用户名: 密码: 验证码:
强震活动主体地区形成机理的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多学者(马宗晋等,1986;张肇诚等1994;洪汉净等,1994,1997;黄圣睦等,1996)通过对本世纪以来中国大陆及邻区强震活动的研究,逐渐认识到:在一定时期内,中国大陆及邻区内强震活动有相对集中的地区,称为强震活动主体地区,本文简称为主体地区;不同时期的主体地区在空间上有较大距离的转移与变换。强震活动主体地区体现了大陆内某段时期的应力状态。主体地区发生大范围迁移的时期约为十几年时间尺度,称为微动态期。不同时期的主体地区反映了大陆内应力场的快速变化。要解释这种应力场快速变化必须回答:动力来源、应力快速积累机制、影响应力场变化的主要因素等问题。
     中国大陆内地震属于板内地震,有不同于板块边界地震的物理机制。中国大陆周围受到印度、太平洋和菲律宾海三大板块的联合作用,并且岩石圈结构复杂,具有横向和纵向不均匀性,这些因素必然影响大陆内的应力场分布,从而影响大陆内强震的活动,但是其影响方式和物理过程,都需要进一步的研究。本文从中国大陆动力学背景特征、应力在岩石圈中的传播特征、大陆岩石圈介质特征、前期强震活动对局部地壳的影响等方面进行较全面的计算和模拟,希望能较好地理解和探讨以上问题。
     动力学分析表明,大陆周围的印度、太平洋和菲律宾海板块边界的活动是一个动态过程。通过推导常速度边界条件下应力在双层粘弹性模型中传播的解析解,本文分析论证了在周围板块边界动态作用下,应力可以通过岩石圈韧性层的作用,在大陆地壳内快速积累。从而证明板块边界的动态活动,可能是影响大陆内应力场快速变化的动力来源。本文又通过计算中国大陆的上、中、下地壳温度、粘滞性系数等值线分布,和地块的温度、粘滞性系数变化特征,分析了大陆内的介质分布特征,进一步理解了中国大陆的构造背景和孕震环境。从而证明大陆内介质的不均匀分布会在一定范围内影响应力集中位置。本文通过对大陆内强震释放应变能的分析和计算,做出各时期的强震释放应变能背景图,帮助分析前期强震对于局部大陆地壳的影响。
     在以上工作的基础上,根据对大陆介质的计算,和各时期的强震释放应变能背景图,设计各时期中国大陆及邻区三维粘弹性非均匀有限元模型,根据板块边界的强震活动,量化各时期动态板块边界活动状况,作为不同时期的边界条件。首先模拟了板块边界的不同运动状况对大陆内活动块体边界上剪切力的影响,然后顺序模拟了中国大陆各期强震活动的剪切力变化情况,与大陆内相应时期的实际强震活动状况对应较好。验证了通过影响大陆内动态应力分布,进而影响强震活动主体地区的形成和迁移的主要因素为:(1)大陆周围板块边界的动态活动;(2)大陆内地壳介质不均匀分布;(3)前期强震对周围地壳介质的影响。并初步理解了强震活动主体地区的形成和迁移过程。
     为进一步了解在太平洋和菲律宾海板块边界俯冲对中国大陆东部的影响,利用参考俯冲板块形态建立的中国大陆三维粘弹性非均匀有限元模型和俯冲诱发地幔对流模型,模拟出海洋板块的俯冲对大陆东部应力场产生的复杂影响,理解了大陆东部一些现象的物理机制,例如:由于俯冲作用,在大陆东部岩石圈内形成局部地幔对流;虽然受到海洋板块的西向俯冲,
    
    但在大陆东部边界附近却存在引张作用以及较大的东向运动;大陆东部地区出现挤压、引张、
    挤压作用相间排列的情况。
    一、对影响中国大陆应力场变化的重要因素的考虑和计算分析
     地震是差异应力的产物,中国大陆内的6级以上强震多是构造强震。因此要理解强震主
    体地区的形成机制必须从了解大陆应力场入手。中国大陆及邻区处在印度、太平洋和菲律宾
    海三大活动板块边界之间,其应力场格局受到这三大板块活动情况的直接影响。通过对中国
    大陆强震的特殊动力学背景的分析,认识到大陆周围的板块活动并不是均衡的,而是不断变
    化中的动态过程,并且通过以前的工作认识到,印度板块边界的活动基本控制了应力场的主
    要格局,而太平洋和菲律宾海板块边界都会对大陆内部应力场产生重要的调整作用。
     虽然强震绝大多数是发生在中、上地壳中,然而破碎的上地壳无法远距离传递应力,那
    么板块边界作用是如何影响到大陆深处的呢?又是如何在几十年甚至十几年的时间尺度内
    引起大陆内应力场分布发生较大变化呢?板块边界作用是作用于整个岩石圈深度上的,显然
    只考虑板块边界对地壳脆性层的作用是不合理的,在此必须考虑整个岩石圈的分层流变结构
    在应力传递中的作用。板块边界的运动是一个动态的过程,板块常以一定速度推进(如印度
    板块的推挤速度),而不是维持定常力作用在相邻的板块上,在这种情况下边界上的速度是
    常量。因此,本文在Kuszni:&Bott(1977)双层粘弹性岩石圈模型(上层粘滞性系数较大,
    下层粘滞性系数较小)的基础上修改模型,以速度作为边界条件进行模拟计算,给出解析解。
    并证明,如果给定两层模型的杨氏模量和各层的厚度比,则一F层所占厚度比越大,在上层中
    应力集中速度越快,可以极大的缩短应力积累时间。从而证明在板块边界连续动态作用条件
    下,地壳韧性层和岩石圈地慢在应力的传播和集中过程中起了很重要作用,岩石圈
Studies (Ma Zongjin et al, 1986; Zhang Zhaocheng et al, 1994; Hong Hanjin et al, 1994, 1997; Huang Shengmu et al, 1997) on strong earthquake distribution in China and its vicinity have led to a recognition that the activities of continental strong earthquakes in China and its surrounding areas may concentrate in a certain active region during a certain time period. Hong Han-jing (1994, 1997) suggested that the seismic activities in China and its surrounding areas in the last century can be grouped into several micro-dynamic periods, while in an individual period the activity of strong earthquakes may be fixed in a main active region. Moreover, in different periods the patterns of strong earthquake distributions may vary significantly in space and the main active region of strong earthquakes may migrate for a long distance.
