用户名: 密码: 验证码:
河西走廊及邻近地区最新构造变形基本特征及构造成因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河西走廊地区位于青藏高原东北缘,是现今构造运动和地震活动最为强烈的地区之一,深化河西走廊地区最新构造变形的研究对认识区内地震构造基本特征、更加科学有效地防震减灾有着重要的现实意义,同时也对全面认识整个青藏高原的构造变形机制有着的科学意义。本文旨在分析、整理和总结前人成果的基础上,采用航卫片地貌制图与野外核实相结合的技术路线获取主干活动构造的第一手基础资料,对河西走廊地区及邻近地区主要活动断裂进行定量研究,以获取这些断裂的滑动速率,总结出本区最新构造变形的基本特征;在此基础上,应用构造变形转换的矢量分析方法对河西走廊地区构造变形的成因作出定量解释。
     1.为了弥补定量研究中测年资料的不足,更好地获取本区可靠的活动断裂长期滑动速率资料,本文首先对河西走廊及其邻区的河流阶地进行编年工作。经对已有河流阶地测年数据的分析统计及与青藏高原冰芯、黄土—古土壤序列、高原湖泊及沙漠边缘地层所反映的古气候变化的高分辨率记录对比,发现阶地形成与温湿气候环境之间有着良好的对应关系,由此提出阶地具有“形成期”(阶地集中形成的时期)的基本认识。研究表明,本区40 ka BP以来有5个形成期,A期:4.2±1.0(3~5) ka BP,B期:8.0±2.0(6~10) ka BP,C期:12.8±1.5(12~14) ka BP,D期:22.8±2.0(20~24) ka BP和E期30±2.0(28~32) ka BP。
     2.依据断裂的构造部位、发育历史、活动性质及其走向,将河西走廊地区的活动断裂分为4类:第一类为河西走廊前陆盆地南北边界逆断裂(包括祁连山北缘断裂带、盆地北缘的龙首山南缘断裂和北缘断裂),具有长期的构造演化历史,走向NWW,与区域构造线方向一致,剖面上呈叠瓦式向盆地逆冲推覆,地貌上形成巨大反差;第二类为河西走廊盆地内部活动逆断裂系,指与盆地内部NNW向构造隆起相关的断裂,主要包括嘉峪关断裂、阴洼山断裂、榆木山北缘断裂、榆木山东缘断裂、皇城—塔儿庄断裂和武威盆地南缘断裂等6条,这些断裂的逆冲活动及其NNW向构造隆起将河西走廊盆地分割成酒西、酒东、民乐、武威等4个次级盆地:第三类为阿拉善南缘近东西向走滑断裂束,为一组发育于阿拉善地块南缘的向东撒开或斜列的断裂束,由宽滩山—金塔南山断裂、慕少梁南麓断裂、盘头山—羊圈沟断裂、天城—苏亥阿木断裂和阿右旗断裂等5条断裂组成,各断裂控制了阿拉善南缘盆地边界,晚第四纪以来均具有左旋走滑运动特征;第四类为北祁连山内部NWW向活动断裂系,发育在北祁连山内部的山间盆地边缘或盆地内,其走向与山系走向一致,一般表现为逆走滑活动性质。上述4类断裂构造构成河西走廊地区活动构造的基本框架。通过航、卫片解译、野外调查和对前人成果的分析整理,本文对前三类构造进行了较为系统的定量研究。结果表明,①祁连山北缘断裂带各组成断裂中,玉门断裂和洪水坝河—红崖子断裂晚更新世晚期以来的垂直运动速率分别为0.74~1.24mm/a和0.56mm/a;旱峡—大黄沟断裂和民乐—大马营断裂全新世以来活动不明显。②走廊盆地内部活动逆断裂系除榆木山东缘断裂东段外,其它断裂(段)全新世以来活动明显,其垂直运动速率依次为:嘉峪关断裂0.53mm/a,阴洼山断裂,0.18mm/a,榆木山北缘断裂1.0mm/a,榆木山东缘断裂(北西段)0.3mm/a,皇城—塔儿庄断裂0.54~0.8mm/a,武威盆地南缘断裂0.57mm/a。③阿拉善块体南缘断裂束晚更新世或全新世以来的左旋走滑速率分别为金塔南山断裂1.9±0.7mm/a、慕少梁南麓断裂0.5mm/a、盘头山—羊圈沟断裂0.5mm/a、天城—苏亥阿木断裂1.3±0.2mm/a和阿右旗断裂0.96mm/a。
    
     3.青藏高原北部东缘发育有阿尔金断裂带、海原断裂带和东昆仑断裂带等大型走滑活
    动断裂带,它们的大规模走滑运动对河西走廊地区的最新构造变形有重要影响。为此本文结
    合通过野外工作和前人取得的大量成果分析整理,对其滑动速率进行了定量研究。①阿尔金
    断裂带中东段与NNW走向的祁连山构造带西段之间构成3个主要的构造转换区,通过构造
    转换,断裂带的左旋滑动速率自西向东呈阶梯状衰减,据此将断裂带(安南坝以东段)分为
    4个段:安南坝一肃北段、肃北一石包城段、石包城一疏勒河口段和宽滩山段。各段速率依
