用户名: 密码: 验证码:
青藏高原北部隆升与盆地和地貌记录
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平均海拔约5000m的青藏高原有着清晰的南部边界——喜马拉雅山系,而高原的北部则存在着东西方向的差别。以阿尔金断裂为界,西部塔里木盆地与青藏高原以西昆仑山分隔,东部由高原内部向北依次发育着可可西里盆地、昆仑山系、库木库里-柴达木盆地、祁连山系和酒泉盆地(走廊盆地带),呈现出横跨6个纬度的“盆-岭”地貌格局。青藏高原东北部的独特“盆-岭”地貌是青藏高原形成过程中长期地质作用的产物。
     酒泉盆地的新生代与中生代有明显不同的构造特征,酒泉盆地的新生代以前陆盆地为主,而中生代为断陷盆地,中新生界在空间上构成了上下两个构造层,属于叠合盆地。酒泉盆地在新生代经历了4个演化阶段:(1)古新世坳陷沉降阶段(~37.7Ma),该阶段盆地的边界不受活动断裂控制,以垂向沉降为特征。(2)渐新世早期走滑拉分阶段(37.7-30.3Ma),该阶段盆地受阿尔金左行走滑断裂的控制。(3)渐新世晚期-中更新世前陆盆地阶段(29.5-0.13Ma),该阶段盆地受北祁连山前断裂控制。(4)晚更新世以来山间盆地阶段(0.13Ma~),盆地北部的宽台山和黑山的隆起导致了酒泉盆地四面环山的地貌格局。
     从构造-地层关系研究、地震资料对比分析、盆地充填历史分析和盆山关系分析研究发现,柴达木盆地在中新生代之交发生了重要的构造背景变化。柴达木盆地在新生代经历了三个构造-沉积演化阶段:(1)伸展盆地阶段(65-46Ma),东西方向的伸展构造是该阶段主要控盆构造环境;(2)前陆盆地阶段(46-2.45Ma),近南北方向挤压和造山带逆冲是该阶段的主要控盆构造,46-30Ma期间以昆仑山的向北逆冲为主,30Ma以后形成昆仑山和祁连山向柴达木盆地的对冲构造格局;(3)山间盆地阶段(2.45-0Ma),靠近阿尔金断裂的盆地西部发生褶皱和抬升,盆地沉积中心向东部迁移,昆仑山和祁连山的山前断裂的逆冲作用减弱或停止。
     可可西里地区的中生代地层仅发育复理石沉积为主的三叠系,侏罗白垩系缺夫。可可西里盆地新生代构造演化分为三个阶段:(1)走滑拉分盆地阶段(56-53Ma),盆地范围在金沙江缝合带内,金沙江缝合带在该阶段经历了一次左行走滑运动;(2)前陆盆地阶段(53-30.0Ma),该阶段盆地的范围具有向北阶段性扩展的特征,金沙江缝合带的南部首先褶皱并向北逆冲,其后逆冲断裂依次向北推进:风火山坳陷的北部(53-38.2Ma)—五道梁坳陷(38.2-31.0Ma)—卓乃湖坳陷(31.0-30.0Ma),可可西里盆地经历了约7Ma(30-23Ma之间)的沉积间断;(3)后前陆盆地阶段(23Ma-),盆地的向北逆冲作用结束,盆地在早期夷平面之上沉积了分布广泛的碳酸盐岩,20Ma开始,可可西里-巴颜喀拉板块的西部火山活动强烈,东部发生沉降,发育了曲果组碎屑岩沉积。
     高原北部新生代沉积盆地的演化具有演化序列的相似性,青藏高原北部以南北挤压为动力背景的前陆盆地在整个新生代盆地演化历史中占据了十分重要的地位:①可可西里盆地新生代的时间延限为50.7Ma(56-5.3Ma),以五道梁群作为可可西里盆地结束的上限,前陆盆地阶段占整个新生代盆地历史的92%;②新生代柴达木盆地的发育时限为65Ma,其中46-2.45Ma为前陆盆地阶段,前陆盆地阶段在整个新生代盆地历史中所占的比例为67%;③酒泉盆地新生代底部地层尚无古地磁年龄资料,参照沉积速率推算,其底界年龄应不超过40Ma,而前陆盆地阶段就占据了其中的29.4Ma(29.5-0.13Ma),所占比例约78%。从前陆盆地的形成序列上看,可可西里盆地的转换时间最早
    
     (53Ma),柴达木一库木库里盆地的转换时间次之(46Ma),酒泉盆地最晚(29.5Ma);对应的造山
    带逆冲和抬升时间为:金沙江缝合带(53Ma),昆仑山(46Ma),祁连山(29.5Ma),宽台山一黑山
     (0.1 3Ma)。
     盆地的研究显示,昆仑山向北逆冲的时间开始于46Ma,29.5Ma是北祁连前陆的逆冲推覆和酒
    泉前陆盆地形成的时间。但根据花岗岩体的冷却时间计算的结果显示,昆仑山和南祁连山在30Ma
    发生了快速的抬升和剥蚀作用。
     阿尔金断裂左行走滑活动的时间可能上延至中生代甚至更早,但阿尔金断裂走滑活动的主要时
    期是在新生代。阿尔金断裂的走滑速率在新生代呈逐渐增大的特征,阿尔金断裂的东段(宽台山-
    黑山一带)汇入南东东走向逆冲断裂—黑山一龙首山一合黎山断裂。
     根据盆地和造山带研究所建立的高原北部盆一山演化序列:
     ①65一53Ma,金沙江缝合带发生左行拉分走滑作用,形成了早期可可西里走滑拉分盆地,柴达