    The main regions of strong earthquakes reflect the quick change of the stress field in the Chinese continent. To explain this change some questions must be answered, they are: what is the driving force? How the stress immigrates and accumulates in the crust? And what are the main factors to affect the change of the stress field?
    Dynamic analysis demonstrates that the dynamic activities of the three surrounding plates, i.e. the Indian plate, the Pacific plate and the Philippine plate, affect the stress field in the China continent. However the cracked upper crust could not transfer the stress in long distance, and it could not help to explain the migration of the main regions of strong earthquakes. Therefore this work takes into account the rheological stratification of the whole lithosphere, and modifies the boundary condition of the two-layers visco-elastic lithosphere model of Kusznir & Bott's (1977) to a constant velocity boundary condition, and gives the analytical resolution. When the two layers are assumed to be welded, the greater the differences of the viscosities and the ratio of the thickness between two layers are, the faster the stress concentrates in the layer with greater viscosity. The result shows that under the same boundary condition, if the accumulation of stress for one-layer homogenous model needs 950 years, the
    n for a two-layer visco-elastic model (with the ratio of the two layers of 1/100 and the viscosities of 1018 Pa-s and 1022Pa-s, respectively), it needs only 38 years. The above results prove that the stress could be transferred from plate boundaries to the inner part of the continent and concentrates in the crust caused by creep in underlying ductile layers of the lithosphere.
    In order to understand the regional media of the China's continent, the crustal heat production is inferred from seismic velocity (vp) by using the Cermak's method
    
    
    (1982, 1989, 1995). The data needed are collected from several published geoscience transects, deep seismic sounding profiles and the three compiles of published heat flow data. The physical parameters for the active blocks in China, such as the viscosity, temperature and Young's module for individual crustal layers are calculated, and the corresponding isoline maps of these parameters are compiled.
    The strain energy background map released from strong earthquakes before several periods is made using time, location and degree of the earthquakes as the function, to emphase the effect that earthquakes exerts on the properties of the crust.
    Based on the above analyses, a 3D non-uniform visco-elastic finite element model is set up to simulate the variations of the stress filed in the continent. In this model, diverse properties of media are given to the crust of the lithosphere according to the media calculations of the China's continent. According to the earthquake activities on plate boundaries, the fluctuation of movement at plate boundaries is analyzed, and then the boundary conditions of the model are adjusted correspondingly according to the result. And the crust media are adjusted slightly to accord to the strain energy background released from the strong earthquakes before a certain time, which represents the effect that form
引文
O.卡普迈耶,R.海浬尔.1981.地热学及其应用.北京:科学出版社.
    陈颙,季颖,一个能产生分形结构的地震活动性模型,见:十年尺度中国地震灾害损失预测研究,北京地震出版社,1995
    程裕淇主编.1994.中国区域地质概论.北京:地质出版社.
    崔作舟,卢德源,陈纪平,张之英,黄立言等.1987.攀西地区的深部地壳结构与构造.地球物理学报,30(6):566~580.
    刁桂苓,王勤彩,傅容珊,李钦祖,陈绍绪,张四昌.2001.1982年日本茨城地震序列表现出的局部板块俯冲动态过程.地震学报,23(2):136~142.
    丁国瑜,李永善.1979.我国地震活动与地壳现代破裂网络.地质学报,53(1),22~33.
    丁国瑜,卢演俦.1986.对我国现代板内运动状况的初步探讨.科学通报.(18):1412~1415.
    丁国瑜主编,蔡文伯,于品清,谢广林副主编。1991.中国岩石圈动力学概论.北京:地震出版社,157
    丁国瑜主编.1991.中国岩石圈动力学概论.北京:地震出版社,144~153.
    丁志峰,何正勤,孙为国,孙宏川.1999.青藏高原东部及其边缘地区的地壳上地幔三维速度结构.地球物理学报,42(2):197~205.
    范俊喜,马瑾,刁桂苓,单新建.2001.地块活动与成组地震关系的初步探讨.地震学报,23(5):514~522.
    方盛明,佘钦范,张先康.中国东部及其邻域岩石圈底界面特征及地震活动性.2001.地球物理学报,44(1),48~53
    傅征祥.中国大陆地震活动性力学研究.北京:地震出版社.1997.
