用户名: 密码: 验证码:
台湾921集集大地震滑坡动力分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
台湾地区史上百年来最大的地震,导致了成千上万的人民死伤与无法衡量的天文数字的经济损失及工程毁损,这个浩劫就是921集集大地震所造成的。而台湾地狭人稠,平地面积非常稀少,山坡地面积却占了70%以上,许多山坡地的工程开发与利用相当的发达。不幸的是921集集大地震的发生,使得台湾中部山区的坡地产生了重大的破坏,因山崩所产生的崩毁面积达台湾本岛总面积的3%,因此对于地震时边坡稳定与滑坡分析便成为相当重要的一门应详加研究的工程课题。
     滑坡于地震期间的动力行为的变化是受地震波特性、滑坡几何形状、材料性质及是否有弱面存在等因素的影响。过去研究滑坡受震行为常用的分析方法有拟静力法、块体分析法、及动力数值分析法;如今由于科学的进步,电子计算器功能的发达,这三种方法虽各有优缺点,唯能真正与实际坡地现场模拟应力应变行为的方法,非动力数值分析法莫属。本论文就是以作者实际参与的暨南大学对外联络道路滑坡的案例,从震前滑坡的设计到震后滑坡动力模拟、整治方案动力分析、滑坡动力的分析研究及最佳整治方案的寻找,做系列的以滑坡有限元素法配合动力分析,由滑坡受震后应力与应变行为变化中找出答案。兹将本论文研究工作的经过及其结论整理如下:
    详细评判现有的滑坡动力分析研究理论,指出动力数值分析法是最佳模拟应力应变行为的方法,并建立了滑坡动力分析模型及找出最佳整治方案,但或许仍有研究空间可达到更合理的状况。
    详细剖析滑坡实例的基本背景,包含921集集大地震的特性、滑坡地质特性、震前设计、震后调查、震后拟静力与动力分析、试验结果的整理及整治方案拟静力与动力分析。
    求出滑坡最佳整治方案,因而节省了新台币一亿二千万元,节省工期为原整治方案工期的一半,使滑坡的安全度提高,加速度由0.33g提高到0.58g,可再一次承受类似921一般大小震度的地震。
    滑坡最佳整治方案之所以能求出,是要经过原来的四个整治方案的动力分析结果,由应力应变行为中详细的比对,深入分析与探讨才能定案。
    研究分析的前置考量是非常重要的,如地震、地质、试验、失败记录等数据要达到四个要素即要丰富、要正确、要整理、要筛选,才会有合理的分析结果。
    滑坡拟静力分析结果虽得到安全系数在一定要求以上(如1.5以上),但并
    
    
    不代表如此就达到安全,需做滑坡动力分析,再将拟静力、动力的分析详加比对其分析结果,求出合理、合适的答案才算安全,即认证了Seed(1979)提出的同样看法。
    滑坡分析其相关周边条件及各种状况要研判考量周全及严谨,尤其重要事项不可遗漏,如滑坡中的弱面是非常重要的,稍有不慎,其结果差之千里。
    滑坡拟静力或动力分析过程中,所有的地质及其它相关参数选用或输入时,要经过严谨及专业的判断再使用。
    在整治方案中选用各项结构体加固或保护时,要注意结构体的材料、强度、形式与特性,并应特别注意将结构体布置在适当的位置,才能发挥既安全及最大的功效。
The 921 Chi-Chi Earthquake is the largest one in Taiwanese history over the past century. It generates thousands of casualties and causes severe economics impact and devastating construction damages. Taiwan has a high population density and limited land base. Ground land is particularly limited and hill area occupies more than 70% of its geographic layout. Many engineering and construction development of the hill usages in Taiwan are thus advanced due to the natural resource constraint. Unfortunately, the 921 Chi-Chi Earthquake caused severe damage to the slope area in mid-Taiwan. The mountain and hill collapse reaches 3% of the entire Taiwanese area. Therefore, the stability and sliding analysis of slopes becomes an important subject for construction research topics.
    The changes of the dynamic behavior of slope are affected by the wave characteristics, the geometric properties of the slope, material property and whether there exists a complex stratum and topography. In the past study, the most commonly used methods include static simulation, Newmark mass analysis, and dynamic numerical analysis. They all have their advantages and weaknesses. As a result of technological advancement, the dynamic numerical analysis method can provide the best simulation. This dissertation is based on the author’s involvement with Chi-Nan University’s high slope. It studies the pre-quake design, dynamic simulation, static and dynamic analysis, slope dynamic analysis and the checks optimization. Below is the summary of findings:
    (1) Evaluate the current slope dynamic theories in detail. They indicate that dynamic numerical analysis is the best simulation method yet still allows enough research space to reach a more optimal conclusion.
