用户名: 密码: 验证码:
利用空间对地观测技术研究全球构造特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间对地观测技术实现了高覆盖率、高精度、高时空分辨率测定地球岩石圈的运动,空间大地测量技术的出现为地球科学的发展提供了非常有力的方法和手段,也为定量研究现今岩石圈的运动提供了可能。本文主要研究空间对地观测资料在全球构造特征研究中的应用。重点研究利用空间大地测量技术研究全球和区域的构造特征,具体包括:空间大地测量技术的发展与现状、全球板块运动研究的发展与现状、板块构造学说的不确定性、岩石圈整体无旋转条件的实现、速度场的数据预处理方法、板块运动模型的建立与应用、现今全球板块运动模型的实现与检验、中国大陆及其周边地区的运动模型和构造特征。
     1 全球板块运动研究的发展与现状
     概要介绍了板块学说的基本原理。阐述了地质与传统地球物理学方法研究全球板块运动的观测量、测量方法和建模方法,总结了地质与传统地球物理方法在全球板块运动研究的发展与结论。介绍了空间大地测量在全球板块运动研究中的应用,国际地球参考框架序列的演变、刚性模型的研究方法和结论、进行了不同模型的比较,并分析了刚性模型的不足。
     传统的地质与地球物理学方法的结果与空间大地测量的结果相当,其精度是可信的,模型也是可靠的。两者可互为外部检核,同时也是研究板块运动可靠性和稳定性的重要依据。通过空间大地测量得到的现今板块运动模型,能较好地解释和预测当前板块构造活动,是现今板块构造运动分析和研究的基础。板块的划分、观测资料的数量、质量与分布、数据预处理方案的不同,将导致板块运动模型明显的差异,甚至系统性差异。
     2 板块构造学说的不确定性
     从板块构造学说中板块的定义出发,论述了板块构造的不确定性。针对不同的板块边界类型,定性分析了板块边界具有弥散性。根据全球板块的应变研究结果,论述了在全球尺度上板块的运动主体虽呈刚性特征,但板块内部的应变普遍存在,板块不是严格刚性的。通过假设检验证明了板块并不是理想的刚性体,板
    
    块具有非刚性特征。
    3岩石圈无整体旋转条件的实现
     从国际地球自转服务组织对协议地球参考框架的定义着手,基于简化的岩石
    圈无整体旋转条件,在球面坐标系下建立了严格的岩石圈无整体旋转条件,给出
    了各板块的张量矩阵,并对目前主要的无整体旋转的板块运动模型进行了验证和
    分析。通过分析指出:由于目前的空间对地观测资料在数量、质量、分布合理性
    等方面不能完全满足研究的要求,地球参考框架rr孙仍存在整体旋转,并没有
    完全独立于地质模型假设,已发表的岩石圈整体无旋转的全球板块运动模型,并
    不严格满足整体无旋转条件,只是近似整体无旋转约束解。
    4速度场数据预处理方法研究
     空间大地测量的手段较多,但原始观测数据存在参考框架选取不同、精度差
    别、分布不均匀和多站并置等现象,必须经过预处理才能使用。针对目前板块运
    动建模中速度场数据预处理的随意性较大,造成结果多样化甚至不合理的现状,
    同时板块或块体边界、地震活动性、速度场的精度等多种影响因素又具有不确定
    性,经典数学难以描述等问题,引入模糊数学和模式识别有关理论,提出了板块
    运动建模的数据预处理规范。
     在数据选择方面,全面考虑板块或块体边界、地震活动带和速度场精度等多
    种因素的影响,将多种因素的影响程度用隶属度的形式进行量化,采用模糊模式
    识别中的择近原则识别方法,判断测站的特征和取舍;给出了存在多种观测手段
    或多期数据情况下,进行并置计算的方法;根据板块上测站符合统一运动规律的
    特性,提出有监督聚类方法,有效剔除了因局部形变造成的速率大小或方向发生
    畸变的异常点;提出了分级栅格化的空间分布均匀化方法,确保了测站的分布合
    理和结果的可靠性。并应用本文建立的数据预处理规范,对国际GPS服务组织
    提供的ITRFZO00速度场进行了处理,得到了可以进行全球板块运动建模的速度
    场。
    5全球板块运动模型的建立与实现
    
     全球板块构造运动和区域性地壳形变均在全球背景场下发生,全球板块运动
    模型不同,将得到不同的板块运动图像。如何建立一个合适的、高精度的现今板
    块运动模型,能较好的准确的解释和预测当前板块构造活动,是现今板块构造运
    动分析和研究的基础。
     空间大地测量得到的观测矢量是板块刚性旋转运动引起的水平运动、冰后回
    弹和局部地壳形变的综合,其中冰后回弹的影响相对较小,可以忽略;板块内部
    应变普遍存在,应变对的速度的影响不容忽视。根据对速度矢量组成的分析,本
    文建立了广义板块或块体运动模型(Generalized Plate Motion Model,GPMM),
    该模型全面考虑了板块刚性旋转运动、板块应变对观测值的贡献。给出了广义板
    块运动模型的三种简化形式:无应变的刚性旋转模型、刚性旋转与均匀应变模型
    以及刚性旋转与线性应变模型。证明了一般意义上的刚体运动模型只是广义板块
    运动模型中板块应变为0时的特例。基于国际地球自转服务组织提供的IT灯2000
    速度场,建立了现今全球板块运动模型RGPMM2000(Recent Global Plate Motion
    Model inferred fromIT孙2000),得到了全球板块的运动与应变状态参数。?
The techniques of Earth Observation System (EOS) provide powerful tools to measure the lithosphere of the earth with high coverage, high precision and high temporal and spatial resolution. Especially, the space geodesy promotes the development of the geo-science; it makes quantitative analysis of the recent lithosphere movements possible. The main purpose of this dissertation is to study the applications of EOS data in geo-science research, and the emphasis is put on the global and regional tectonics characteristics research using space geodesy. The contents are arranged as follows.
    1 The development and status of the research on the global plate motion
    The basic conceptions of plate tectonics are presented. The observations, methods and the modeling algorithms of the geology and traditional geophysics for global plate motion research are also recommended. The development and conclusion of it is summarized. The applications of space geodesy in global plate motion is introduced, the evolvement of the International Terrestrial Reference Frame (ITRF) series, the research methods, the results and the comparisons of the different models inferred from space geodesy are given. Furthermore, the shortage of rigid motion model is analyzed.
    The results obtained from the geology and traditional geophysics is corresponding with those of the space geodesy, so the precision of them is credible and the models are reliable too. They can verify each other, and they are also important basis for the study on the reliability and stability of plate movement. The difference of plate partition, the quantity of data, the quality of data, the distribution and the data preprocessing and so on will leads to obvious different plate motion models, even systematical difference.
    2 The uncertain approximation of the plate tectonics theory
    