    高山,骆庭川,张本仁,张宏飞,韩吟文,赵志丹.中国东部地壳的结构和组成.中国科学(D辑),29(3):204~213.
    高祥林,罗焕炎,日本俯冲带应力产生与传播的数值模拟,地震地质,第16卷,第2期,1994
    龚再升,李思田.1997.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社.9~126
    国家地震局《深部物探成果》编写组.1986.中国地壳上地幔地球物理探测成果.北京:地震出版社.
    何昌荣,周永胜,桑祖南.2002.攀枝花辉长岩半脆性-塑性流变的实验研究.中国科学(D辑),32(9):717~726.
    洪汉净,刘培洵,陶玮.1997.强震活动主体地区、网络及其随时间的变化.见:中国地震局地质研究所.地震危险性预测研究(1998年度).北京:地震出版社:56~68.
    洪汉净,汪一鹏等,1997.我国大陆地壳块体运动的平均图象及其动力学意义,活动断裂研究6.
    洪汉净.1994.我国地震活动的主导构造.地震,增刊,102~109.
    胡圣标,何丽娟,汪既旸.中国大陆地区大地热流数据汇编(第三版).地球物理学报,44(5):611~626.
    
    
    环文林,时振梁,鄢加全.1982.中国东部及邻区中新生代构造演化与太平洋板块运动.地质科学,2:179~190.
    黄怀增,吴功建.1994.岩石圈动力学研究.北京:地质出版社.
    黄圣睦,董瑞英.1996.中国强震活动图像与地震预报.成都:成都地图出版社,24
    蒋铭,1988.中国大陆地震的时空强转换,地震,(4).
    阚荣举,韩源(主编).国家地震局地学断面编委会.1992.云南遮放至马龙地学断面.北京:地震出版社.
    李国平,郭友中,数理地震学.北京:地震出版社.1978.
    李国玉、吕鸣岗等编,中国含油气盆地图集,石油工业出版社出版,1988
    李钦祖,于利民,王吉易.1994.成组活动是中国大陆强地震的一个基本特点.地震学报,16(1):11-19.
    李松林,张先康,张成科,赵金仁,成双喜.2002.玛沁—兰州—靖边地震侧身剖面地壳速度结构的初步研究.地球物理学报,45(2):210~217.
    李延兴,胡新康,帅平,张中伏,黄诚,朱文耀,胡小工.2001.中国大陆地壳水平运动统一速度场的建立与分析.地震学报,23(5):253~459
    李延兴,黄诚,胡新康,帅平,胡小工,张中伏.2001.板内块体的刚性弹塑性运动模型与中国大陆主要块体的应变状态.地震学报,23(6):565~572.
    李扬鉴,张星亮,陈延成.1996.大陆层控构造导论.北京:地质出版社.
    李祖宁,傅容珊,郑勇,董树谦.2002.多种驱动力作用下东亚大陆形变及应力场演化.地震学报,24卷(1):17~26.
    林传勇,史兰斌,陈孝德,张友南.1999.深浅部地球物理资料的地质解释、地壳物质组成和岩石力学参数的综合研究.
    林中洋,蔡文伯,陈学波,王椿镛(主编).国家地震局地学断面编委会.1992.青海门源至福建宁德地学断面.北京:地震出版社.
    刘建华,刘福田,吴华,李强,胡戈.1989.中国南北带地壳和上地幔的三维速度图像.地球物理学报,32(2):143~151.
    卢造勋,夏怀宽(主编).国家地震局地学断面编委会.1992.内蒙古东乌珠穆沁旗至辽宁东沟地学断面.北京:地震出版社.
    罗焕炎,1979.从大陆地壳动力学观点度论我国地震的成因和机制,地震地质,1(1)
    马瑾,构造物理学概论,地震出版社,1986
    马瑤.1996.岩石变形与地震发生过程.国际地震动态,(1):8~13.
    马杏垣,刘昌铨,刘国栋(主编).国家地震局地学断面编委会.1991.江苏响水至内蒙古满都拉地学断面.北京:地质出版社.
    马杏垣,1991.中国岩石圈动力学概论《中国岩石圈动力学地图集》编委会.
    马杏垣主编.1989.中国岩石圈动力学图集.北京:地图出版社,68.
    
    
    马宗晋,张德成.1986.板块构造与地震.李春昱,郭令智,朱夏主编.板块构造基本问题.北京:地震出版社.
    马宗晋,杜品仁.1995.现今地壳运动问题.北京:地质出版社.
    马宗晋,傅征祥,张郢珍,汪成民,张国民,刘德福.1982.1966~1976年中国九大地震.北京:地震出版社.
    马宗晋,黄德瑜,1991.中国地震活动图像构造解释图,中国地图出版社.
    马宗晋,李献智,1994.全球M_s≥7(3/4)级地震的定向迁移,地震地质,16(2).
    马宗晋,张德成.1986.板块构造与地震.见:李春昱等著.板块构造基本问题.北京:地震出版社.
    梅世蓉,1995.地震前兆物理模式与前兆时空分布机制研究(一)——坚固体孕震模式的由来与证据,地震学报,17(3)
    娜尔贡卡娅等,1991.缺陷扩展的层次模型和地震活动性.见:中期地震预报(凯里斯鲍罗克主编,陈颙等译),北京:地震出版社.
    任纪舜,江春发,张正坤,秦德余执笔,黄汲青指导.1986.中国大地构造及其演化.北京:科学出版社.