    (2) Analyze the sloping case study in detail, including the characteristics of the 921 Chi-Chi Earthquake, slope geological characteristic, pre-quake design, post-quake investigation, post-quake static and dynamic analysis, compilation of test results and analysis of the whole static and dynamics analysis.
    (3) Derive the optimal proposal for the slope to reach a cost saving of NT120,000,000 and reduce the construction period by half of the original proposal. Also, the safety of the slope will improve and the withstand able acceleration will increase from 0.33g to 0.58g.
    (4) To derive the optimal case for the slope construction, it is necessary to investigate the results from the four restoration proposals. In addition, the comparative analysis of the dynamic analysis must be evaluated and discussed in depth to determine the final proposal.
    (5) The careful consideration prior to the research analysis, such as earthquake, geology, experiment design, previous records of failures are important. The data need to fit four criteria: abundance, accuracy, compilation, and selectivity to reach meaningful conclusion.
    (6) Although the safety factor needs to be a minimum of 1.5 from the slope static force analysis, it does not necessarily guarantee the safety standard. There is also a need to
    
    
    perform slope dynamic analysis and then compare the static and dynamic analysis results to reach a reasonable, appropriate answer. It supports the view of Seed’s proposal in 1979.
    (7) The corollary and all the peripheral conditions of the slope analysis need careful and comprehensive considerations. For example, the weak surface of the slope is critical and should not be ignored. If it is not understood and used properly, the results will be significantly off.
    (8) In the process of slope static force or dynamic analysis, all the geological and other related constants need to be selected thoroughly and professionally.
    (9) In compiling the restoration proposal, special attention needs to be given to the material, durability, form and characteristic of the construction body. Also the body should be carefully positioned to provide maximum safety and utility effect.
引文
钱绍明,国立暨南国际大学校园总体规划,台北:钱绍明建筑师事务所,1996
    立伟工程有限公司,国立暨南大学新建工程第二期地质钻探及试验报告书,台北:立伟工程有限公司,1994
    大圣工程顾问公司,国立暨南大学台21线联外道路边坡稳定分析,台北:大圣工程顾问公司,1994
    台湾省大地技师公会,国立暨南大学联外道路边坡稳定调查研究工作报告,台北:台湾省大地技师公会,1998
    巨垒营造有限公司,国立暨南大学大学路边坡抢修工程测倾仪管及地锚荷重计监测报告书,台北:巨垒营造有限公司,1998
    坚尼士工程顾问有限公司,国立暨南国际大学台21线联外道路崩坍复建计划及震灾损害调查报告书,台北:坚尼士工程顾问有限公司,2000
    钱绍明,国立暨南国际大学台21线联外道路崩坍复建工程地质钻探及调查成果报告书,台北:钱绍明建筑师事务所,2001
    洪如江,台湾红土砾石台地的风化与侵蚀,台北:国际卵砾石层地下工程研讨会,1995
    褚炳麟,台湾地区麓山带与台地砾石材料性质的初步研究,台北:国立中兴大学土木系,1981
    陈荣河,红土台地坍方防治方法的综合研究,台北:国科会防灾会防灾科技研究报告,1990
    褚炳麟,现地堆石材料的完整应力应变曲线及抗剪强度包络线,台北:94’岩盘工程研讨会,1994
    中华顾问工程司,921集集大地震专辑再版,台北:中华顾问工程司,2000中央地质调查所,九二一地震地质调查报告,台北:经济部中央地质调查所,2000
    林呈、孙洪福,见证921集集大地震震害成因与因应对策,台北:台湾土木技师公会,2000
    土木技师全国联合会,集集大地震结构物破坏模式研讨会论文集,台北:土木技师全国联合会,1999
    土木技师全国联合会,镇殇与重建九二一集集大地震周年纪念专辑,台北:土木技师全国联合会,2000
    土木水利工程学会,地锚设计与施工准则,台北:中国土木水利工程学会,
    1995
    水土保持学会,水土保持技术规范,台北:中华水土保持学会,1998
    交通部,公路排水设计规范,台北:交通部交通技术标准规范,1992
    林盈收,以变分法分析分层非均质黏土边坡受地震力的稳定问题,台北:台湾大学土木系,
    
    
    1994