    
    On the basis of the conception of plate, the uncertain approximation of plate tectonics is discussed. All types of diffuse plate boundaries are analyzed. According to the results obtained from the Global Strain Rate Map Project, the plate nonrigidity is studied. The plate is not rigid as the assumption, for deformation is occurred not only on the plate boundaries, but also in the interiors. The hypothesis test results show that the plates are not rigid and stable.
    3 The Realization of No-Net-Rotation condition
    According to the ITRF definition provided by the International Earth Rotation Service (IERS), the no-net-rotation (NNR) condition of crust is strictly established in the spherical coordinates, the tensor matrixes of main plates are deduced, and the tests on the global plate motion models are also carried out. The result shows that the number, quality, distribution of the data obtained from space geodesy is not enough to do the detailed research. The ITRF still exist some rotation as a whole, it is not independent from the geology model assumption. The plate motion models so far do not satisfy the no-net-rotation condition, they are only approximate NNR models.
    4 The research of criterion in data preprocessing
    There are many observe techniques in space geodesy, but some differences exist among them, such as reference frame, precision, distribution and so on, so the data obtained from space geodesy should be preprocessed before modeling. Aiming at resolving some problems in the data preprocessing before plate motion modeling, which leads to the various even unreasonable results, moreover, the effects of many factors such as the boundary of plates or blocks, seismic activity and the precision of velocity field and so on are not definite, the classical mathematics has no ability to describe them, so fuzzy sets and pattern recognition is adopt to establish the criterions and processes in the data preprocessing. It includes data selecting, mutual stations uniting, supervise clustering and spatial distribution equalizing.
    In the data selecting part, the effects of plates or blocks boundaries, the seismic activity, the velocity precision and so on are all take into accounted, it uses fuzzy
    
    degree to quan
引文
[1] Abdrakhmatov K. Y, et al., Relatively recent construction of the Tien Shan inferred from GPS measurements of present day crustal deformation rate, Nature, 384, 450-453, 1996
    [2] Angermann D., J. Klotz, and C. Reigber, Space-geodetic estimation of the Nazca-South America angular velocity, Earth Planet, Sci. Lett., 171,329-334, 1999
    [3] Argus D. F., and R. G. Gordon, Pacific-North American plate motion from very long baseline interferometry, compared with motion inferred from magnetic anomalies, transform faults and earthquake slip vectors, J. Geophys. Res., 95, 17,315-17,324, 1990
    [4] Argus D. F, and R. G. Gordon, No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett, 18, 2039-2042, 1991
    [5] Argus D. F., and M. Heflin, Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System, Geophys. Res. Lett., 22, 1973-1976, 1995
    [6] Argus, D. F., and R. G. Gordon, Tests of the rigid-plate hypothesis and bounds on intraplate deformation using geodetic data from very long baseline interferometry, J. Geophys. Res., 101, 13,555-13,572, 1996
    [7] Argus D. F., W. R. Peltier, and M. M. Watkins, Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy, J. Geophys. Res., 104, 29,077-29,093, 1999
    [8] Beavan J., et al., Crustal deformation during 1994-1998 due to oblique continental collision in the central southern Alps, New Zealand, and implications for seismic potential of the Alpine fault, J. Geophys. Res., 104, 25,233-25,255, 1999
    [9] Beavan J., J. Haines, Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand, Journal of Geophysics Research, 106, 741-770, 2001
    [10] Beavan J., P. Tregoning, M. Bevis, et al., Motion and rigidity of the Pacific plate and implications for plate boundary deformation, J Geophys. Res., 107, ETG 19: 1-15, 2002
    [11] Bendick R., Bilham R,, Freymueller J. T., et al., Geodetic evidence for a low slip rate in the Altyn Tagh fault system, Nature, 402: 69-72, 2000
    [12] Bird J. M., ed., Plate tectonics (revised ed.): Washington, D.C., American Geophysical Union, 986p., 1980
    [13] Bilham R., K. Larson, J. Freymueller, et al., GPS measurements of present-day convergence across the Nepal Himalaya, Nature, 336, 61-64, 1997
    [14] Blewitt G., M. B. Hefiin, F. H. Webb, et al., Global coordinates with centimeter accuracy in the International Terrestrial Reference Frame using GPS, Geophys. Res. Lett., 19, 853-856, 1992
    [15] Boucher C., Z. Altamimi, P. Sillard, The 1997 International Terrestrial Reference Frame (ITRF-97), IERS Tech. Note, 27, Obs. de Pads. Paris, 1999
    [16] Bouin M. N., and C. Vigny, New constraints on Antarctic plate motion and deformation from GPS data, J. Geophys. Res., 105, 28,279-28,293, 2000
    [17] Briole P., A. Rigo, H. Lyon-Caen, et al., Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995, Journal of the Geophysics Research, 105, 25,605-25,625, 2000
    [18] Calais E., and S. Amarjargal, New constraints on current deformation in Asia from continuous GPS
    