    次为l卜19浏rn/a、11 nlil岁a、4.8俐耐自和2.2例耐a。②海原断裂带由6条次级断裂组成,通
    过对前人资料的重新整理,得出各段的左旋走滑速率分别为,海原断裂6.9士l.Omi对a,老
    虎山断裂6.7士1.6mn岁a,毛毛山断裂6.6士2.OInl拟a,金强河断裂6.6士1.0浏耐a,冷龙岭断
    裂15士5 mn分a,托莱山断裂6.5土1.0 nlxl口a。古浪一香山一天景山断裂带的左旋速率为4Illxl公a
    左右。③东昆仑断裂带晚第四纪以来以左旋走滑活动占绝对主导地位,左旋滑动速率为
    12.5土1,5浏树a。
     4.河西走廊地区自1999年起开始了较密集的GPS监测网,本文应用1 999~2001年本
    区的97个站点的运动年速度矢量与定量研究结果进行了对比。结果表明,GPS观测所反
    映出的块体间的相对运动方向与野外地质调查得到的断裂的最新活动特征基本一致,二者的
    绝对值时有差异,但反映出的相对趋势是一致的,GPS可以与实侧地质数据对比.GPS运
    动速率与本文得出?
The Hexi Corridor, located in the northeastern margin of the Tibetan Plateau, is one of regions of most active tectonics and seismic activity. To deepen the study about the tectonic deformation of this region since late Quaternary is important not only for comprehensive recognition of the Tibetan plateau tectonics but also for mitigation of earthquake disaster in this region. Based on summarizing the results of many previous studies before and field work using new offset-landform method, this thesis aims at getting quantitative data about the main active faults in the Hexi Corridor, and then, to interpret quantitatively the cause of the tectonic deformation in the Hexi Corridor by means of vector analysis.
    1.In order to make up with the insufficiency of the dating data, a chronology of the terraces in the region has been set up by means of analyzing the available data, and comparing with the paloeclimatic history revealed by high-resolution records from the ice-core, loess-paleo-soil series, plateau lakes and strata of desert. "Forming periods", i.e. periods when terraces tend to form responding to worm and humid climatic condition, is proposed to constrain the ages of the terraces. Five forming periods are recognized in this region: Period A, 4.2 ± 1.0 (3-5) ka BP; Period B, Period 8.0±2.0 (6-10) kaBP; C, Period 12.8± 1.5 (12-14) ka BP; Period D, 22.8±2.0 (20-24) ka BP and Period E, 30±2.0 (28-32) ka BP.