    邵学钟,张家茹,范会吉,郑剑东,胥颐.1996.天山造山带地壳结构与构造.地球物理学报,39(3):336~346.
    孙武城,马宝林,宋松岩,胡鸿翔(主编).国家地震局地学断面编委会.1992.湖北随州至内蒙古喀喇沁旗地学断面.北京:地震出版社.
    孙武城,徐杰,杨主恩,张先康(主编).国家地震局地学断面编委会.1992.上海奉贤至内蒙古阿拉山左旗地学断面.北京:地震出版社.
    陶玮,1999,板块边界动态组合条件下韧性层变形以及强震活动主体地区形成的有限元模拟,中国地震局地质研究所,硕士论文
    陶玮,洪汉净,刘培洵.2000.中国大陆及邻区强震活动主体地区形成的数值模拟.地震学报,22(3):271~277
    陶玮,洪汉净,刘培洵,于泳,郑秀珍.2002.中国大陆与邻区强震分区活动性及其随时间演化,地震,12月待刊
    陶玮,洪汉净,刘培洵,于泳,郑秀珍,2003.中国大陆与邻区强震分区活动性及其随时间演化.地震,23(2),48~57
    陶玮,洪汉净,刘培洵.1998.我国及其邻区强震孕育主体地区的变迁及近期强震危险性预测.见:中国地震局地质研究所.地震危险性预测研究(1999年度).北京:地震出版社:44~54.
    腾春凯,白武明,王新华.1991.流变介质中亚临界扩展前地震孕育过程的能量积累,地球物理学报,34(1):
    滕吉文,熊绍柏,尹周勋,徐忠信,王香泾,卢德源等,Georges Jobert,Alfred Hirn.1983.喜
    
    马拉雅山北部地区的地壳结构模型和速度分布特征.地球物理学报,26(6):525~540.
    汪集旸,黄少鹏.1988.中国大陆地区热流数据汇编.地质科学,(2):196~204.
    汪集旸,黄少鹏.1990.中国大陆地区热流数据汇编(第二版).地震地质,12(4):351~366.
    汪素云,陈培善,中国及邻区现代构造应力场的数值模拟,地球物理学报,第23卷,第1期,1980王嘉荫,1963.中国地质史料,科学出版社.
    王鸿桢,1997.地球节律与大陆动力学的思考,地学前沿,4(3).
    王鸿桢,杨森楠,刘本培,1990.中国及南亚构造古地理和生物古地理,中国地质大学出版社.
    王嘉荫,中国地质史料,科学出版社,1963
    王琪,张培震,牛之俊,Freymueller J T,赖锡安,李延兴,朱文耀,刘经南,Bilham R,Larson K M.2001.中国大陆现今地壳运动和构造变形.中国科学,31(7):529~536
    王仁等,1982.华北地区近700年地震序列的数学模拟,中国科学,B辑,第8期
    王仁,丁中一.1979.轴对称情况下地球自转速率变化及引潮力引起的全球应力场.天文地球动力学论文集.上海:上海天文台出版.8~21
    王绳祖.1996.地壳、上地幔变形属性的判别.地震地质,18(3):215~224.
    王小亚,朱文要,符养,游新兆,王琪,程宗颐,任金卫.2002.GPS监测的中国及其周边现时地壳形变.地球物理学报,45(2):198~209.
    徐杰、牛娈芳、王春华、韩竹君、廖素琼,1997.新生地震构造带的初步研究——以我国华北和西南地区两条新生地震构造带为例,中国大陆2005年前强震危险性预测研究.
    许忠淮,汪素云,高阿甲.2000.地震活动反映的青藏高原东北地区现代构造运动特征.地震学报,22(5):472~481.
    许忠淮,汪素云 俞言祥.1992根据观测的应力方向利用有限单元方法反演板块边界作用力,地震学报,14(4)
    许忠淮.2001.东亚地区现今构造应力图的编制.地震学报,23(5):492~501.
    杨国华,韩月萍,张凤兰.2001.使用GPS复测资料确定华北地区不同活动性质单元及活动方式.地震学报,23(1):1~10.
    杨国华,谢觉民,韩月萍.2001.华北主要构造单元及边界带现金水平形变与运动机制.地球物理学报,44(5):645~653
    臧绍先,李昶,岩石圈流变学机制的转换及华北岩石圈的流变强度.地球物理学报,待发表
    臧绍先,吴忠良,宁杰远,郑斯华,中国周边板块的相互作用就其对中国应力场的影响——(Ⅱ),印度板块的影响,地球物理学报,第35卷,第4期,1992
    张德成,蒋铭,1992.地震线,见:中国岩石圈动力学概论(《中国岩石圈动力学地图集》编委会).
    张东宁,青藏高原现代构造应力状态及构造运动的三维弹粘性数值模拟,博士论文,1993
    张国民,姜秀娥,陈修启,夏岐珍.1990.本世纪90年代我国大陆强震活动趋势研究,见:中
    
    国地震大形势预测研究(国家地震局分析预报中心编),北京:地震出版社,25~33
    张国民.1987.我国大陆强震活动的韵律特征.地震地质,Vol9(2)
    张健,汪集畅.2000.南海北部陆缘带构造扩张的深部地球动力学特征.中国科学,30(6):561~567
    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪.2002,中国大陆的强震活动与活动地块,中国科学(D辑)(待发表)
    张培震,邓起东,杨小平,等.1996.的晚新生代构造变形及其地球动力学问题,中国地震,,12(2):127—140.