    measurements at Ulan Baatar, Mongolia, Geophysics Res. Lett., 27. 1527-1530, 2000
    [19] Cazenave A., J. J. Valette, and C. Boucher, Positioning results with DORIS on SPOT2 after first year of mission, J. Geophysics Res., 97, 7109-7119, 1992
    [20] Chapman M. E., and S. C. Solomon, North American-Eurasian plate boundary in northeast Asia, J. Geophysics Res., 81,921-930, 1976
    [21] Chapple W. M., Tullis T. E., Evaluation of the forces that drive the plates, J. Geophys. Res., 82, 1967-1984, 1977
    [22] Chase C. G., The N plate problem of plate tectonics, Geophys. J. R. Astron. Soc., 29, 117-122, 1972
    [23] Chase C. G., Plate kinematics: The Americas, East Africa, and the rest of the world, Earth Planet Sci. Lett., 37, 353-368, 1978
    [24] Chen Z., B. C. Burchfiel, Y. Liu, et al., Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation, J. Geophys. Res., 105, 16,215-16,227, 2000
    [25] Chu D., and R. G. Gordon, Current plate motions across the Red Sea, Geophysics J. Int., 135, 313-328: 1998
    [26] Chu D., and R. G. Gordon, Evidence for motion between Nubia and Somalia along the Southwest Indian Ridge, Nature, 398, 64-67, 1999
    [27] Coates R. J., H. Frey, and G. D. Mead, et al., Space age geodesy: The NASA crustal dynamics project, IEEE Trans. Geosci. Remote Sense, GE-23,360-368, 1985
    [28] Conder J. A., and D. W. Forsyth, Do the 1998 Antarctic plate earthquake and its aftershocks delineate a plate boundary, Geophys. Res. Lett., 27, 2309-2312, 2000
    [29] Conder J. A., and D. W. Forsyth, Seafloor spreading on the Southeast Indian Ridge over the last one million years: A test of the Capricorn plate hypothesis, Earth Planet. Sci. Lett., 188, 91-105,2001
    [30] Condie K. C., ed., Plate tectonics and crustal evoluation (3d ed. with corrections and additions): New York, Pergamon Press, 492 p., 1993
    [31] Cook D. B., K. Fujita, and C. A. McMullen, Present-day interactions in northeast Asia: North American, Eurasian, and Okhotsk plates, J. Geodyn., 6, 33-51, 1986
    [32] Cretaux J. F., L. Soudarin, A. Cazenave, et al., Present-day tectonic plate motions and crustal deformations from the DORIS space system, J. Geophys. Res., 103, 30,167-30,181, 1998
    [33] Degnan J., Satellite Laser Ranging: current status and future prospects, IEEE Transacntions on Geoscience and Remote Sensing, GE-23,398-413, 1985
    [34] DeMets C., R. G. Gordon, and D. F. Argus, Intraplate deformation and closure of the Australia-Antarctica-Africa plate circuit, J. Geophys. Res., 93, 11,877-11,897, 1988
    [35] DeMets C., K. G. Gordon, D. F. Argus, et al., Current plate motions, Geophys. J. Int., 101,425-478, 1990
    [36] DeMets C., R. G. Gordon, D. F. Argus, et al., Effect of recent revisions to the geomagnetic time scale on estimates of current plate motion, Geophys. Res. Lett., 21, 2191-2194, 1994
    [37] DeMets C., A reappraisal of seafloor spreading lineations in the Gulf of California: Implications for the transfer of Baja California to the Pacific plate and estimates of Pacific-North American motion, Geophys. Res. Lett., 22, 3545-3548, 1995
    [38] DeMets C., and T. H. Dixon, New kinematic models for Pacific-North America motion from 3 Ma to present, Evidence for steady motion and biases in the NUVEL-IA model, Geophys. Res. Lett., 26, 1921-1924, 1999
    [39] DeMets C., P. Jansma, G. Mattioli, et al., GPS geodetic constraints on Caribbean-North America plate
    
    motion, Geophysics Res. Lett., 27, 437 440, 2000
    [40] Deng J., and L. R. Sykes, Determination of Euler pole for contemporary relative motion of Caribbean and North American plates using slip vectors ofinterplate earthquakes, Tectonics, 14, 39-53, 1995
    [41] Dewey J. F., Plate Tectonics, Reviews of Geophysics and Space Physics, 13,326-332, 1975
    [42] Dietrich R., R. Dach, G Engelhardt, ITRF coordinates and plate velocities from repeated GPS campaigns in Antarctica - an analysis based on differential individual solutions, Journal of Geodesy, 74, 756-766, 2001
    [43] Dixon T., G. Blewitt, K. Larson, et al., GPS Measurements of Regional Deformation in Southern California, Some Constraints on Performance, EOS, 17(35): 1051-1058, 1990
    [44] Dixon T. H., An introduction to the Global Positioning System and some geological applications, Rev. Geophys., 29, 249-276, 1991a
    [45] Dixon T. H., G. Gonzalez, S. M. Lichten, et al., A preliminary determination of Pacific-North America relative motion in the southern Gulf of California using the Global Positioning System, Geophys. Res. Lett., 24, 861-864, 1991b
    [46] Dixon, T. H., G. Gonzalez, S. Lichten, et al., First epoch geodetic measurements with the Global Positioning System across the northern Caribbean plate boundary zone, J. Geophys. Res., 96, 2397-2415, 1991c
    [47] Dixon T. H., GPS measurement of strain accumulation across the middle America trench and relative motion of the Cocos and Caribbean plates, Geophys. Res. Lett., 20, 2167- 2179, 1993
    [48] Dixon, T. H., A. Mao, and S. Stein, How rigid is the stable interior of the North American plate, Geophys. Res. Lett., 23, 3035-3038, 1996
    [49] Dixon T. H., A. Mao, A GPS estimate of relative motion between North and South America, Geophysics Res. Lett., 24, 535-538, 1997a
    [50] Dixon, T. H., A. Mao, M. Bursik, et al., Continuous monitoring of surface determination at Long Valley Caldera with GPS, J. Geophys. Res., 102, 12,017-12,034, 1997b
    [51] Dixon, T H., F. Farina, C. DeMets, et al., Relative motion between the Caribbean and North American plates based on a decade of GPS observations, J. Geophys. Res., 103, 15,157-15,182, 1998
    [52] Drewes H., Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models, International association of geodesy symposia, 119, 1989
    [53] Drewes H., Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models, International association of geodesy symposia, 119, 2000
    [54] England, P., and P Molnar, The field of crustal velocity in Asia calculated from Quaternary rates of slip on faults, Geophys. J. Int., 130, 551-582, 1997
    [55] Feigl K., D. Agnew, Y. Bock, et al, Space geodetic measurement of crustal deformation in central and southern California, 1984- 1992, J. Geophys. Res., 98, 21,677-21,712, 1993
    [56] Freymueller J., R. Bilham, R. B?rgmann, et al., Global Positioning System measurements of Indian plate motion and convergence across the lesser Himalaya, Geophys. Res. Lett., 23, 3107-3110, 1996
    [57] Fu Y., W. Zhu, X. Wang, et al., Present-day crustal deformation in China relative to ITRF97 kinematic plate model, Journal of Geodesy, 76, 216-225, 2002
    [58] Gan W., J. L. Svarc, J. C. Savage, et al., Strain accumulation across the Eastern California Shear Zone at latitude 36°30'N, Journal of Geophysical Research, 105, 16,229-16,236, 2000
    [59] Gan W., Prescott W. H., Crustal deformation rates in central and eastern U. S. inferred from GPS, Journal of Geophysics Research, 28, 3733-3736, 2001
    [60] Gordon, R. G., The plate tectonic approximation: plate non-rigidity, diffuse plate boundaries, and
    