    2. The active faults in the Hexi Corridor can be classified into 4 types according to their tectonic positions, histories, kinematics, and trending directions. The first type is the boundary faults of the Hexi Corridor foreland basin (including the northern Qilianshan fault belt, the southern Longshoushan fault zone and the northern Longshoushan fault), which undergo long geological evolution, orientate NWW in accord with the direction of regional main tectonic line, thrust to the Hexi Corridor foreland basin, and form sharp contrastive landforms. The second type is the reverse fault system interior the Hexi Corridor basin, which is related with NNW-trending tectonic uplifts in the the Hexi Corridor basin, and includes 6 faults (the Jiayuguan fault, Yingwanshan fault, the northern Yumushan fault, eastern Yumushan fault, the Huangcheng-Taerzhuang fault, and the southern Wuwei basin fault). The faulting of the system and the rising of the NNW-trening tectonic uplifts divides the He
    xi Corridor basin into 4 sendonary basins (Jiuxi basin, Jiudong basin, Minle basin, and Wuwei basin). The third type is southern Alashan EW-trending strike-slip fault belt. It containes 5 faults and splits eastward. Each fault controls basins in the shouthem margin of the Alashan block and is featured by lateral strike-slip since the late Quaternary. The last type is the NWW-trending faults system in the north Qilianshan mountains. The faults appear along margins of mside-montain basins and are featured by reverse-strike slips. These 4 types of structures constitute the basic tectonic framework of the Hexi Corridor. Summarizing previous studies and fieldwork yield the slip rates of the faults, which are described below: (1)Among the northern Qilianshan fault zone, the vertical slip rates of the Yumen fault and the Fudongmiao-Hongyazi fault are 0.74-1.24mm/a and 0.56 mm/a, respectively since the Mid-Pleistocene, while the Hanxia-Dahuanggou fault and the Minle-Damaying fault are inactive since the Holocene. (2
    )The inner reverse faults include the Jiayuguan fault, Yingwanshan fault, the northern Yumushan fault, eastern Yumushan fault, the Huangcheng-Taerzhuang fault, and the southern Wuwei basin fault. The vertical slip-rates of them are 0.53 mm/a. 0.18 mm/a, 1.0 mm/a, 0.3 mm/a (southeastern part), 0.54-0.8 mm/a, 0.57 mm/a, respectively. (3) The southern Alashan EW-trending strike-slip fault belt contains 5 faults, i.e., Jintananshan fault, Mushaoliang
    
    
    fault, Pantoushan-Yangjuangou fault, Tiancheng-Suhaiamu fault, and Ayouqi fault. The slip-rates of them are 1.9+0.7 mm/a, 0.5 mm/a, 0.5 mm/a, 1.3+0.2mm/a,
引文
Anderson J G. Geological notes from Gansu. Bull.Geol.Soc.China, 1925,4:15
    Avouac J. and P. Tapponnier. Kinematic model of active deformation in central Asia,Geophys, Res. Lett, 1993, 20 (10):895-898.
    Bowman D., King G., Tappormier P., Slip Partitioning by Elastoplastic Propagation of Oblique Slip at Depth, Science, 2003 300:1121~1123
    Gaudemer Y, P Tapponnier, Meyer B,et al. Partitioning of crustal slip between linked, active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the "Tianzhu gap", on the western Haiyuan Fault, Gansu(China). Geophys.J.Int., 1995,120,599-645
    Lasserre C,et.al.,Postglacial left slip-rate and past occurrence of M≥8 erathquakes on ghe western Haiyuan fault, Gansu, China. J. Geophys. Res., 1999,104,17633-17651
    Lasserre C. Fonctionnement sismique, Cinematique et histoite geologique de la faille de Haiyuan. Doctoral Dissertation,2000
    Lettis-W.-R; Hanson-K.-L, Crustal strain partitioning: implications for seismic-hazard assessment in western California, Geology (Boulder). 1991.19(6): 559-562
    Meyer B, P Tapponnier, Y Gaudemer, G Peltzer. Rate of left-lateral movement along the easternmost segment of the Altyn Tagh fault, east of 96~E (China). Geophys. J. Int., 1996,124:29~44.