    木盆地受伸展构造控制,形成了断陷盆地;
     ②53一46Ma,受南部挤压作用影响,金沙江缝合带发生向北地逆冲,可可西里盆地性质发生转
    变,在可可西里南部开始发育前陆盆地,而柴达木盆地延续了拉张断陷的构造性质;
     ③46一29.5Ma,可可西里前陆盆地在这一阶段发生了向北扩展,形成北部的2个次级前陆坳陷带,
    柴达木盆地的南缘断裂—昆仑山北缘断裂发生向北逆冲,柴达木盆地开始前陆盆地阶段演化,酒
    泉盆地受阿尔金断裂的挤压走滑运动影响,发育了挤压走滑盆地;
     ④29.5一2.45Ma,可可西里盆地早期发生全面褶皱造山,之后在剥蚀夷平面上沉积了厚度不大的
    碳酸盐岩,中晚期发生大规模的火山活动,昆仑山继续向北推覆,祁连山发生向北和向南的
Qinghai-Tibet Plateau with 5000m in average altitude has the distinct south boundary-Himalaya Mountain. However, there are different characters from east to west in the north of the Plateau. Divided by Altyn Fault, Tarim Basin is separated from the Qinghai-Tibet Plateau by West Kunlun Mountain to the west, and a series of basin-ridge geomophical systems exist to the east, which cross over six latitude zone and respectively are Hoh Xil Basin, Kunlun Mountains, Kumkool and Qaidam Basin, Qilian Mountains and Jiuquan Basin (Hexi Corridor Basin) from south to north. This unique basin-ridge geomophy in the north-east of the Qinghai-Tibet Plateau is the result of tectonic action during forming of the Qinghai-Tibet Plateau.
    There are different tectonic character of Jiuquan Basin in Cenozoic and Mesozoic: it was a foreland basin in Cenozoic and was a downfaulted basin in Mesozoic. So it is a superimposed basin and there are two tectonic units from Mesozoic to Cenozoic. The evolution of Jiuquan Basin in Cenozoic can be divided into the following four stages: l)subsiding and depressing stage in Paleocene (~37.7Ma). Boundary of the basin of this stage was not controlled by fault and movement of the basin was mainly vertical subsiding; 2) strike-slip and pull-apart stage in Oligocene (37.7-30.3Ma). The basin was controlled by the Alytn sinistral strike-slip Fault; 3) foreland stage from Oligocene to middle Pleistocene (29.5-0.13Ma). The basin was controlled by piedmont fault of Qilan Mountain; 4) intramontane basin stage from latter Pleistocene to present (0.13Ma~). Uplift of Kuantai Mountain and Heshan Mountain lead to the basin surrounded by mountains.