    global plate reconstructions, Annu. Rev. Earth Planet. Sci., 26, 615-642, 1998
    [61] Grenerczy G., A. Kenyeres, and I. Fejes, Present crustal movement and strain distribution in central Europe inferred from GPS measurements, J. Geophys. Res., 105, 21,835-21,846, 2000
    [62] Heflin M., et al., Global geodesy using GPS without fiducial sites, Geophys. Res. Lett., 19, 131-134, 1992
    [63] Heki K., S. Miyazaki, H. Takahashi, et al., The Amurian plate motion and current plate kinematics in eastern Asia, J. Geophys. Res., 104, 29,147-29,155, 1999
    [64] Herring T. A., Documentation for Global Kalman filter VLBI and GPS analysis Program: GLOBK, Version 4.0, MIT, Cambridge, 1995
    [65] Holt W. E., N. Chamot-Rooke, X. Le Pichon, et al., Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations, J. Geophys. Res., 105, 19,185-19,209, 2000
    [66] Hreinsdottir S., P. Einarsson, and F. Sigmundsson, Crustal deformation at the oblique spreading Reykjanes Peninsula, SW Iceland: GPS measurements from 1993 to 1998, J. Geophys. Res., 106, 13,803-13,816, 2001
    [67] Jonsson S., P. Einarsson, and F. Sigmundsson, Extension across a divergent plate boundary, the Eastern Volcanic Rift Zone, south Iceland, 1967-1994, observed with GPS and electronic distance measurements, J. Geophys. Res., 102, 11,913-11,929, 1997
    [68] Jordan, T. H., The present-day motions of the Caribbean plate, J. Geophys. Res., 80, 4433-4439, 1975
    [69] Kahle H. G., M. Cocard, Y. Peter, et al., GPS-derived strain rate field within the boundary zones of the Eurasian, African, and Arabian Plates, J. Geophys. Res., 105, 23,353-23,370, 2000
    [70] Kato T., et al., Initial results from WING, the continuous GPS network in the western Pacific area, Geophys. Res. Left., 25, 369-372, 1998
    [71] Kearey P., Vine F. J., Global Tectonics, Oxford: Blackwell Scientific Publications, 1-302, 1990
    [72] Kiefer, Irene, Global jigsaw puzzle-the story of continential drfit: New York, Atheneum, 88 p. , 1978
    [73] Kious W. J., Robert I. T., The dynamic earth: the story of plate tectonics, URL: http://pubs. usgs.gov/publications/text/dynamic.html, Dec., 2001
    [74] King R. W., Shen E, Burchfiel B. C., et al., Geodetic measurement of crustal motion in southwest China, Geology, 25: 574-577, 1997
    [75] King R. W. and Y. Book, Documentation for the MIT GPS analysis software: GAMIT, Version 9.3, MIT, Cambridge, 1995
    [76] Klepeis K. A., and L. A. Lawyer, Tectonics of the Antarctic-Scotia plate boundary near Elephant and Clarence Islands, West Antarctica, J. Geophys. Res., 101, 20,211-20,231, 1996
    [77] Kogan M. G., G. M. Steblov, R. W. King, et al., Geodetic constraints on the rigidity and relative motion of Eurasia and North America, Geophys. Res. Left., 27, 2041-2044, 2000
    [78] Kreemer C., W. E. Holt, Saskia G., et al., Active deformation in eastern Indonesia and Philippines from GPS and seismicity data, J. Geophys. Res., 105,663-680, 2000
    [79] Kurt L. F., Jerome G., Freysteinn S., Crustal deformation near Hengill volcano, Iceland, 1993-1998 Coupling between magmatic activity and faulting inferred from elastic modeling of satellite radar interferograms, Journal of Geophysics Research, 105, 25,655-25,670, 2000
    [80] Kyle A., D. J. Johnson, M. M. Miller, et al., GPS determination of current Pacific-North American plate motion, Geology, 27,299-302, 1999
    [81] Langbein, J., and H. Johnson, Correlated errors in geodetic time series: Implications for
    