    Meyer B., P. Tappormier, L. Bourjot, et al., Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibetan plateau. 1998,Geophys. J. Int., 135, 1-47.
    Molnar P., B. C. Burchfiel, Liang K. and Zhao Z., 1987. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and qualitative estimates of its contribution to the convergence of India and Eurasia, Geology, 15,249-253.
    Nicol A., Van Dissen R., Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand, Journal of Structural Geology, 2002, 24 (9): 1521-1535
    Norris R.J.,A.F.Cooper. Late Quaternary slip rate and slip partitioning on the Alpine Fault, New Zealand. Journal of Structural Geology, 2002,23:507-520
    Pachur H J, Wunnemann B, Zhang H C. Lake evolution in the Tengger Desert, Northwestern China, during the last 40000 Years. Quaternary Research, 1995,44:171-180
    Peltzer G, P Tapponnier, Y Gaudemer et al., Offsets of late Quaternary morphology, rate of slip and recurrence of large earthquakes on the Changma fault (Gansu, China). 1988, J. Geophy. Res., 93(B7), 7793-7812.
    Peltzer G., P. Tapponnier, and R. Armijo, Magnitude of late Quaternary left-lateral displacements along the northern edge of Tibet, Science, 1989, 246:1285-1289.
    
    Pettet D, Global Younger Dyras? Quaternary International, 1995,28: 93-104
    Raymo M E,Oppo D W, Curry W. The Mid-Pleistocene climate transition: A deep sea carbon isotopic perspective. Paleoceanography, 1997, 12(4):546-599
    Raymo M E,Ruddiman W F,Shackleton N J et.al. Evlution of Atlantic Pacific δ~(13) gradients over the last 2.5 Ma. Earth and Planetary Science Letters, 1990,97:353~369
    Schumn S.C., The fluvial system. A Willey Intersciences Publication, 1979
    Tapponnier P, B Meyer, J P Avouac et al. Active thrusting and folding in the Qilianshan, and decoupling between upper crust and Mantle in the Northeastem Tibet. Earth and Planetary Science Letters, 1990,97,382-403
    Tapponnier P. and P. Molnar, 1976, Slip-line field theory and large-scale continental tectonics, Nature, VOL.264, pages 319-324.
    Tapponnier P., G. Peltzer, A.Y. Le Dain, R. Armijo, 1982, Propagating extrusion tectonics in Asia.. New insights from simple experiments with plasticine, Geology, VOL.10, pages 611-617.
    Van der Woerd J, Xu Xiwei, Li Haibing, et al. Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Gansu, China), J. Geophys. Res. V. 2001,106, No. B12, 30475-30504.
    Van der Woerd J. the uniform slip-rate along the Kunlun fault:implications for seismic behaviour and large-scale teetonicw. Geophys. Res. Lett.,2000,27:2353-2356
    Xu X. et al., Surface rupture of the Klunlunshan earthquake(Ms8.1),Northern Tibetan plateau, China. Seismological Society of America, 2002, 73(6)884-891
    YaoTandong, Thompson LG, Mosley-Thompson E, et al. Climatological significance of δ~(13) in the north Tibetan ice cores. J. Geophys Rea. 1996, 101(D23):29531-29537.
    Yeats, R. S., Sieh, K., Allen, C. R., The geology of earthquake, New York: Oxford university press, 1997, P312 & 364
    安昌强,宋仲和,庄真,等.中国西北地区剪切波三维速度结构.地球物理学报,1993,36(3):317—325
    陈炳蔚,姚培毅,郭宪璞,等.青藏高原北部地体构造与演化.北京:地质出版社,1996.107-1lO.