    Based on the research of tectonics-strata relationship, contrast and analysis of seismic data, infilling history and relationship between basins and mountains, we can find that Qaidam Basin had an important change of tectonic background between Mesozoic and Cenozoic. In Cenozoic, Qaidam Basin experienced three stages of tectonic and sedimentary evolution: 1) stretched basin stage (65-46 Ma). In this stage, east-westward stretch structure was the essential control-basin structure; 2) foreland basin stage (46-2.45Ma). Approximate south-northward extruding and orogenic zone thrusting was the main control-basin tectonic background. The tectonic evolution sequence was: Kunlun Mountain thrusted northward from 46 to 30Ma; Kunlun Mountain and Qilian Mountain thrusted against Qaidam Bsain after 30Ma; 3) piedmont basin stage (2.45-0Ma). Near the Altyn fault, the west part of basin folded and lift up, and sedimentary centre removes to the east of the basin. Thrusting of piedmont fault of Kunlun Mountain and Qilian Moun
    tain decreased or stopped.
    Mesozoic strata in Hoh Xil basin only have Triassic sediments, which are mainly about flysch sediments, but are lack of Jurassic-Cretaceous sediments. Hoh Xil basin experienced three stages of tectonics-sediment evolution in Cenozoic: 1) strike-slip and pull-apart basin stage (56-53Ma). The basin was in the Jinsha River suture zone, and Jinsha River suture zone expericed a sinistral strike-slip
    
    
    movement; 2) foreland basin stage (53-30.0Ma), The basin had a character of northward phasic extension. The south of Jinsha River suture zone firstly folded and thrust northward, then thrust faults propelled northward progressivly. north of Fenghuoshan depression (53-38.2Ma), Wudaoliang depression (38.2-31.0Ma), Zhuonaihu depression (31.0- 30.0 Ma). Hoh Xil basin experienced about 7Ma (30-23Ma) sedimentary discontinuity; 4) post-foreland basin stage (23Ma-). Northward thrust of basin ended up, and carbonate rock deposited broadly on the planation surface. Since 20Ma, intense volcanicity took place in the west of Hoh Xil Basin-Bayan Har plate and depressing occurred in the east, which led to depositing of clastic rock of Quguo Formation.
    Cenozoic sedimentary basins in the north of the Qinghai-Tibet Plateau have similar evolution process, and foreland basins formed on the north-south extrusing background are very important in the evolution history of enti
引文
1. A. Hirn, M. Sapin, J.-C. Lepine, J. Diaz, J. Mei, Increase in melt fraction along a south-north traverse below the Tibetan Plateau, evidence from seismology, Tectonophysics, 1997, 273:17-30.
    2. Achache J, Courtillot V, Besse J. Paleomagnetic constrains on the late Cretaceous and Cenozoic tectonics of southeastern Asia. Earth Planet. Sci. Lett. 1983, 63:123-136.
    3. Ahnert F. Functional relationship between denudation relief and uplift in large mid-latitude drainage basins. American Journal of Science. 1970, 268:243-263.
    4. Anderson D L, Tanimoto T, Zhang Y, Plate tectonics and hotspots[J], Science, 1992, 256: 1645-1651.
    5. Armijo R, Tapponier P, Han T. Late Cenozoic right lateral strike-slip faulting in southern Tibet. J. Geophys. Res., 1989, 94:2787-2828.
    6. Arnaud N O, Vidal P, Tapponnier P, et al. The high K_2O volcanism of northwestern Tibet: Geochemistry and tectonic implications. Earth Planet Sci Lett, 1992, 111(3-4):351-367.
    7. Ashraf Uddin, Neil Lundberg. Cenozoic history of the Himalayan-Bengal system: Sand composition in the Bengal basin, Bangladesh. GSA Bulletin, 1998, 119(4): 497-511.