    time-dependent deformation, J. Geophys. Res., 102, 591-603, 1997
    [82] Larson K. M., Evaluation of GPS Estimates of Relative Positions from Central California, 1986-1988, Geophys. Res. Lett., 17, 2344-2436, 1990
    [83] Larson K. M, and D.C. Agnew, Application of the Global Positioning System to Crustal Deformation Measurements: Part I, Precision and Accuracy, J. Geophys. Res., 96, 16,547-16,566, 1991
    [84] Larson K M., and F.H. Webb, Active Deformation in the Santa Barbara Channel Inferred from GPS Measurements, Geophys. Res. Lett., 19, 1491-1494, 1992
    [85] Larson K. M., Application of the Global Positioning System to Crustal Deformation Measurements: Part Ⅲ, Results from the Southern California Borderlands, J. Geophys. Res., 98, 21,713-21,726, 1993
    [86] Larson K. M., J. T. Freymueller, S. Philipsen, Global plate velocities from the Global Positioning System, J. Geophysics Res., 102, 9961-9981, 1997
    [87] Larson K. M., R. Burgrnann, R. Bilham, et al., Kinematics of the India-Eurasia collision zone from GPS measurements, J. Geophys. Res., 104, 1077-1094, 1999
    [88] Larson K. M., Kostoglodov V., Lowry A., et al., Crustal deformation measurements in Guerrero, Mexico, 2000
    [89] Lemoine E G, et al., The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP, 206861, 1998
    [90] Li Yanxing, Li zhi, Tectonic Activity and deformation in the Asia-Pacific area, 2002 International Symposium on GPS/GNSS, A9-3, 2002
    [91] Li Yanxing, Li Zhi, Ma Zongjin, et al., Tectonic Activity and Deformation in the Asia-Pacific Area, IUGG General Assembly in Sapporo, 2003
    [92] Ma Zongjin, Chert Xinlian, Ye Shuhua, et al., Contemporary crustal movement of continental China obtained by global positioning system (GPS) measurement, Chinese Science Bulletin, 46(18): 1552-1554, 2001
    [93] Ma, C., and J. W. Ryan, NASA Space Geodesy Program - GSFC DATA Analysis-1998, VLBI Geodetic Results 1979-1998, August, 1998
    [94] Macdonald, K. C., and T. L. Holcombe, Inversion of magnetic anomalies and sea-floor spreading in the Cayman Trough, Earth Planet. Sci. Lett., 40, 407-414, 1978.
    [95] Malaimani, E. C., J. Campbell, B. Gorres, et al., Indian plate kinematic studies by GPS-geodesy, Earth Planets Space, 52, 741-745, 2000
    [96] Martin Vermeer, Review of the GPS deformation monitoring studies, STUK-YTO-TR 186, 2002
    [97] McClusky S., et al., Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res., 105, 5695-5719, 2000
    [98] Minster J. B., T. H. Jordan, P. Molnar, et al., Numerical modeling of instantaneous plate tectonics, Geophysics J. R. Astron. Soc., 36, 541-576, 1974
    [99] Minster J. B., and T. H. Jordan, Present-day plate motions, J. Geophys. Res., 83, 5331-5354, 1978
    [100] Molnar P., and Tapponnier P., Cenozoic tectonics of Asia: effects of a continental collision, Science, 189, 419-426, 1975
    [101] Molnar P., Relation of the tectonics of eastern China to the India-Euraisa collision: application of slip-line field theory to large-scale continental tectonics, Geology, 4(5): 212-216, 1977
    [102] Molnar P., Structure and tectonics of the Himalaya: constraints and implications of geophysical data, Annual Review of earth Planetary Science, 12,489-12,518, 1984a
    [103] Molnar P., and Deng Q., Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia, Journal of Geophysical Research, 89, 6203-6227, 1984b
    
    
    [104] Molnar P., Burchfiel B. C., Liang K., et al., Geomorphic evidence for active faulting in the Altyn Tagh and qualitative estimates of its contribution to the convergence of India and Eurasia, Geology, 15,249-253, 1987
    [105] Molnar P., and Lyon-Caen H., Fault plane solutions of earthquakes and active tectonics of the Tibetan plateau and its margins, Geophysics Journal International, 99, 123-153, 1989
    [106] Molnar P., and England P., Late Cenozoic uplift of mountain ranges and global climate change: chicken or eggs?, Nature, 346, 29-34, 1990
    [107] Molnar P., England P., Martinod J., Mantle dynamics, uplift of the Tibetan, and the Indian monsoon, Review Geophysics, 31,357-396, 1993
    [108] Murray J. R., P. Segall, P. Cervelli, Inversion of GPS data for spatially variable slip-rate on the San Andreas Fault near Parkfield CA, Geophysics Research Letters, 28, 359-362, 2001
    [109] Newman, A., S. Stein, J. Weber, et al., Slow deformation and lower seismic hazard at the New Madrid seismic zone, Science, 284, 619-621, 1999.
    [110] Nocquet, J. M., E. Calais, Z. Altamimi, et al., Intraplate deformation in western Europe deduced from an analysis of the International Terrestrial Reference Frame 1997 (ITRF97) velocity field, J. Geophys. Res., 106, 11,239-11,258, 2001
    [111] Norabuena E. O., L. Lefiler Griffin, A. Mao, et al., Space geodetic observations of Nazca-South American convergence across tile central Andes, Science, 279, 358-362, 1998
    [112] Norabuena E. O., T. H. Dixon, S. Stein, et al., Decelerating Nazca-South America and Nazca-Pacific plate motions, Geophys. Res. Lett., 26, 3405-3408, 1999
    [113] Park R. G., Geological structures and moving plates: New York, Chapman and Hall, 352 p., 1988
    [114] Paul J., Burgmann, G. R., Bilham V. K., et al., The motion and active deformation of India, Geophysics Res. Lett., 28, 647-650, 2001
    [115] Peltzer G., and F. Saucier, Present-day kinematics of Asia derived from geologic fault rates, J. Geophys. Res., 101, 27,943-27,956. 1996
    [116] Peltier W. R., A space geodetic target for mantle viscosity discrimination: Horizontal motions induced by glacial isostatic adjustment, Geophys. Res. Lett., 25, 543-546, 1998
    [117] Perez, O. M., R. Bilham, R. Bendick, et al., Velocity field across the southern Caribbean plate boundary and estimates of Caribbean/South-American plate motion using GPS geodesy 1994-2000, Geophys. Res. Lett., 28, 2987-2990. 2001
    [118] Pollitz. F. F., and T. H. Dixon, GPS measurements across the northern Caribbean plate boundary: impact of postseismic relaxation following historic earthquakes, Geophys. Res. Lett., 25, 2233-2236, 1998
    [119] Prawirodirdjo L., Y. Book, J. F. Genrich, et al., One century of tectonic deformation along the Sumatran fault from triangulation and Global Positioning System surveys, Journal of Geophysics Research, 105, 28,343-28,361, 2000
    [120] Rangin, C., X. Le Pichon, S. Mazzotti, et al., Plate convergence measured by GPS across the Sundaland/Philippine Sea plate deformed boundary: The Philippines and eastern Indonesia, Geophys. J. Int., 139,296-316, 1999
    [121] Reilinger, R., S. C. McClusky, M. G. Oral, et al., Global Positioning System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone, J. Geophys. Res., 102, 9983-9999, 1997
    [122] Rosencrantz E., M. I. Ross, and J. G. Sclater, Age and spreading history of the Cayman Trough as determined from depth, heat flow and magnetic anomalies, J. Geophys. Res., 93, 2141-2157, 1988
    