    陈清泉,以变分法分析地震对边坡稳定的影响,台北:台湾大学土木系,1985
    刘冠秀,以变分法分析地震力作用下含裂缝滞水边坡的稳定性,台北:台湾大学土木系,1997
    欧奉璋,含裂缝非均质黏土边坡受地震力的变分法稳定分析,台北:台湾大学土木系,1993
    张吉佐,地震对土石坝的影响,台北:地工技术杂志,第九期P104~115,1985
    罗俊雄,地震资料处理及基本应用,台北:地工技术杂志,第九期P61~66,1985
    吴伟特,土壤动力学与大地工程,台北:地工技术杂志,第九期P5~19,1985
    林晋祥、赵炳焜,地震受震反应分析,台北:地工技术杂志,第九期P67~80,1985
    陈荣和,边坡稳定的分析方法,台北:地工技术杂志,第十七期P70~84,1987
    林四川、吴文隆、周功台,边坡稳定分析程序(STABLE)应用的探讨,台北:地工技术杂志,第四十一期P12~27,1993
    张徽正、卢诗丁,台湾的活动断层研究,台北:地工技术杂志,第七十九期P39~48,2000
    洪如江、洪以升,车笼埔断层在光复国小,九二一集集大地震,台北:地工技术杂志,第七十九期P107~109,2000
    陈锦清、张森源,就集集地震的土石坝行为探讨国内土石坝安全评估方法的妥当性,台北:地工技术杂志,第七十九期P109~117,2000
    洪如江、林美聆等,天堑可以飞渡、崩山足以断流(草岭顺坡滑动),台北:地工技术杂志,第七十七期P5~18,2000
    卢佳遇郑富书等,台湾西部的新地体构造、造山机制与地震灾害,台北:地工技术杂志,第七十七期P27~38,2000
    陈宏宇,地质灾害与山坡地开发,台北:地工技术杂志,第七十三期P31~44,1999
    蔡光荣、王弘佑,921集集大地震诱发大山崩与形成堰塞湖害初步调查,台北:地工技术杂志,第七十七期P93~100,2000
    黄景川、蔡政晟、刘昭宏,不对称边坡的三度空间破坏自动化分析,台北:地工技术杂志,第七十三期P101~112,1999
    寿克坚、苏苗彬、王建峰,九份二山崩塌机制与残坡问题探讨,台北:地工技术杂志,第八十七期P25~30,2001
    蔡义发、郭一羽、赖建信,集集地震草岭崩塌灾害工程紧急处理原则与探讨,台北:地工技术杂志,第八十七期P15~24,2001
    蔡升甫,应用变分法研究地锚荷重及地震力对边坡稳定的影响,台北:台湾大学土木系,1997
    杨政宪,有限差分法应用于受地震力边坡的变分稳定分析研究,台北:台湾大学土木系,2000
    
    徐志宏,黏土边坡受地震力的有限差分变分稳定分析研究,台北:台湾大学土木系,1999
    彭文飞,以位移法分析自然边坡在地震时的破坏行为的初步探讨,台北:成功大学土木系,2001
    杨家勋,地震对控制边坡破坏的内在因子的影响的研究,台北:成功大学土木系,2001
    黄信元,部分饱和土壤边坡稳定动态数值分析,台北:台湾大学土木系,1999
    颜贻国,梨山地区边坡滑动破坏动态仿真分析研究,台北:屏东科技大学土木系,2000
    Plaxis 7.2 使用手册
    A. Kasa, et al 1999 Field behavior of a reinforced steep slop with a cohesive residual soil backfill Slope stability engineering. 1003-1008, Balkema
    A. Takahashi. et al. Dynamic behavior of vertical geogrid-reinforced soil during earthquake. Slope stability engineering. 991-996. Balkema 1999
    Anderson, M. G. & Richards K. S. Slope Stability, Geotechnical engineering and geomorphology, (1987)
    Belloti, R. Ghionna, V., and Jamiolkowski, M. 1983. ko-OCR relationships in soil. J.Goetech Engrg. ASCE. 109(6), 859-861
    Bruno Teixeira Dantas and Mauriicio Ehrlich. Numerical analysis of reinforced soil slopes under working stress conditions. Slope stability engineering, 1055-1071, Balkema. 1999
    Byrne, P. M. (1991). “A model for predicting liquefaction induced displacement,’ Proceeding, 2nd International conference on recent advances in geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, Vol. 2, pp. 1027-1035
    Chia-Cheng Fan, Dynamic simunation of the Reinforced Slope failure at the Chi-Nan Univers During the 1999 Chi-Chi Earthquake,Taipei, I.G.E.F., 2001
    Chang C. J., Chen. W. F. Seismic displacements in slops by limit analysis, J. Geotech. Eng. ASCE, Vol.110,NO.7. 1984
    Cheng W. F. 1975. Limit analysis and soil plasticity. New York. Elsevier
    Chen. W. F. Plasticity in soil mechamics and landslide, Joumal of Engineering Mechanics Division, ASCE. Vol. 106, No. EM3. 1980
    Chongbin Zhao, S. Valliappan & J. Tabatabaie. 1993. Effect of impervious members and reservoir bottom sediment on dynamic response of embankment dams. Soil Dynamics and Earthquake Engineering. Vol. 12, No. 4, 199-208
    Cai, Z. & Bathurst, R. J. (1996). “Deterministic sliding block methods for estimating seimic displacements of earth structure,” Soil Dynamics and Earthquake Engineering, Vol, 15, pp. 255-268