    张培震.1999.中国大陆岩石圈最新构造变动与地震灾害.第四纪研究,(5):404~413.
    张文佑等.1978.断块与板块.中国科学,(2):195~211
    张肇诚,郑大林,汪贵宣,贾青,秦新喜.1994.我国大陆孕震环境的不均匀性与地震前兆的复杂性.地震,增刊:1~10.
    张肇诚,郑大林等,中国大陆与周边地区地震活动动态的关系及地震趋势的分析,中国地震趋势预测研究(1990年度),地震出版社,1989
    中国科学院地球物理研究所.1981.西藏高原当雄—亚东地带地壳与上地幔结构和速度分布的爆炸地震研究.地球物理学报,24(2):155~170.
    周玖,黄修武.1980.在重力作用下的我国西南地区地壳物质流.地震地质,2(4):1~10.
    周玖,黄修武.1985.华北地壳物质重力水平扩展运动的基本特征.地震地质,7(2):13~18.
    周民都,吕太乙,张元生,阮爱国.2000.青藏高原东北缘地质构造背景及地壳结构研究.地震学报,22(6):645~653.
    周永胜,何昌荣.2002.华北地区壳内地速层与地壳流变的关系及其对强震孕育的影响.地震地质,24(1):124~132.
    周永胜,何昌荣.2003.地壳主要岩石流变参数及华北地壳流变性质研究.地震地质,24(1):
    Abdrakhmatov, K. Y., et atl., 1996, Relative recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates, Nature, 384, 450~453.
    Allis, R. G., 1979. A heat production model for stable continental crust. Tectonophysics, 57: 151~165.
    Artemieva, Irina M., and Mooney, Walter D. 2001. Thermal thickness and evolution of Precambrian lithosphere: A global study. Geophys. J. R. Vol(106): 16387~16414
    Avouac, J-P., Tapponnier, P., Bai, M., You, H. & Wang, G., 1993. Active thrusting and folding along the northern Tien Shen and late Cenozoic rotation of the Tarim relative to Dzungaria and Khazakhstan. J. Geophys. Res., 98, 6755-6804.
    Balling, N., 1995. Heat flow and thermal structure of the lithosphere across the Baltic Shield and
    
    northern Tornquist Zone, Tectonophysics, 244,13~50.
    Bally A W, Bedbder P L, McGetchin T R and Walcitt R I (eds.). 1980. Dynamics of Plate Interiors. Geodynamics Series Volumel, Am. Geophys. Union, Washington D C and Geol Soc Am, Boulder, Colorado. (1.1)
    Bartlett K. 2001. After the quake, Into the mantle. Geotimes. 2001-11-13. http://www.geotimes.org/jan01/geophenomena.html.
    Benes V., Davy P., Modes of Continental Lithospheric Extension: Experimental, verification of Strain Localization Processes., Tectonophysics, 254, 69-87, 1996.
    Bevis, Michael, and Stephen J. Martel. Oblique plate convergence and interseismic strain accumulation, GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, VOL. 2, 2001
    Bird E 1991. Lateral extrusion of lower crust from under high topography, in the isostatic limit. J Geophys Res, 96:10275~10286.
    Bodri B. Iizuka S. Hayakawa M. 1991. Geothermal and theological implications of intracontinental earthquakes beneath the Kanto-Tokai region, Central Japan. Tectonophysics, 194: 337~347.
    Bott M H P and Kusznir N J. 1979. Stress distribution associated with compensated p;ateau uplift structures with application to the continental splitting mechanism. Geopys J R Astr Soc, 56(6): 451~459.
    Bourne, S J, P C Englan, and B Parsons. 1997. The motion of crustal blocks driven by flow of the lower lithosphere: implications for slip rates of faults in the South Island of New Zealand and southern California, Nature, 391,655-659.
    Bourne, S J, T Arnadóttir, J Beavan, D J Darby, P C Englan, B Parsons, R I Walcott, and P R Wood. 1998. Crustal deformation of the Marlborough fault zone in the South Island of New Zealand: Geodetic constraints over the interval 1982-1994. J. Geophys. Res., 102:30,147-30,165.
    Brace W F, Kohlstedt D. 1980. Limits on tothospheric stress imposed by laboratory experiments. J Geophys Res, 85:6248~52.
    Carter, N. L., Kirby, S.H., Transient creep and semibrittle behavior of crystalline rocks, Pure & Applied Geoph., 116, 807-839, 1978
    ermák, V., 1989. Crustal heat production and mantle heat flow in Central and Eastern Europe, Tectonophysics, 159:195~215.
    ermák, V., and L. Bodri, 1995, Three-dimensional deep temperature modeling along the European geotraverse, Tectonophysics, 244:1~11
    ermák, V., and L. Rybaeh, 1982., Thermal conductivity and specific heat of minerals and rocks, in Landolt-Bornstein Numerical Data and Functional Relationships in Science and
    
    Technology, edited by G. Angenheister, pp. 213~256, Springer-Verlag, New York.
    Curtis, A., B. Dost, J. Trampert & R. Snieder. 1998. Eurasian fundamental mode surface wave phase velocities and their relationship with tectonic structures. JGR, 102 26919~26947.