    
    [123] Royer J. Y., and R. G. Gordon, The motion and boundary between the Capricom and Australian plates, Science, 277, 1268-1274, 1997
    [124] Sato K., Tectonic plate motion and deformation inferred from very long baseline interferometry, Tectonophysics, 220, 69-87, 1993
    [125] Schweig E. S., and M. A. Ellis, Reconciling short recurrence intervals with minor deformation in tile New Madrid seismic zone, Science, 264. 1308-1311, 1994
    [126] Schwintzer P., et al., Long-wavelength global gravity field models: GRIM4-S4, GRIM-C4, J Geodesy, 71,189-208, 1997
    [127] Seeber G., Lai X., A GPS survey in Yunnan earthquake experimental field objectives and first results, IAG Symposium 101, Edinburgh, Global and Regional Geodynamics, 11-14, 1989
    [128] Segall P., J. L. Davis, GPS applications for geodynamics and earthquake studies, Annu. Rev. Earth Planet. Sci., 25,301-336, 1997
    [129] Sella G. F., T. H. Dixon, and A. Mao, REVEL: A model for recent plate velocities from space geodesy, Journal of Geophysical Research, 107(B4), ETG-11: 1-12, 2002
    [130] Sengoku A., A plate motion study using Ajisai SLR data, Earth Planets Space, 50, 611-627, 1998
    [131] Seno T., S. Stein, and A. E. Gripp, A model for the motion of the Philippine Sea plate consistent with NUVEL-1A and geological data, J. Geophys. Res., 98, 17,941-17,948, 1993
    [132] Shen T. B., W. E. Holt, and A. J. Haines, The kinematics of the western United States estimated from Quaternary rates of slip and space geodetic data, J. Geophys. Res., 104, 28,927-28,955, 1999
    [133] Shen T. B., W. E. Holt, A. J. Haines, Intraplate deformation in the Japanese islands: a kinematic study of intraplate deformation at a convergent plate margin, Journal of Geophysics Research, 100, 24,275-24,293, 1995
    [134] Shen Z. K., C. Zhao, A. Yin, et al., Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements, J. Geophys. Res., 105,5721-5734, 2000
    [135] Sigmundsson F., P. Einarsson, R. Bilham, et al., Rift-transform kinematics in south Iceland: Deformation from Global Positioning System measurements, 1986 to 1992, J. Geophys. Res., 100, 6235-6248, 1995
    [136] Sigrun H., Pall E., Freystein S., Crustal deformation at the oblique spreading Reykjanes Peninsula, SW Iceland: GPS measurements from 1993 to 1998, Journal of Geophysics Research, 106, 13,803-13,816, 2001
    [137] Sillard P., Z. Altarnimi, and C. Boueher, The ITRF96 realization and its associated velocity field, Geophys. Res. Lett., 25, 3222-3226, 1998
    [138] Simon L., Active deformation in the Bolivian Andes, South American, Journal of Geophysics Research, 105, 25,627-25,653, 2000
    [139] Smith D., R. Kolenkiewicz, P. J. Dunn, et al., Tectonic motion and deformation from satellite laser ranging to LAGEOS, J. Geophys. Res., 95, 22,013-22,041, 1990
    [140] Solomon S. C., and Sleep, H. H., Some simple physical models for absolute plate motions, J. Geophysics Res., 79, 2557-2567, 1974
    [141] Soudarin L., and A. Cazenave, Global geodesy using DORIS data on SPOT-2, Geophysics Res. Lett., 20, 289-292, 1993
    [142] Soudarin L., and A. Cazenave, Large-scale tectonics plate motions measured with the DORIS space geodesy system, Geophys. Res. Lett., 22, 469-472, 1995
    [143] Spitzak S., and C. DeMets, Constraints on present-day plate motions south of 30~S from satellite altimetry, Tectonophysics, 253, 167-208, 1996
    