    陈发虎,马玉贞,李吉均.陇西黄土高原马兰黄土划分与末次冰期气候快速变化研究.冰川冻土,1996,18(2)111-118
    陈发虎,朱艳,李吉均.民勤盆地湖泊沉积记录的全新世千百年尺度夏季风快速变化.科学通报,2001,46(17):1414-1419
    陈杰,卢演俦,丁国瑜.祁连山西段酒西盆地区阶地构造变形的研究.西北地震学报,1998,20(1):28-36
    陈杰,卢演俦,丁国瑜.祁连山西段及酒西盆地区第四纪构造运动的阶段划分.第四纪研究,1996,(3):263~271.
    
    
    陈宇坤,青藏高原西北缘挤压滑移运动对新构造变形的影响;[学位论文].国家地震局兰州地震研究所,1997
    崔军文等.阿尔金断裂系.地质出版社,1999
    崔之久,李德文,冯金良,等.夷平面研究的再评述.科学通报,2001,46(21):1761~1767
    崔之久,伍永秋,刘耕年,等.关于“昆仑—黄河运动”.中国科学(D辑),1998,28(1):53—59
    崔作舟,李秋生,吴朝东,等.格尔木—额济纳旗地学断面的地壳结构与深部构造.地球物理学报,1995,38(增刊):16—28
    戴华光,陈永明,苏向洲,等.天桥沟—黄羊川活动断裂带的几何学和运动学特征.西北地震学报,1999,21(3):159—267
    丁国瑜.第四纪断层上断裂活动的群集及迁移现象.第四纪研究,1989,(1):36~47
    丁国瑜.阿尔金活断层的古地震与分段.第四纪研究,1995,第2期,97-106
    冯益民,何世平.祁连山大地构造与造山作用.北京:地质出版社,1996
    冯益民.祁连造山带研究概况——历史、现状及展望.1997,12(4):307~314
    傅承义.大陆漂移,海底扩张和板块构造.北京:科学出版社,1972.
    高全洲,董光荣,邹学勇,等.查格勒布鲁剖面—晚更新世以来东亚季风进退的地层记录.中国沙漠,1996,16(2):112—119
    高尚玉、王贵勇、哈斯等,2001,末次冰期以来中国季风区西北边缘沙漠演化研究,第四纪研究,21(1)66~71
    葛肖虹,刘俊来.北祁连造山带的形成与背景.地学前缘,1998,6(4):223—229
    葛肖虹,刘俊来.被肢解的西域克拉通.岩石学报,2000,16(1):59—66
    郭增建,秦保燕.甘肃省的震中迁移现象.科学通报,1966,17(5)
    郭增建,张城.民勤东侧地震带的初步认识.地球物理学报,1963,12(1)
    国家地震局《阿尔金活动断裂带》课题组.阿尔金活动断裂带.北京:地震出版社,1992
    国家地震局《鄂尔多斯周缘活动断裂系》课题组.鄂尔多斯周缘活动断裂系.北京:地震出版社,1988
    国家地震局地质研究所,宁夏回族自治区地震局.海原活动断裂带,北京:地震出版社,1990
    国家地震局地质研究所,国家地震局兰州地震研究所.祁连山河西走廊活动断裂系.北京:地震出版社,1993.
    国家地震局地质研究所,西藏中部活动断层,1992,北京:地震出版社
    国家地震局兰州地震研究所.甘肃省张掖火电厂地震安全性评价研究报告.1997
    虢顺民,江在森,张崇立,等.青藏高原东北缘晚第四纪块体划分与运动态势研究,地震地质,2000,22(3):219-231
    虢顺民,向宏发,黄昭,等.河西走廊南缘断裂第四纪活动断裂的考察.中国地震年鉴(1987),1987,北京:地震出版社
    
    
    虢顺民,向宏发,周瑞琦,等.滇西南龙陵—澜沧断裂带——大陆地壳上一条新生的破裂带.科学通报,1999,44(19):2118—2121
    虢顺民,向宏发.甘肃高台榆木山地区晚新生代活动断裂及断层陡坎.现代地壳运动研究(5),1990,北京:地震出版社
    侯康明,石亚缪,张忻.青藏高原北部NNW向构造活动方式及形成年代.地震地质,1999,21(2):127~136
    黄长生,顾延生,唐小明,等.兰州地区新生代构造应力场演化特征.江西地质,2000,14(2):88~92
    黄春长,庞奖励,黄萍,等.关中盆地西部黄土台塬全新世气候事件研究.干旱区地理,2002,25(1):10-15
    黄华芳,等.酒西盆地南缘推覆构造及其含油气领域.石油与天然气地质.1993,14(3):187~190
    黄汲清.对中国大地构造特点的一些认识并着重讨论地槽褶皱带的多旋回发展问题.地质学报,1979,53(2):
    霍永录,等.酒泉西部油藏形成及分布规律.玉门石油科技.1986,(1):1~17.
