用户名: 密码: 验证码:
佳木斯地块金的控矿条件与成矿模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
佳木斯地块位于黑龙江省东部,在大地构造位置上属天山——兴蒙地槽褶皱区吉黑地槽褶皱系北段的中间地块。本地块呈南北向带状展布,北过黑龙江与俄罗斯的不列亚地块相连,南被敦密深断裂隔截,西与伊春——延寿加里东褶皱带毗邻,东与完达山印支褶皱带相接。该地块是黑龙江省主要岩金矿床集中区,已查明的几个大型岩金矿床均位于该区。
     1.区域地质背景
     区内地层以前寒武纪的麻山岩系(麻山群)和东风山岩系(东风山群)、黑龙江岩系(黑龙江群)变质岩及中新生代的火山——沉积岩系为主,古生代地层仅零星的分布于华力西期花岗岩之中。
     本区内大的断裂构造有牡丹江断裂、依兰——汤旺河——结烈河断裂、敦化——密山断裂、同江——当壁断裂。牡丹江断裂大致沿牡丹江河谷呈南北向延伸。依兰以北过松花江后为汤旺河一结烈河断裂。牡丹江断裂被认为是元古代以来多旋回活动的超岩石圈压性及压剪性断裂,是佳木斯地块与依春——延寿地槽褶皱系的分界。
     区内发育的岩浆岩有前寒武纪花岗质岩石、华力西期岩浆岩、燕山期岩浆岩。本区的金成矿主要与燕山期的岩浆活动有关(姚凤良等,1990;曹熹等,1992)。燕山期岩浆岩多呈岩株状、岩枝状及脉状产出,大的侵人体较少。岩浆岩岩性复杂,从基性到酸性均有,以中酸性居多,即闪长岩、石英闪长岩、细晶闪长岩、闪长玢岩、煌斑岩、斜长花岗岩、花岗斑岩及霏细岩等。同位素年龄98—146Ma,表明燕山期有多次岩浆活动。许多研究资料表明,研究区的乌拉嘎金矿、平顶山金矿和老柞山金矿均与燕山期的岩浆活动有关。
     佳木斯地块具有复杂的构成及演化历史。研究表明,佳木斯地体并不是一个简单统一的地质实体,而是由两个古老变质地体拼合而成的复合地体。变质地体是以断层为界,其内具有区域规模的透人性变质组构,而且变质组构的发
    
    佳木斯地块金的控矿条件与成矿模式
    吉林大学博士论文
    育达到了使原始地层特点与地层关系模糊不清的程度。除了变质作用的差别外,
    这些地体与相邻地体在原岩性质上也有明显不同,显然这样一些特点都发生在
    地体向大陆边缘贴合之前,而不是增生之后。
     佳木斯地体内原黑龙江群岩石所组成的地块和原麻山群岩石所组成的地块
    就是两个地质特征各异的变质地体。它们在彼此拼合之前是两个具有独立发展
    历史的地壳块体。
    2.金矿床类型
     佳木斯地块是我国较重要的金矿床集中区之一,区内金矿资源比较丰富。
    根据区域成矿地质条件、成矿作用及矿床特征,本区的金矿床主要划分为三种
    成因类型:岩浆热液型、次火山岩型、沉积变质型。
     老柞山金矿床、团结沟金矿床、东风山金矿床分别为本地区的岩浆热液型、
    次火山岩型和沉积变质型岩金矿床的典型矿床。
    3.佳木斯地块前寒武纪变质岩系对金矿床形成的控制机理
     迄今为止黑龙江省所发现的规模较大的金矿床,如团结沟金矿床、东风山
    金矿床、老柞山金矿床等一些大型矿床和一些中小矿床如杜家河、马莲、平顶
    山等都发育在佳木斯地块上,而且空间上这些矿床都与前寒武纪变质岩系关系
    密切(如图3一l所示)。可见金矿床与前寒武纪变质岩系可能具有某些成因上
    的联系,或者说本地区金的成矿作用与本区前寒武纪变质岩系中金的丰度有关。
     然而,通过对国内外前寒武纪变质岩系的金含量对比研究,得出前苏联、
    加拿大、南非等几个地区的前寒武系变质岩中,有94%左右样品的金含量明显
    低于金克拉克值,有35%左右小于lppb。在前寒武系不同岩石类型之间,绝大
    多数岩石金含量平均值没有显著差别,除了阿尔戈马型化学沉积岩(南非)及
    部分砂、砾岩(苏联)外,各类岩石之间的金平均值相差不大。国内几个地区,
    其绝大多数变质岩金含量同样低于克拉克值,与国外情况基本一致。可见,如
    果单纯研究某个地区或某些变质岩金丰度值或背景值,以此来探讨成矿物质来
    源和划分成矿预测区、集中区、其实际意义不是太大,特别是将变质岩微金样
    品与岩石的具体观察研究相脱离,而来探讨变质岩金丰度值与矿源层的关系,
    实际意义是有限的。
     金的成矿作用与其它金属矿床相比,具有长期性,多阶段性的特点,是综
    合地质因素控制的结果。从这一意义上说,前寒武纪变质岩系中金的成矿具备
    了得天独厚的优越条件。这是因为前寒武纪以后的任何地层,都没有比前寒武
    系地质演化的历史更为悠久,更富于变化。前寒武纪地质构造比前寒武纪以后
    更为复杂,无论变形作用或断裂作用都是十分复杂的,同时在区域上它具有特
    殊的构造格架。寒武纪以后的构造作用一般又都具有继承性;前寒武纪以来的
     ·82·
    
    第六章佳木斯地块岩金成矿远景预测