    
    [144] Stein S., and R. G. Gordon, Statistical tests of additional plate boundaries from plate motion inversions, Earth Planet. Sci. Lett., 69,401-412, 1984
    [145] Stein S., C. DeMets, R. G. Gordon, et al., A test of alternative Caribbean plate relative motion models, J. Geophysics Res., 93, 3041-3050, 1988
    [146] Sutherland R., The Australian-Pacific boundary and Cenozoic plate motions in the SW Pacific: Some constraints from Geosat data, Tectonics, 14, 819-831, 1995
    [147] Sutherland R., F. Davey, and J. Beavan, Plate boundary deformation in South Island, New Zealand, is related to inherited lithospheric structure, Earth Planet. Sci. Lett., 177, 141-151, 2000
    [148] Tapponnier P., and Molnar P., slip-line field theory and large-scale continental tectonics, Nature, 264, 319-324, 1976
    [149] Tapponnier P., and Molnar P., Active faulting and Cenozoic tectonics of Tien Shah, Mongolia and Baykal regions, Journal of Geophysical Research, 84, 3452-3459, 1979
    [150] Tapponnier P., Peltzer G., Le Dain Y., et al., Propagating extrusion tectonics in Asia: new insights from simple experiment with plasticine, Geology, 10, 611-616, 1982
    [151] Tappormier P., Peltzer G., Armijo R., On the mechanics of the collision between India and Asia, In Coward, M.P and Pies, A.C (Eds), Collision tectonics, Bath: Geological Society, London, special publication. 19, 115-157, 1986
    [152] Tapponnier P., et al., The Ailao Shan/Red river metamorphic belt: Tertiary left-lateral shear between Indochina and South China, Nature, 343, 431-437, 1990
    [153] Tapponnier, P., Xu Zhiqin, Francoise R., at al., Oblique stepwise rise and growth of the Tibet Plateau, Science, 294(23): 1671-1677, 2001
    [154] Thora A., Sigrun H., Gunnar G., et al., Crustal deformation measured by GPS in the South Iceland Seismic Zone due to two large earthquakes in June 2000, Geophysical Research Letters, 28(21): 4031-4033, 2001
    [155] Turcotte D. L., The driving mechanism of plate tectonics, Rev. Geophys. and Space Physics, 13, 333-334, 1975
    [156] Walpersdorf A., C. Vigny, P. Manunmg, et al., Determining the Sula block kinematics in the triple junction area in Indonesia by GPS, Geophys. J. Int., 135, 351-361, 1998
    [157] Wang Q., P. Z. Zhang, J. T. Freymueller, et al., Present-day crustal deformation in China Constrained by global positioning system measurements, Science, 294, 574-577, 2001
    [158] Ward S. N., Pacific-North America plate motions: New results from very long baseline interferometry, J. Geophys. Res., 95, 21,965-21,981, 1990
    [159] Weber J., S. Stein, and J. Engeln, Estimation of intraplate strain accumulation in the New Madrid seismic zone from repeat GPS surveys, Tectonics, 17, 250-266, 1998
    [160] Weber J., et al., A GPS estimate of relative motion between the Caribbean and South American plates, and geologic implications for Trinidad and Venezuela, Geology, 29, 7578, 2001
    [161] Wiens D. A., et al., A diffuse plate boundary model for Indian Ocean tectonics, Geophys. Res. Lett., 12, 429-432, 1985
    [162] Yang Y., Liu M., Deformation of convergent plates evidence from discrepancies between GPS velocities and rigid plate motions, Geophysics Research Letter, 29(10): 10-29, 2002
    [163] Yu S. B., H. Y. Chen, and L. C. Kuo, Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41 59, 1997
    [164] Yu S. B., L. C. Chert, R. S. Punongbayan, et al., GPS observation of crustal deformation in the Taiwan-Luzon region, Geophysics Res. Lett., 26. 923-926, 1999
    
    
    [165] Zhang J., Y. Bock, H. Johnson, et al., Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities, J. Geophys. Res., 102, 18,035-18,055, 1997
    [166] Zhang Q., W. Y. Zhu, Y. Xiong, Global plate motion models incorporating the velocity field of ITRF96, Geophysics Research Letters, 26, 2813-2816, 1999
    [167] 安欧,构造应力场,北京:地震出版社,6-14,1992
    [168] 蔡宏翔、宋成骅、刘经南等,青藏高原1993年和1995年地壳运动与形变的GPS观测结果分析,中国科学(D辑),27(3):233-238,1997
    [169] 陈颙、黄庭芳,岩石物理学,北京:北京大学出版社,17-23,2001
    [170] 陈智梁、张选阳、沈风等,中国西南地区地壳运动的GPS监测,科学通报,44(8):851-854,1999
    [171] 党亚民、陈俊勇、刘经南等,利用国家A级网资料对中国大陆现今水平运动场的初步分析,测绘学报,27(3):267-273,1998
    [172] 丁国瑜、卢演俦,对我国现代板内运动状态的初步探讨,科学通报,18(1):412-413,1986
    [173] 丁国瑜、蔡文伯、于品清等,中国岩石圈动力学概论,地震出版社,106-153,1991
    [174] 丁晓利、陈永奇、李志林等,合成孔径雷达干涉技术及其在地表形变监测中的应用,1999年中国天体力学和天体测量学术年会,广州:1999
    [175] 傅承义、陈运泰、祁贵仲,地球物理学基础,北京:科学出版社,1991
    [176] 符养,中国大陆现今地壳形变与GPS坐标时间序列分析,博士论文,中国科学院上海天文台,2002
    [177] 甘卫军,GPS的地球物理应用——美国加州东部及全美中部地壳变形研究,博士论文,中国地震局地质研究所,2001
    [178] 胡明诚、鲁福,现代大地测量学,测绘出版社,1981
    [179] 黄碱,利用LAGEOS激光测距资料精确测定地球自转参数,博土论文,中国科学院上海天文台,1985
    [180] 黄立人、王敏,中国大陆现今水平运动,地震学报,22(3):257-262,1999
    [181] 黄立人,用于相对稳定点组判别的QUAD方法,大地测量与地球动力学,22(1):10-15,2002
    [182] 林克雄,甚长基线干涉测量技术,宇航出版社,1985
    [183] 李延兴、沈建华、王敏等,华北地区GPS形变观测网的精度分析,测绘学报,23(2):142-149,1994
    [184] 李延兴、杨国华、杨世东等,根据现代地壳垂直运动划分中国大陆活动地块边界的尝试,地震学报,23(1):11-16,2001a
    [185] 李延兴、胡新康、帅平等,中国大陆地壳水平运动统一速度场的建立与分析,地震学报,23(5):453-459,2001b
    [186] 李延兴、黄碱、胡新康等,板内块体刚性弹塑性运动模型与中国大陆主要块体的应变状态,地震学报,23(6):565-572,2001c
    [187] 李延兴、胡新康、李智等,台海地区的地壳运动与变形,地震学报,24(5):487-495,2002
    [188] 李延兴、杨国华、李智等,新中国大陆活动地块的运动与应变状态,中国科学(D辑),33(增刊):65-81,2003
    [189] 李智、李延兴,全球板块运动的无整体旋转约束,装备指挥技术学院学报,13(5):96-99,2002a
    [190] 李智、崔荣,卫星重力大地测量的进展与应用,卫星应用,10(3):44-49,2002b
    [191] 马杏垣主编,中国岩石圈动力学图集,北京:中国地图出版社,2-68,1989
    [192] 马宗晋、任金卫、张进,ITRF97下空间对地观测站速度矢量显示的全球构造运动,中国科学(D辑),32(5):353-357,2002a
    [193] 马宗晋,宋晓东,杜品仁等,地球南北半球的非对称性,地球物理学报,45(1):26-33,2002b
    