    Dambara, T. 1966. Vertical movements of the Earth's crust in relation to the Matsushiro earthquake, J. Geod. Soc. Japan, 12, 18~45 (in Japanese with English abstract)
    Das S, Scholz C H. 1981. Off-fault aftershock clusters caused by shear stress increase?. Bull. Seismol. Soc. Am., 71:1669~1675.
    Das S, Scholz C H. 1983. Why large earthquake do not nucleate at shallow depth. Nature, 305:621~623.
    Delouis B, Philip H, Dorbath L, and Cistemas A. 1998. Recent crustal deformation in the Antofagasta region(northern Chile) and the subduction process, Geophys J Int, 132:302~338.
    DeMets C, Gordon R G, Argus D F, Stein S. Current plate motions, Geophys J Int, 1990, 101:425~478.
    DeMets C, Gordon R G, Argus D F, Stein S. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys Res Lett, 1994, 21:2191~2194.
    DeMets, C., Gordon, R.G., Argus, D.F. and Stein, S., 1990. Current plate motions, Geophys. J. Int., 89, 271~280.
    Dittmar, U., Meyer, W., Oncken, O., Schievenbusch, T., Walter, R. & Winterfeld, C.v. 1994. Strain partitioning across a foreland fold and thrust belt-the western Rhenish Massif (Germany). -J. Struct. Geol., 16: 1335-1352.
    Engebretson, D. C., 1982, Relative plate motions between oceanic and continental plates in the Pacific region, Ph.D. Thesis, Stanford University
    England P C, Mckenzie D. P. 1982, A thin viscous sheet model for continental deformation. Geophys J R astro Soc, 70:295~321.
    England P C, Mckenzie D. P. 1983, Correction to: a thin viscous sheet model for continental deformation. Geophys J R astro Soc, 73: 523~532.
    Flesh Lucy M, Haines A John, Holt William E. 2001. Dynamics of the India-Eurasia collision Zone. J Geophys Res, 106(B8): 16435~16460.
    Fountain, D.M., 1986. Is there a relationship between seismic velocity and heat production for crustal rocks? Earth Planet. Sce. Lett., 79:145~150
    Garofalo, F. 1965. Fundamentals of creep and creep-rupture in metals, The MacMillan Company, New-York ["Déformation et rupture par fluage", Dunod, Paris (1970)]
    Glaznev, V.N., Skopenko, G.B. and Podgornikh. L.V., 1985. Temperatura zemnoy kori perekhoda ot Baltiyskogo shchitak Barentcovomorskoy plite. Geofiz. Zh., 7:58~64, (in Russian).
    Gordienko, V.V., 1980. Radiogennaya teplogeneratciya v zemnoy kore i teplovoy potok iz mantiyi
    
    drevnikh platform. Geofiz. Zh., 2:35~42, (in Russian).
    Gutenberg, B. and C. E Richter, Earthquake magnitude, intensity, energy and acceleration (second paper), Bull, Seismol. Soc Am, 1956, 46:105-145.
    Haack, U., Radioactive isotopes in rocks, In: G. Angenheister (Editor), Physical Properties of Rocks. (Landolt-Brnstein New Series, Vol. Ⅴ1b.) Springer, Berlin, pp. 433-560
    Haines, A.J., and W.E.Holt, 1993. A procedure for obtaining the complete horizontal motions within zones of distributed deformation from the inversion of strain rate data, J.Geophys.Res 98,12,057-12,082.
    Hilde, T. W. C., Uyeda, S. and Kroenke, L., 1977, Evolution of the Western Pacific and its margin, Tectonophysics, Vol.38,145~165.
    Hodgkinson K M, Stein, R S and King G C P. 1996. The 1954 Rainbow Mountain-Fairview Peak-Dixie Valley earthquakes: A triggered normal faulting sequence. J Geophys Res, 101:25459~25471.
    Holt, W.E., M.Li and A.J.Hains, 1995. Earthquake strain rates and instantaneous relative motions within central and east Asia, Geophys.J.Int. 122,569-593.
    Hudnut K W, Seeber L, and Pacheco J. 1989. Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, southern California, Geophys Res Lett, 16:199~202.
    Jaoul O, Tullis J A, Kronenberg A K. 1984. The effect of varying water content on the creep behavior of Heavitree quartzite. J Geophys Res, 89:4289~312.
    kanamori H & Anderson, D. L. 1975. Theoretical basis of some empirical relations in seismology. Bull Seismol. Soc. Am, 65. 1973.95.
    Kanamori H. 1971. Faulting of the great Kanto earthquake of 1923 as revealed by seismological data, Bull. Earthquake Res. Inst. Tokyo Univ., 49, 13-18,
    Kasahara K. 1981. Earthquake Mechanics. Cambridge University Press.
    Kasahara Keichi, 1979. Migration of crustal deformation, Tectonophysics, 52:329~341.
    Kawasaki, I., Y. Asai, Y. Tamura, 2001. Space-time distribution of interplate moment release including slow earthquakes and the seismo-geodetic coupling in the Sanriku-oki region along the Japan trench.. Tectonophysics, 330:267~283.
    Kern, H. and Siegesmund, S., A test of the relation ship between seismic velocity and heat production for crustal rocks, Earth and Planetary Science Letters, 1989, 92:89~94
    Khain V Ye. 1992; The role of rifling in the evolution of the Earth's crust. Khain, 215: 1~7. (1.1)
    Kirby S, Kronenberg A K. 1987. Rheology of the lithosphere: selected topics. Rev. Geophys, Space Phys, 25:1219~1244.