    贾玉连,施雅风,王苏民,等.40ka以来青藏高原的4次湖涨期及其形成机制初探.中国科学,2001,31(增刊):241—251景.矿物岩石,1998,18(4):22—30.
    李炳元,王苏民,朱立平,等.12kaBP前后青藏高原湖泊环境.中国科学(D辑),2001,31(增刊):258~263
    李春昱.用板块构造学说对中国部分地区构造发展的初步分析.地球物理学报,1976,18(1):52~76.
    李吉均,方小敏,马海洲,等.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学,D辑,1996,26(4):316~322
    李吉均,方小敏,潘保田,等.新生代晚期青藏高原强烈隆起及其对周边环境的影响.第四纪研究,2001,21(5):381-391
    李吉均,方小敏.青藏高原隆起与环境变化研究.科学通报,1998,43(15):1569~1574
    李吉均.纪念台维斯侵蚀循环、准平原学说诞生—百周年.兰州大学学报,1999,35(3):157—163
    李廷栋.青藏高原地质科学研究的新进展.地质通报,2002,21(7):370—376
    李勇,侯中健,司光影,等.青藏高原东缘新生代构造层序与构造事件.中国地质,2002,29(1):30-36
    李有利,谭利华,段烽军,等.甘肃酒泉盆地河流地貌与新构造运动.干旱区地理,2000,23(4):304—308
    李玉龙,侯珍清,康哲民,等.中国西北陕甘宁青地震区划.兰州:甘肃人民出版社,1986
    李元芳,张青松,李炳元,等.青藏高原西北部17000年以来的介形类及环境演变.地理学报,1994,49(1):26—53
    
    
    梁桂培,陈爱玲,何善康,等.甘肃西部地区深部构造.西北地震学报,1983,5(1)
    刘百篪,李清河,刘小凤,等.祁连山活动地块东北部活动构造的定量研究与大地震危险性分析,西北地震学报,2000,22(2):187~190
    刘东生,施雅风,王汝建,等.以气候变化为标志的中国第四纪地层对比表.第四纪研究,2000,20(2):108-128
    刘东生.黄土与环境,北京:科学出版社,1985
    刘小凤,杨立明,刘百篪.祁连山中东段三维构造物理模型及其在地震预报中的应用.西北地震学报.2000,22(2):110-117
    刘增乾,徐宪,潘桂棠,等.青藏高原大地构造与形成演化.北京:地质出版社,1990
    马宗晋,张家声,汪一鹏,等.青藏高原三维运动学的时段划分和新构造分区.地质学报,1998.72(3):211-227
    闵伟,张培震,何文贵,等.酒西盆地断层活动特证及古地震研究.地震地质,2002(24):35-44
    青海省地震局等.东昆仑活动断裂带.北京:地震出版社,1999
    冉勇康,李志义,尤惠川,等.河西走廊黑河口断层上的古地震及年代学研究.地震地质,1988,10(4)
    任纪舜,姜春发,等.中国大地构造及其演化.1981,北京:科学出版社
    任金卫,汪一鹏,吴章明,等.青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率.见:活动断裂研究(7):147—163,北京:地震出版社,1999
    申旭辉田勤俭韦开波陈正位,中上地壳应变分配模型及其地震学研究意义,地震,2000,20(增刊):58~64