    8. Audrey Galve, Alfred Hirn, Jiang Mei et al. Modes of raising northeastern Tibet probed by explosion seismology[J]. Earth and Planetary Science Letters 203 (2002): 35-43.
    9. Beaumount C. Forlandbasins. Geophys. J. Roy. Astron. Soc., 1981,65:291-329.
    10. Besse J, Courtillot V, Pozzi J.E, Westphal M and Zhou Y.X. Palmagnetic estimates of Cenozoic convergence in the Himalayan thrusts and Zangbo suture. Nature, 1984, 311:621-626.
    11. Bhattacharjee C C. The ophiolites of northeast India--a subduction zone ophiolite complex of the India-Burman orogenic belt. Tectonophysiss, 1991, 191:213-222.
    12. Bidddle K T and Christie-Blick, N., eds. Strike-slip deformation, basin formation and sedimentation; Society of Economic Paleontologists and Mineralogists. Spe. Pub. 37: 386.
    13. Bluck B J. Evolution of a strike -slip fault controlled basin, Upper Old Red Sandstone, Scotland. In P F Balance and H. G Reading, eds. Sedimentation in oblique-slip mobile zones. International Association of Sedimentologists Special Publication, 1980, 4: 63-78.
    14. Burbank D W. Causes of recent Himalayan uplift deduced from deposit patterns in the Ganges basin. Nature, 1992, 357(25): 680-682.
    15. Burbank et al. The Himalayan foreland basin, in: The Tectonics of Asia, New York, Cambridge University Press, 1996.
    16. Burchfiel B C, Steward J H. "pull-apart" origin of the central segment of Death Valley, California. Geol. Soc. America Bull, 1966, 77:439-442.
    17. Burchfiel et. al. The South Tibetan Detachment System, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol. Soc. Am. Spec. Pap. 1992, 269: 1-41.
    18. C. F. Uhlir and J. -M. Schramm. Large-scale erosional processes at the southern flank of the Ganesh Himal range, central Nepal. Geological Society of America, 1999, Special Paper 328: 303-312.
    19. C.K. Morley. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics, 2002, 347: 189-215.
    20. Chamberlain C. P., Zeitler P K., Erikson E. Constraints on the tectonic evolution of the northwestern
    
    Himalayan from geochronology and petrologic studies of Babusar Pass, Pakistan. J. Geol. 1991, 99(6): 829-849.
    21. Chen H., Dobson J, Heller F et al. Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous: A consequence of India-Asia collision. Earth Planet. Sci. Lett. 1995, 134: 203-217.
    22. Chinnery M A. The vertical displacements associated with transcurrent faulting. J. Geophys. Res. 1965, 70 (18): 4627-4632.
    23. Christie-Blick N, Biddle K T. Deformation and basin formation along strike-slip faults. In: Biddle K T and Christie-Blick N, ed. Strike -Slip Deformation, Basin Formation and Sedimentation. Society of Economic Paleontologists and Mineralogists. Spe. Publ. 1985, 37: 1-34.
    24. Chung S, Lo C, Lee T, et al. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature, 1998, 394: 769-773.
    25. Chung Sun-Lin, Lo Ching-Hua, Lee Tung-yi, et al. Diachronous uplift of the Tibetan plateau starting 40Myr ago. Nature, 1998, 394(20): 769-773.
    26. Cobbold P. R., Davy Ph. Indentation tectonics in nature and experiment. 2.Central Asia: Bulletin Geological Institute, University of Uppsala, 1988, 14:143-162.
    27. Cochran, J. R. Himalayan uplift, sea level, and the record of Bengal Fan sedimentation at the ODP Leg 116 sites: Proc. Ocean Drilling Program, Scientific Results, 1990, 116:397-414.
    28. Coleman M. Evidence for plateau uplift before 14 Myr age from a new minimum age for eastwest extension. Nature, 1995, 374: 49-52.
