allografts for failed tibial plateau fractures. J Bone Joint Surg Am. 2003; 85-A Suppl 2: 33-9.
    [41] Friedlaender GE, Strong DM, Tomford WW, Mankin HJ. Long-term fcllow-up of patients with osteochondral allografts. A correlation between immunologic responses and clinical outcome. Orthop Clin North Am. 1999 Oct: 30(4): 583-8.
    [42] Fitzpatrick PL, Morgan DA. Fresh osteochondral allografts: a 6-10-year review. Aust N Z J Surg. 1998, 68(8): 573-9.
    [43] Vunjak Novakovic G, Obradovic B, Martin I. Dyamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog, 1998, 14(2): 193-197.
    [44] Gross AE, Ganel A, Langer F. Analysis of the histopathology of failed fresh osteochondral allografts. Orthop Trans, 1984, 8: 399-405.
    [45] Wakitam S, Goto T, Young RG. Repair of large full-thickness articular cartilaged effects with allograft articular chondrocytes em bedded in a collagengel. Tissue Eng, 1998, 4(4): 429-444.
    [46] Hanaway MJ, Geissler EK, Wang J, et al. Immunosuppressive effects of an HLA class Ⅰ-derived peptide in a rat cardiac allograft model. Transplantation, 1996, 61(11): 1222-1228.
    [47] Eiselt P, Kim BS, Chacke B. Development of technologies aiding large-tissue engineering. Biotechnol Prog, 1998, 14: 134-149.
    [48] Itay S, Nevo Z. Use of cultured embroyonal chick epiphyseal chondrocytes as grafts for defects in chick articular cartilage. Clin Orthop, 1987,
    
    220:284.
    [49] 王健,夏万尧,崔磊,等.同种异体组织工程化软骨组织的免疫学差异.中华创伤杂志,2001年,17(7):428-430.
    [50] 柳子星,张惠珍,王建,等.MHC Ⅱ类抗原的诱导性表达和同种异体软骨细胞移植的免疫排斥.上海免疫学杂志,2002,22(3):178-181.
    [51] Wakitani S, Kimura T, Hirooka A, et al. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg(Br), 1989, 71: 74-80.
    [52] Bonaventure J, Kadhom N, Cohen-solal L, et al. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Experimental cell research, 1992, 212: 87-104.
    [53] Murphy CL, Sambanis A. Effect of oxyen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes, Mary Ann Liebert, 2001, 791-803.
    [54] Gagen TA, Chappell-afonso K, Johnson JL, et al. Enhanced proliferation and differentiation of human articular chondrocytes when seeded at low cell densities in alginate in vitro. The Journal of Bone and Joint Surgery, Inc. 2000, 18: 882-890
    [55] Haudenschild DR, Mcpherson JM, Tubo R, et al. Differential expression of multiple genes during articular chondrocyte redifferentiation. The anatomical record, 2001, 263: 91-98.
    [56] Erickson GR, Gimble JM, Franklin DM, et al. Chondrogenic potentials of adipose tissue-derived strom cells in vitro and in vivo. Riochem and Biophys Res Com. 2002, 290: 763-769.
    [57] 宋红星,曹峻岭,刘淼,等.同种异体软骨细胞移植修复兔膝关节软骨缺损的免疫反应.中国矫形外科杂志,2002,9(1):32-34.
    [58] Wong M, Siegrist M, Wang XH, et al. Development of mechanically stable
    
    alginate/chondrocyte constructs: effects of guluronic acid content and matrix synthesis, Journal of Orthopaedic Research, 2001, 19: 493-499.
    [59] Zuk PA, Zhu Min, Mizuno H, et al. Multilineage cells from human adipose tissue: implication for cell-based therapies. Tissue Engineering, 2001 7: 211-227.
    [60] Rangappa S, Fen C, Lee EH, et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg, 2003, 75: 775-779.
    [61] Mizuno H, Zuk PA, Zhu M, at al. Myogenic differentiation by human processed lipoaspirate cells. Plastic and Reconstructive Surgery, 2002, 109(1): 199-211
    [62] Gronthos S, Franklin DM, Leddy HA, et al. Surface protein characterization of human adipose tissue-derived stromal cells. J Cellular Physiology, 2001, 189: 54-63.
    [63] Winter A, Breit S, Parsch D, et al. Cartilage-like gene expression in differential human stem cell spheriods: a comparison of bone marrow-derived and adi[pose tissue-derived stromal cells. Arthritis Rheum 2003, 48: 418-29.
    [64] Wickham MQ, Erickson GR, Gimble JM, et al. Multipotent stromal cells derived from the infrapatellar fat of the knee. Clin Orthop, 2003, Jul: 196-212.
    [65] Ahdjoudi S, Lasmoles F, Oyajobi BO, et al. Reciprocal control of osteoblast/chondroblast and osteoblast/adipocyte differentiation of multipotential clonal human marrow stromal F/STRO-1(-) cells. J cell Biochem, 2001, 81: 23-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700