    岩浆活动是广泛而频繁的,前寒武系受岩浆作用、火山作用及其热液活动的影
    响,应该说比寒武纪以后地层要大的多;前寒武系广泛发育变质作用,常常是
    多期、多类型,这是显生宙地层无可比拟的。在变质作用中(包括混合岩化作
    用),温度、压力及凡O、以入等组分变化,尤其变质作用中化学势等物理化学
    条件的反复改变、矿物结构构造的不断变化,都会在新的物理化学环境中和空
    间上,为金的活化、迁移和富集创造极为有利的条件。上
The worked area is situated in the northeast part of Heilongjing Province,covering an area of about 600km2 in 4730 - 4830N and 130-131 E;geotectonically, belonging to the Jiamusi massif (Fig. 1). The area is northward connected together with the Burya massif of Russia, which is generally known as the Burya - Jiamusi medial massif.
    The Jiamusi massif is bounded by surrounding faults of Mudanjiang-Tangwang-he-Jielehe fault separating from the Zhangguangcailing orogenic belt on west,Dunhua-Mishan fault separating from the Yanbian fold system on southeast, and the Tongjiang-Dangbi fault separating from the Nadanhada terrane on east. The massif is composed mostly of Precambrian metamorphic rocks, granitic rocks and Mesozoic-Cenozoic coverings, arornd which the Palaeozoic strata are scattered. The Postpalaeo-zoic strata on the massif can be comparable with those on the surrounding units.
    The Precambrian metamorphic rock series used to be regarded as "stratigraphic unit"and divided into two groups,Heilongjiang and Mashan,but the sequence and contact relationship between the two groups have been argued for a long time. The major problems are as follows, a. On the bases of the concept of burial metamorophism, high-grade metamorphosed Mashan group ( high-amphibolite-granulit facies) should be beneath low-grade metamorphosed Heilongjiang group(greens-chist facies). b Vnusual field occurrence, the Mashan group overlying the Heilongjiang group was interpreted as"inverse metamorphic zoning", c. Owing to uncertainty relation of both groups, the metamorphic rocks which are difficult to be compared each other should be reconsidered to be"independent stratigraphic units".
    HEILONGJIANG COMPLEX We use the term "Heilongjiang complex"to substitute for the Heilongjiang group in order to distinguish tectonic rock association from
    
    
    
    previous" stratigraphic unit".