    Castillo, E. & Revilla, J. (1976). “Una aplicacion del calculo de variacioones a la estabilidad de
    
    
    taludes,” J. Laboratorio del Transporte, pp. 3-23
    Chang, C. J., Chen W. F. & Yao, J. T. P. (1984). “Seismic displacements in slopes by limit analysis,” Journal of Geotechnical Engineering. ASCE, Vol. 110, No. 7, pp. 860-874
    Chen, W. F. & Liu, X. L. Limit analysis in soil mechanics, Developments in Geotechnical Engineering. (1990)
    Chen, W. F. & Snitbhan, N. “On slip surface and slope stability analysis,” Soils and Foundations, Vol. 13, No. 3, pp. 41-49. 1975
    Chowdhury, R. N., Slop Stability, Developments in Geotechnical Engineering, Elsevier Scientific Publishing Co., Arnstendarn-Oxfare-New York. 1978
    Clougn, R. W. & Chopro, A. K. “Earthquake stress analysis in earth dams,” Journal of the Geotechnical engineering Divisioon, ASCE, Vol. 92, No. 2, proceeding paper 4793, April, pp. 197-212.1966
    Cundall, P. A., Hansteen, H. & Selnes, P. B. “NESSI-Soil structure interaction program for dynamic and static problems,” Norwegian Geotechnical Institute, Report 51508-9, December. 1980
    Dakoulas, P. & Gazetas, G. “Seismic lateral vibration of embankment dams in semi-cylindrical valleys,” Earthquake Engineering and Structural Dynamics, Vol. 13, No. 1, pp. 19-40. 1986
    D. Leshehinsky. Stability of geosynthetic reinforced steep slops. Slop stability engineering. Yagi Yarnagami & Jiang Balkerma, Rotterdam. 1999
    D. M. Raju and R. J. Fannin. Load-stain-displacement response os geosynthetic in monotonic and cyclic pullout. Can. Geotech. J. 35: 183-193. 1998
    Dakoulas, P. & Gazetas, G. “Seismic shear strains and seismic coefficients in dams and embankments,” Soil Dynamics and Earthquake Engineering, Vol. 5, No. 2, pp. 75-83. 1986
    Desai, Chandrakant S. and Christian, John T ed. Numerical methods in geotechnical engineering, Mc GRAW-HILL BOOK COMPANY.1997
    Dov Leshchinsky. Discusion of “Strain compatibility analysis for geosythetics einforced soil walls”, J. Geotech Engrg ASCE. 1990
    Ellen, M. R. & Jonathan, D. B. “Nonlinear coupled scismic sliding analysis of earth structures,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 11, 1102-1014. 2000
    Franklin, A. G. & Chang, F. K. “Permanent displacements of earth embankments by New-mark sliding block analysis,” Report 5, Miscellaneous Paper S-71-17, U. S. ArmyCorps of EngineersWaterways Experiment Station, Vicksburg, Mississippi. 1977
    Farrokh Nadim &Robert V.Whitman. Seismic analusis and design of retaining walls.Soil Dynamics and Geotechnical Earthquake Engineering. Balkema. ISBN. 905410-3018. 1993
    
    G. Porkharel, et al. Centrifuge model testing of reinforced soil slopes in the perspective of Kanto Loam. Slope stability engineering. 985-989, Balkema. 1999
    George Gazetas. Seismic response of earth dams. Some recent developments. Soil Dynamics and Earthquake Engineering, Vol. 6, No. 1, 2-47. 1987
    George Lin. Stability of frames with grade beam and soil interaction. J. Eng. Mech. 118(1) , 125-139. 1992
    Gasparini, G. A. & Sun, W. J. “Random vibration analysis of finite element models of earth dams,” Soil Dynamics and Earthquake Engineering Conference, pp. 635-649. 1982