    Kirby S. 1980. Tectoniesssstress in the lithosphere:Constrains provided by the experimental deformation of rock. J Geophys Res, 85:6353~63.
    
    
    Kirby, S. 1983. Rheology of the lithospher. Rev. Geophys. 21: 1456-87,
    Kruse S, McNutt M, Phipps-Morgan J, Royden L and Wernicke B. 1991. Lithospheric extension near Lake Mead, Nevada: A model for ductile flow in the lower crust. J Geophys Res, 96(3): 4435~4456.
    Kusznir N J and Ziegler P A. 1992. The mechanics of continental extension and sedimentary basin for mation: A simple-shear/ pure-shear flextural cantilever model. Tectonophysics, 215: 117~131.(1.1)
    Kusznir N J Bott, M H P. 1977. Stress concentration in the upper lithodphere caused by under lying visco-elastic oreep. Tectonophysics: 43,247~256
    Kusznir, N.J. and Park, P.G., 1987. The extensional strength of the continental lithosphere: its dependence on geothermal gradient, crustal xomposition and thickness. In: Continental Extensional Tectonics, eds. Coward, M.P., Dewweey, J.F. and Hancock, P.L., Spec. Publ., Geo. Soc. Lond., 28, 35-52.
    Lachenbruch, A.H., 1968. Preliminary geothermal model of the Sierra Nevada. J. Geophys. Res., 73:6977-6989
    Lallemand S, C-S Liu, J Angelier, Y-B Tsai. 2001. Active subduction and collision in Southeast Asia. Tectonophysics, 333:1~7.
    Lallemand, S., Yvonne Font, Harmen Bijwaard, Honn Kao. 2001, New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications, Tectonophysics, 335(2001):229~253.
    Ma Xingyuan et al., 1982. Cenozoic graben system in North China. Z Geomorph N F Suppl Bd, 42:99~116.
    Malaimanis Campbell, Barbara Grres, Holger Kotthoff, and Stefan Smaritschnik. 2000. Indian plate kinematic studies by GPS-geodesy. Earth Planets Space, Vol. 52 (No. 10): 741-745
    McKenzie D P. 1972. Active tectonics of the Mediterranean region. Geophys J P astr Soc, 30: 109~185. (1.1)
    Meissmer R, Mooney W. 1998. Weakness of the lower continental crust: a condition for delamination, uplift and escape. Tectonophys, 296:47~60.
    Meissmer R, Wever T, Sadowiak P. 1991. Continental collision and seismic signature. Geophys J Int, 105:15~23.
    Melosh, H.J. 1976, Nonlinear stress propagation in the earth's upper mantle.J.G.R.,81,5621-5632
    Meyer K, Olsson R and Scherman S. 1988. Stress migration in the North Atlantic and intraplate seismicity in Scandinavia: A proposal. Tectonophysics, 156: 175~178.
    Milsom John, Valentina Rocchi, The Long Wavelength Gravity Field in SE Asia, Journal of the
    
    Geological Society of China, Vol.41,E489~495, 4 Figs., Nov., 1998
    Minster J B and Jordan T H. 1978. Present-day plate motion. J Geophys Res, 83:5331~5345.
    Molnar P. 1988. Continental tectonics in the aftermath of plate tectonics. Nature, 335:131~137.
    Molnar, E, Tapponnier, E, 1978. Active tectonics of Tibet. J. Geophys. Res. 83, 5361-5375
    Peltzer, G. & Tapponnier, P., 1988. Formation and evolution of strike-slip faults, rifts and basins during the India-Asia collision: an experimental approach. J. Geophys. Res., 93, 15085-15177
    Pollack, H.N. and Chapman, D.S., 1977. On the regional variation of heat flow, geotherms and lithosphere thickness. Tectonophysics, 38:279~396
    Pollitz F F, Sacks I S. 1995. Consequences of stress changes following the 1891 Nobe earthquake, Japan. Bull Seismol Soc Am, 85:796~807.
    Pollitz F F, Sacks I S. 1997. The 1995 Kobe, Japan, earthquake: A long-delayed after shock of the offshore 1994 Tonankai and 1946 Nankaido earthquakes. Bull Seismol Soc Am, 87:1~10.
    Pollitz Fred E, Roland Brgmann, Barbara Romanowicz. 1998. Viscosity of Oceanic Asthenosphere Inferred from Remote Triggering of Earthquakes. Science. 280:1245~1249.
    Ranalli, G. and D. Murphy (1987). Rheologic stratification of the lithosphere. Tectonophysics 132: 281-295.
    Reid, H. F.. 1906. The mechanics of earthquake, earthquake Inv. Comm. TheCalifornia earthquake of April 18, Washing ton,C.C. Carnegie Inst.
    Rice J R. ,1993. Spatio-temporal complexity of slip on a fault. J Geophys Res, 98(B6): 9885~9907.
    Richard A. Kerr. 1998. Can Great Quakes Extend Their Reach? Science, 280:1194~1195.
    Roy, R.E, Blackwell, D.D. and Birch, E, 1969, Heatgeneration of plutonic rocks and continental heat flow provinces, Earth Planet. Sci. Lett., 5:1~12
    Royden L H, Burchfiel B C, King R W et al. 1997. Surface deformation and lower crustal folw in eastern Tibet. Science, 276: 788~790.