    
    [194] 马宗晋、张培震、任金卫等,从GPS水平矢量场对中国及全球地壳运动的新认识,地球科学进展,18(1):4-11,2003
    [195] 宁津生,卫星重力探测技术与地球重力场研究,大地测量与地球动力学,22(1):1-5,2001
    [196] 钱志瀚、邬林达,甚长基线射电干涉测量,测绘出版社,1983
    [197] 孙付平、赵铭,全球五大板块运动和变形——用卫星测距数据导出的站速度分析,地球物理学报,37(5):596-605,1994
    [198] 孙付平、赵铭,现代板块运动的测量和研究——地球物理方法,地球物理学进展,13(1):1-16,1998
    [199] 孙文科,低轨道人造卫星(CHAMP、GRACE、GOCE)与高精度地球重力场——卫星重力大地测量的最新进展及其对地球科学的重大影响,大地测量与地球动力学,22(1):92-100,2001
    [200] 王琪、游新兆、乔学军等,用GPS研究南天山(伽师)地区现今地壳形变,地震学报,223:263-270,2000a
    [201] 王琪、丁国瑜、乔学军等,天山现今地壳快速缩短与南北地块的相对运动,科学通报,45(14):1538-1542,2000b
    [202] 王琪、张培震,Freymueller J.T.,等,中国大陆现今地壳运动和构造变形,中国科学(D辑),31(7):529-536,2001
    [203] 王琪、张培震、马宗晋,中国大陆现今构造变形GPS观测数据与速度场,地学前缘,9(2):415-429,2002
    [204] 王敏、沈正康、牛之俊等,现今中国大陆地壳运动与活动块体模型,中国科学(D辑),33(增刊):21-32,2003
    [205] 王小亚,GPS在地球物理方面的应用,博士论文,中国科学院上海天文台,2001
    [206] 王小亚、朱文耀、符养等,GPS监测的中国及其周边现时地壳形变,地球物理学报,45(2):198-209,2002
    [207] 吴云、帅平、周硕愚等,用GPS观测结果对中国大陆及邻区现今地壳运动和形变的初步探讨,地震学报,21(5):545-553,1999
    [208] 徐菊生、赖锡安、张国安等,空间大地测量测定板块运动的新进展及其与地质学成果的比较,大地测量与地球动力学,21:55-65,2001
    [209] 徐锡伟、闻学泽、郑容章等,川滇地区活动块体最新构造变动样式及其动力来源,中国科学(D辑),33(增刊):151-162,2002
    [210] 杨福民、谭德同、肖炽焜等,上海天文台在国际地球自转联测期间的LAGEOS卫星激光测距概况和测距精度估计,科学通报,31(5),1986
    [211] 杨福民,谭德同,何慧娟等,上海天文台第三代卫星激光测距系统,中国科学(A辑),8:844-850,1990
    [212] 杨福民、肖炽焜、陈婉珍等,白天卫星激光测距系统的设计和实测结果,中国科学(A辑),28(11):1048-1056,1998
    [213] 杨国华、李延兴等,由GPS观测结果推导中国大陆现今水平应变场,地震学报,24(4):337-347,2002
    [214] 叶叔华、黄珹,天文地球动力学,山东科学技术出版社,2000
    [215] 游新兆、王琪、乔学军等,中国大陆地壳运动GPS观测网,地壳形变与地震,18(增刊):128-136,1998
    [216] 于秀林、任雪松,多元统计分析,北京:中国统计出版社,1999
    [217] 张飞鹏、黄碱、张忠平,精密测距测速系统的研究与应用,天文学进展,17(1),1999
    [218] 张飞鹏,PRARE及其应用于ERS-2精密定轨的研究,博士论文,中国科学院上海天文台,2000
    [219] 张国民、张培震,“大陆强震机理与预测”中期学术进展,中国基础科学,10:4-10,2000
    
    
    [220] 张培震,中国大陆岩石圈最新构造变动与地震灾害,第四纪研究,5:404-413,1999
    [221] 张培震、王琪、马宗晋,中国大陆现今构造变形GPS速度场与活动地块,地学前缘,9(2):430-441,2002a
    [222] 张培震、王琪、马宗晋,青藏高原现今构造变形特征与GPS速度场,地学前缘,9(2):442-450,2002b
    [223] 张培震、邓起东、张国民等,中国大陆的强震活动与活动地块,中国科学(D辑),33(增刊):12-20,2003
    [224] 周硕愚、张跃刚、丁国瑜等,依据GPS数据建立中国大陆板内块体现时运动模型的初步研究,地震学报,20(4):347-355,1998
    [225] 朱文耀、程宗颐、熊永清等,利用GPS技术观测青藏高原地壳运动的初步结果,中国科学(D辑),27(5):385-389,1997
    [226] 朱文耀、程宗颐、王小亚等,中国大陆地壳运动的背景场,科学通报,44(14):1537-1539,1999
    [227] 朱文耀、韩继龙、马文革,基于ITRF96和ITRF97的全球板块运动模型,天文学报,41(3):312-319,2000a
    [228] 朱文耀、王小亚、程宗颐等,利用GPS技术监测中国大陆地壳运动的初步结果,中国科学(D辑),45(9):394-400,2000b

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700