    Gazetas, G. “Seismic response of earth dams, some recent developments,” Soil Dynamics and Earthquake Engineering, Vol. 6, No. 1, pp. 3-47. 1987
    Goodman, R. E. & Seed, H. B. “Earthquake induced displacements in sand embankments,” Journal of the Soil Mechanics and foundations Division, ASDCE, Vol. 92, pp. 125-146. 1966
    Hoe I. L. & Dov Leshchinsky & Yoshiyuki M.”Soil slopes under combined horizontal and vertical seimic accelerations,” Earthquake Engineering and Structural Dynamics, Vol. 26, pp. 1231-1241. 1997
    J. P. Contc. K. S. pister & S. A. Mahin, Nonstationary ARMA modeling of seismic motions Soil Dynamic and Earthquake Engineering. Vol. 11, No. 7, 411-426. 1992
    Koutsableloulis N. C. & Griffiths D. V. “Dynamic slope stability analysis using the finite element method,” Computer and Physical in Geotechnical Engineering, pp. 89-96. 1989
    MR. Hunsniann, Engineering Priniciples of Ground Modification, McGraw-Hill publishing company, 1990
    Masisn Karnon et al. Numerical analysis on the stability of GHD-reinforced clay embankment. Slope stability engineering, 1027-1032, Balkema. 1999
    Newmark, N. M. “Effect of earthquakes on dams and embankments,” Geotechmi- que, Vol. 15, No. 2, pp. 187-199. 1998
    R. Richards Jr. and X. Shi. Seismic lateral pressures in soil with cohesion. J. Geotech.Engrg. ASCE. 120(7), 1230-1251. 1994
    Rong-Her Chenstc. Seismic Performance and Failare analysis of Mechanically Stabileizec Earth Retaining streecture During The Chi-Chi Earthquake, Taipei, J.G.E.F. 2001
    Steven. L. kramar. Geotechnical earthquake engineering. 1990
    Seed, H. B. “A method for earthquake resistance design of earth dams,”Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, pp. 13-41. 1966
    T. Nogami and M. Kazama. Dynamic response analysis of submerged soil by thin layer element method. Soil Dynamic and Earthquake Engineering. Vol. 11, No. 1, 17-26. 1992
    
    T. Matsui et al. Design method for steel grid reinforced earth structure considering bearing resistance. Slope stability engineering, 1039-1042, Balkema. 1999
    T. Nagayoshi, et al. Full-scale model test on deformation of reinforced steep slopes. S;ope stability engineering. 1009-1014, Balkema. 1999
    Takuo Yamagami et. al. A promising approach for progressive failure analysis of reinforced slopes. Slope stability engineering, 1043-1048, Balkema. 1999
    Tamotsu Matsui, et al. Stability analysis of reinforced slopes using a strain-based FEM. Slope stability engineering, 1021-1026., Balkema. 1999
    Terzaghi, K. “Mechanisms of land slides,” The Geological Survey of America, Engineering Geology (Berkley) Volume. 1950
    杨明,加筋挡墙的作用机理研究及其动力分析,重庆大学博士学位论文,2001
    叶晓明 重庆砂岩动力特性研究,重庆大学博士学位论文,1993
    谢定义 土动力学,西安交通大学出版社,1998
    陶连金 苏生瑞 张倬元,节理岩体边坡的动力稳定分析,工程地质学报,1987
    刘国明 复杂岩质高边坡的非线性静、动力稳定分析,河海大学博士学位论文,1994
    张兴 岩体结构的随机模拟及边坡破坏概率分析,北京科技大学博士学位论文,1988
    薛守义 岩体边坡动力稳定性研究,中国科学院地质研究所博士学位论文,1989
    屈智炯 土的塑性力学,成都科技大学出版社,1987
    王焕定,吴德伦 有限单元法及计算程序,中国建筑工业出版社,1997
    汪敏 滑坡灾害风险分析系统理论及在港渝地区应用研究,重庆大学博士学位论文,2001
    中国岩石力学与工程协会,地面岩石工程专业委员会,中国典型滑坡,科技出版社,1988
    杨明 吴德伦, 加筋土挡墙的屈服加速度,岩石力学与工程学报2002,21(9)
    朱伯芳 有限单元法原理与应用(第二版)北京:中国水利水电出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700