    施雅风,孔昭宸,王苏民,等.中国全新世大暖期的气候波动与重要事件.中国科学(B辑),1992,12:1300—1308
    施雅风,刘晓东,李炳元等.距今40~30ka青藏高原特强夏季风事件及其与岁差周期关系.科学通报,1999,44(14):1475~1480
    施雅风,郑本兴,李世杰等.青藏高原中东部最大冰期时代高度与气候环境探讨.冰川冻土,1995,17(2):97~112
    宋春晖,方小敏,李吉均,等.青藏高原北缘酒西盆地13Ma以来沉积演化与构造隆升.中国科学(D辑),2001,31(增刊):155—162
    孙建中,赵景波等,1991,黄土高原第四纪,北京:科学出版社
    谭利华,杨景春,段烽军.河西走廊新生代构造运动的阶段划分,北京大学学报(自然科学版),第34卷,第4期,1998,34(4):523—532
    唐领余,沈才明,孔昭宸,等.青藏高原末次冰期最盛期气候的花粉证据.冰川冻土,1998,20(2):133—140
    田勤俭丁国瑜等,青藏高原东北隅强震构造模型,地震.2002,22(1):9-16
    万天丰,朱鸿.中国大陆及邻区中生代—新生代大地构造与环境变迁.现代地质,2002,16(2):107-120
    
    
    万天丰.中国第四纪构造事件与应力场.第四纪研究,1994,(1):48-55
    汪品先等.寻求高分开辨率记录,第四纪研究,1999,(1):1~16
    汪一鹏沈军,天山北麓活动构造基本特征,新疆地质.2000,18(3).203-210
    汪一鹏,宋方敏,李志义,等.宁夏香山—天景山断裂带晚第四纪强震重复间隔的研究.中国地震,1990,6(2):15—24
    汪一鹏.青藏高原活动构造基本特征.见:活动断裂研究(6),北京:地震出版社,1998
    王峰.阿尔金断裂带晚第四纪滑动速率及其地震地表破裂分段特征:[博士学位论文].北京:中国地震局地质研究所,2002
    王国芝,王成善,曾允孚,等.滇西高原的隆升与莺歌海盆地的沉积响应.沉积学报,2000.18(2):234—240
    王宁练,姚檀栋,L.G.Thomposon,等.全新世早期强降温事件的古里雅冰芯记录证据.科学通报,2002,47(11):818—823
    王琪,张培震,牛之俊,等.中国大陆现今地壳运动和构造变形.中国科学(D辑),2001,31(7):529~536
    王荃,刘雪亚.我国西部祁连山区的古海洋地壳及其大地构造意义.地质科学,1976,(1):42-55
    王苏民,吉磊,单向东,等.内蒙古孔赉诺尔湖泊沉积物中的新仙女木期事件记录.科学通报,1994,39(4):348-35l
    王苏民,吴锡浩,张振克,等.三门古湖记录的环境变迁与黄河贯通东流研究.中国科学(D辑),2001,3l(9):765—768
    魏明建,王成善,万晓樵,等.第三纪青藏高原面高程与古植被变迁.现代地质,1998,12(3):318-326
    翁文灏.甘肃地震考察.地质汇编(3),科学,1921,6(10,11,12)
    翁文灏.甘肃地震谈.东方杂志,1927,24(18)
    邬光剑,潘保田,管清玉,等.中更新世气候转型与100ka周期研究.地球科学进展,2002,17(4):605-611
    吴汉泉.东秦岭和北祁连山的蓝闪片岩.地质学报,1980,54(3):195-207.