    For usage reason, division of metamorphic rock groups and formations is based on the assume that rock schistosity inherits original rock bedding. The geological evidence shows that almost all schistosities in the Heilong jiang Complex are new-formed mylo-nitic foliations by ductile deformation, which are not comsistent with original beddings. In fact, the foliations as boundary surface between different lithologies are "false:-bedding"formed by tectonic substitution and differentiation, and interbedded of intercalaed lithologic layers are without stable extension. The "stratigraphic formations" previously determined posses neither specific rock associations nor clear boundary marks. The pervasive foliate tectonics are reflected by prefer oriented flaky silicate minerals and elongated feldspars, quartzes and amphiboles, which doubtless resulted from recombination of materials and tectonic parallelism as ductile deformation. This rprocess includes physical(mcchanical) transformation,chemical rework and partici
    pation of fluid.
    The field relation indicates that the foliations in deformed rocks are consistent with pervasive regional foliation that is so strongly developed that former tectonic elements, including beddings, were destroyed. In this case, it is difficult to renew original beddings. Only in local exposure where relict primary bedding coexisting with regional foliatoin can be observed, are some small slip folds the manifestation of primary beddings (s0) that slip along regional pervasive foliation (s1). With the development of the folds,primary bedding(s0)became discontinuous and were finally replaced by the foli-ation(sl).
    As indicated above, the primary stratigraphic fabrics in the Heilong jiang Complex, for the most part,had been replaced by edformation is impracticable.
    The Heilongjiang Complex is composed chiefly of various mylonites and mylonitic schists that suffered varying degrees of ductile deformation. These foliated rocks are spatially distributed in belt, in which L-S fabrics indicate they resuled from nappe shear movement.
引文
[1] 尹冰川等,1997,小兴安岭—张广才岭地区区域成矿演化。矿床地质,16(3),236—241。
    [2] 刘静兰等,1996,中国东风山前寒武纪含铁建造金矿床。黑龙江地质,7(3),36—39。
    [3] 扬增武等,2001,牡丹江地区岩金找矿方向。矿产与地质,15(4),251—254。
    [4] 汪明灿等,2003,黑龙江省林河金矿地质特征及成因探讨。矿产与地质,17(97),423—425。
    [5] 刘静兰,1988,前寒武系变质岩的含金性及其研究意义。地质论评,34(4),27—30。
    [6] 姜继圣,1990,孔兹岩系及其研究概况。长春地质学院学报,20(2),34—38。
    [7] 任纪舜等,1990,中国东部及邻区大陆岩石圈的构造演化与成矿。北京:科学出版社。
    [8] 刘鹏鹗等,1998,黑龙江省团结沟地区隐伏金矿体预测准则。黄金,19(5),3—6。
    [9] 曹熹等,1988,糜棱岩形成机制的显微构造证据。长春地质学院学报,18(2)45—48。
    [10] 马家骏等,1988,黑龙江东部岩金成矿作用探讨。黑龙江地质,1(1)30—40。
    [11] 李碧乐等,1998,黑龙江团结沟金矿区花岗斑岩体与金矿化的关系。黄金19(3)3—8。
    [12] 中国地层委员会,1962,中国的前寒武系。全国地层会议学术报告汇编,北京,地质出版社。