    Ruff L and Kanamori H.1980. Seismicity and the subduction process, Physics of the Earth and Planetary Interiors, 23: 240~252,
    Rybach, L., 1973, Wrmeproduktionsbestimmungen an Gesteine der Schweizer Aplen. Beitr. Geol. Schweiz. Geotech. Ser., 51 : 43pp
    Rybach, L., and Buntebarth, G., 1984, The variation of heat generation, density and seismic velocity with rock type in the continental Iothosphere. in: V. ermák, L. Rybach and D.S. Chapman (Editors), Terrestrial Heat Flow Studies and the Structure of the Lithosphere. Tectonophysics, 103: 335-334.
    Sagiya, T. 1999. Interplate coupling in the Tokai District, Central Japan, deduced from continuous
    
    GPS data, Geophys. Res. Lett., 26, 2315-2318,
    Sagiya, T., Tada, T., 1998. Crustal movements and seismotectonics in the eastern margin of the Sea of Japan. Gekkan-Chikyu 20, 515~521, in Japanese.
    Sato K. 1989. Numerical experiments on strain migration. J Geod Soc Japan, 35(1): 27~36.
    Scholz C H. 1990. The mechanics of earthquakes and faulting. Cambridge University Press
    Scholz C H..地震与断层力学.见:马胜利,曾正文,刘力强,张崇山,陈开平,马瑾译.1996.北京:地震出版社,140
    Shen Z K, Zhao C K, Yin A, Li Y, Jackson D, Fang P and Dong D, 2000, Contemporary crustal deformation in eastern Asia constrained by Global Positioning System measurements, J Geophys Res, 105:5721~5734.
    Sibson R H. Frictional constraints on thrust, wrench and normanl faults. Nature, 49:542~544,1974
    Stegena, L. and Meissner, R., 1985. Velocity structure and geothermics of the earth's crust along the European geotraverse. Tectonophysics, 211:87~96.
    Stein R S, Barka A A, and Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophys J lnt, 128:594~604.
    Stein R S, King G C P, and Lin J. 1994. Stress triggering of the 1994 M=6.7 Northridge, California, earthquake by its predecessors. Science, 265:1432~1435.
    Tada, T., Sagiya, T., Ozawa, S., Miyazaki, S., Yarai, H., 1997
    Tapponnier, P. and P. Molnar, 1976. Slip-line field theory and large-scale contimental tectonics. Nature, vol. 264, 319-324
    Tapponnier, P. and P. Molnar, 1977. Active faulting and cenozoic tectonics in China. J. Geophys. Res., vol.82, No.20.
    Tapponnier, P. et al., 1990. Active thrusting and folding in the Qilian Shan and decoupling between upper crust and mantle in northeastern Tibet. Earth Planet. Sci. Lett., 97, 382-403.
    Tapponnier, P., Peltzer, G. & Armijo, R., 1986. On the mechanics of the collision between India and Asia. In: Coward, M.C. & Ries, A.C. (eds.), 1986. Collision Tectonics. Geol. Soc. Spec. Pub. Lon., 19, 115-157.
    Townsend, David A., and Leslie J. Sonder, Rheologic control of buoyancy-driven extension of the Rio Grande rift, J.G.R., Vol. 106, No. B8, P.16,515~16,523 Aug. 10, 2001
    Tse,S.T. & Rice, J.R.. 1986. Crustal earthquake instability in relation to the depth variation of frictional slip properties, J.G.R., 91,B9, 9452-9472.
    Tsuboi C. 1956. Earthquake energy, earthquake volume, after shock area, and strength of the earth's crust. J. Phys. Earthq., 4:63~67
    Turcotte & Schubert, Geodynamics, 1982
    
    
    Vitoreilo, I. and Pollack, H.N., 1980. On the variation of continental hat folw with age and the thermal evolution of the continents. J. Geophys. Res., 85:983-995
    Wdowinski S. 1998. A new class of transform plate boundary. Phys Chem Earth, 23: 775-783.
    We ertman, J.R.. 1975. High temperature creep of rock and mantle viscosity, Ann. Rev. Earth Plan. Sci., 3,293-315,
    Yin, A., Nie, S., Craig, P., et al. 1998. e Cenozoic tectonic evolution of the southern Chinese Tianshan, Tectonics, 17: 1-27.
    Yu, S.-B., H.-Y. Chen, and I.-C. Kuo, Velocity field of GPS stations in the Taiwan area, Tectonophysics, 174, 41~59, 1997.
    Ziegler P A. 1992. Geodynamics of rifting and implications for hydrocarbon. Tectonophysics, 215: 221~253. (1.1)
    Ziegler P A. 1992. Preface (for special issue "Geodynamics of Rifling"' Vol. 1). Tectonophysics, 208(1~3):ⅶ~ⅷ. (1.1)
    Zoback, M. L., 1992. First- and second -order patterns of stress in the lithosphere: The World Stress Map project, J. Geophys Res., 97(B8), 11703~11728.
    Zoback, ML and MD Zoback, 1989. Tectonic stress field of the continental United States, in: LC Pakiser and WD Mooney (Ed.), GeoPhysical Framework of the Continental United States, Geol. Soc. Am. Mem., 172, 523-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700