    吴宣志,吴春玲,卢杰,等.利用深地震反射剖面研究北祁连一河西走廊地壳细结构.地球物理学报,1995,38(增刊):29—35
    夏林圻,夏祖春,任有祥,等.祁连秦岭山系海相火山岩.武汉:中国地质大学出版社,1991
    夏林圻,夏祖春,徐学义.北祁连山海相火山岩岩石成因.北京:地质出版社
    夏林圻,夏祖春,徐学义.北祁连山海相火山岩岩石成因.北京:地质出版社,1996
    肖序常,陈国铭,朱志直.祁连山古蛇绿岩的地质构造意义.地质学报,1978,54(4):287-295
    谢富仁,张世民,窦素芹,等.青藏高原北、东边缘第四纪构造应力场演化特征.地震学报,1999,21(5):502~512
    
    
    徐锡伟,陈文彬,于贵华,等.2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征.地震地质,2002,24(1):1—13
    徐锡伟,郑荣章,等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论.中国科学,2003,(待刊)
    袁道阳,石玉成,刘百篪.青藏高原东北缘地区晚第四纪水系沉积物年代标尺的初步研究.地震地质,1999,21(1):1-7
    杨小平.巴丹吉林沙漠腹地湖泊的水化学特征及其全新世以来的演变.第四纪研究,2002,22(2):97~104
    杨志红,姚檀栋,皇翠兰,等.古里雅冰芯中的新仙女木期事件记录.科学通报,1997,42(18):1975—1978
    姚檀栋,ThompsonLG,施雅风,等.古里雅冰芯中末次间冰期以来的气候记录研究.中国科学,D辑,1997,27(5):447—452
    姚檀栋,徐柏青,蒲健辰.青藏高原亚轨道时间尺度的气候变化.中国科学(D辑),2001,31(增刊):287-294.
    姚檀栋.末次冰期青藏高原的气候突变—古里雅冰芯与格陵兰GRIP冰芯对比研究.中国科学(D辑),1999,29(2):175-184
    叶建青,沈军,汪一鹏,等.柴达木盆地北缘的活动构造.见:活动断裂研究(5),北京:地震出版社,1996
    玉门油田石油地质志编写组.中国石油地质志(13卷).北京:石油工业出版社,1989.53~57
    张培震,邓起东,杨晓平,等.天山北麓的冰水洪积地貌与新构造运动.见:活动断裂研究—理论与应用(4),1995,63-78
    张招崇,毛景文,杨建民,等.北祁连山西段中元古代蛇绿岩的发现及其地质意义.矿物岩石地球化学通报,1998,17(2):114—118
    张招崇,毛景文,左国朝,等.北祁连西段早元古代变质火山岩的地球化学特征及其构造背
    章新平,施雅风,姚檀栋.青藏高原东北部降水中δ~(13)O的变化特征.中国科学(B辑),1995,25-540-547
    赵生贵.祁连造山带特征及其构造演化.甘肃地质学报,1996,5(1):16-29
    赵志军、方小敏、李吉均,等.2001,酒泉砾石层的古地磁年代与青藏高原隆升,科学通报,46(14):1208~1212
    中国地震局兰州地震研究所.北祁连山活动断裂带东段1:5万地质填图和特征地震研究报告.1995
    中国地震局兰州地震研究所.祁连山中东段重点监视防御区孕震活动构造的定量研究与地震危险性评估:[研究报告].2000,
    中国科学院地质研究所.中国大地构造纲要.1959,北京:科学出版社
    中国科学院青藏高原综合考察队,西藏第四纪地质,1983,北京:科学出版社
    
    
    周卫健,李小强,董光荣,等.新仙女木期沙漠/黄土过渡带高分辨泥炭记录,中国科学,D辑,1996,26(2):118—123
    左国朝,刘寄陈.北祁连早古生代大地构造演化.地质科学,1987,(1):14-24.
    左国朝,刘义科,张崇.北祁连造山带中—西段陆壳残块群的构造—地层特征.2002,地质科学,37(3):302-312
    左国朝,吴茂炳,毛景文,等.北祁连西段早古生代构造演化史.甘肃地质学报,1999,8(1):6—13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700