    [13] 中国科学院黑龙江流域综合考察队,1963,黑龙江流域及其毗邻地区地质,第1卷,北京:科学出版社。
    [14] 田豫才,1999,佳木斯隆起东南缘地质背景及找矿方向。桂林工学院学报,19(4),304—309。
    [15] 张庆龙等,1989,那丹哈达地体与东亚大陆边缘中生代构造的关系,地质学报,63(3),24—30。
    
    
    [16] 王莹,1992,论黑龙江杂岩。黑龙江地质,3(3),2—8。
    [17] 卢华夏、张庆龙等,1990,地体概念与研究现状。山西地质,5(1),23—30。
    [18] 白景文等,1988,黑龙江依兰、牡丹江变质带蓝片岩特征。岩石矿物学杂志,4(7),23--28。
    [19] 地矿部情报研究所,1981,国外变质岩区构造研究方法。北京:地质出版社。
    [20] 地矿部情报研究所,1984,国外前寒武纪地质构造研究。北京:地质出版社。
    [21] 任纪舜、姜春发等,1980,中国大地构造及其演化。北京:科学出版社。
    [22] 魏菊英等,1996,东风山前寒武纪含铁建造金矿床的同位素地球化学。北京大学学报,32(4),472—479。
    [23] 刘静兰,1988,佳木期中间地块前寒武纪地质研究。长春地质学院学报,18(2),6—11。
    [24] 李春昱、王荃等,1982,亚洲大地构造图说明书。北京:地质出版社。
    [25] 李春昱,1986,论地体。地质论评,32(6),3--8。
    [26] 李春昱、郭令智、朱夏等,1986,板块构造基本问题,北京:地震出版社。
    [27] 李志超,1983,吉黑褶皱系演化问题。东北三省地质学会地质矿产学术讨论会论文摘要汇编。
    [28] 李继亮,1984,一种新的大地构造分析方法——构造地层地体分析简介。国外地质,第2期。
    [29] 于福林等,20000,萝北县杜家河金矿床地质特征。黑龙江地质,11(2),30—36。
    [30] 林景仟,1987,岩浆岩成因导论。北京:地质出版社。
    [31] 徐公愉、方文昌,1986,佳木斯中间地块的由来与发展。吉林地质,第2期。
    [32] 郭令智、施央申等,1984,论地体构造——板块构造理论研究的最新问题。中国科学院院报,第10号。
    [33] 魏菊英等,东风山前寒武纪含铁建造金矿床中的稀土元素。地质科学,32(4),506--514。
    [34] 靳是琴、李鸿超,1984,成因矿物学概论。长春:吉林大学出版社。
    [35] R.G.科尔曼,1982,蛇绿岩。北京:地质出版社(中译本)。
    [36] E.R.谢默、D.G.豪威尔等,1986,外来地体的成因——对大陆生长
    
    和形成的看法。国外地质科技,第3期(译文)。
    [37] 苗得昌,1993,国内外金银矿床图册。北京:冶金工业出版社。
    [38] 曹熹等,1992,佳木斯复合地体。长春:吉林科学技术出版社。
    [39] Armstrong, R. L., et al., 1983, Late paleozoic highpressure metamorphic rocks in northwestern Washington and southwestern British Columbia: The Vedder Complex. Geol. Soc. Am. Bull., V. 94, 451~458.
    [40] Black, P. M., 1977, Regional high-pressure metamorphism in New Caledonia:phase equilibria in the Quegoa District. Tectonophysics, V. 43, 89~107.
    [41] Brown, E. H., 1971, Phase relation of biotite and stilpnomelane in the greenschist faciea. Contri. Miner and Petrol., V. 31, 275~299.
    [42] Brown, E. H., 1977, The crossite content of Ca-amphibole as a guide to pressure of metamorphism. Journal of petrol., V. 18, No. 1, 53~72.
    [43] Brown, E. H. and wilson, D. L., et al., 1982, Petrologic structural and age relations of serpentinite, am—phibolite, and blueachist in the shuksan suite of the Iron-mountainGee point area, North Cascades, washington. Geol. Soc. Am. Bull., V. 93, 1087~1098.
    [44] Brown, E. H., 1974, Comparison of the mineralogy and phase relations of blueschists from the North Cascades, Washington, and greenschists from Otago, New zealand. Geol. Soc. Am. Bull., V. 85,333~334.
    [45] Cotkin, S. J., 1987, Conditions of metamorphism in an early Paleozoic blueschist, Schist of skookum Gulch, northern California. Contri. Miner, and Petrol., V. 96, 192~200.
    [46] Coleman, R. G., 1984, The diversity of ophiolites. Geologieen Mijnbouw, V. 63, 141~150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700