    29. Condie K C. Plate tectonics and crustal evolution. Pergamon Press 1982.
    30. Copelend P, Harrison T M. Episodic rapid uplift in the Himalayan revealed by ~(40)Ar/~(39)Ar analysis of detrial K-feldspar and muscovite. Bengalfan. Geology. 1990. 18(4): 354-357.
    31.Coward W P,Kidd W S F,潘耘等.拉萨至格尔木的构造.见:中英青藏高原综合地质考察队.青藏高原地质演化.北京:科学出版社,1990,321-347.
    32. Culling, W.E.E. Soli creep and the development of hillside slopes. Jour. Geol., 1963, 71: 127-161.
    33. D. Gopala Rao, R. S. Krishna, D. Sar. Crustal evolution and sedimentation history of the bay of Bengal since the Cretaceous, Journal of Geophysical Research, 1997, 102 (88): 17747-17768.
    34. Daly M C. The palate tectonic and Basin evolution of Neozoic era in Indonesia. Marine and Petroleum Geology. 1991, 8:2-21
    35. Daniel D. Schelling. Frontal structural geometries and detachment tectonics of the northeastern Karachi arc, southern Kirthar Range, Pakistan. Geological Society of America, 1999, Special Paper 328: 287-302.
    36. David A. Pivnik, Neil A. Wells. The transition from Tethys to the Himalaya as recorded in northwest Pakistan. GSA Bulletn, 1996, 108(10): 1295-1313.
    37. Davy Ph. and Cobbold, P. R. Indentation tectonics in nature and experiment. 1. Experiments scaled for gravity: Bulletin Geological Institute, University of Uppsala, 1988, 14:129-141
    38. Decelles P G, Gehrels G E, Quade J, et al. Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold thrust belt, western Nepal[J]. Geol. Soc. Ame. Bulletin, 1998,1:2-21
    39. Deng Wanming. Cenozoic volcanism and intraplate subduction in northern margin of the Tibetan plateau. Chinese J. Geoch. 1991, 10(2): 140-152
    40. Devey et. al. Tectonic evolution of the India-Eurasia collision zone. Ecol. Geol. Helv. 1989, 82:
    
    714-734.
    41. Dewey J F. Extensional collapse of orogens. Tectonics, 1988, 7(6): 1123-1139.
    42. Dewey J, Cande S., Pitman W. C. Tectonics evolution of the India-Eurasia collision Zone. Eclogae geologicae Helvetiae, 1989, 82:717-734
    43. Dewey, J. F. Burke, K. C. Tibetan Variscan and Precambrian basement reactivation: products of continental collision, J. Geol., 1973, 81: 683-692.
    44. Dewey, J. F., Bird, J. M. Mountain belts and the new global tectonics: Journal of Geophysical Research, 1970, 75:2 625-2 647.
    45. Dewey, J. F., Shackleton, R.M., Chang Chengafa & Yiyin, S. The tectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond., 1988, A, 327: 379-413.
    46. Dickinson W R. Interpreting provenance relations from detrital models of sandstones. In: Zuffa G G. Provenance of Arenites. 1985, 333-361.
    47. Doughlas W B, Louis A D, Christian F L. Reduced himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 1993, 364: 48-50.
    48. Doughlas W. Burbank. 1992, Cause of recent Himalaya uplift deduced from deposited patterns in the Ganges basin, Nature, 357 (25): 680-682.
    49. Dynamics of sedimentary basin inversion: observations and modeling. Tectonophysics, 2003, 373: 1-3.
    50. EDS. Fifty-Five Million Years of Tibetan Evolution Recorded in the Indus Fan. 2000, 81 (35): 277-281.
    51. Eduardo Garzanti, Salvatore, Critelli, Kaymond V. Ingersoll. Paleogeographic and paleotectonic evolution of the Himalayan Range as reflected by detrital modes of Tertiary sandstones and modern sands (Indus transect, India and Pakistan), GSA Bulletin, 1996, 108(6): 631-642.
    52. Edurado Garaznti. The Indus destics: forearc basin sedimentation in the Ladakh Himalaya, Thierry van Haver Sedimentary Geology, 1988, 59: 237-249.
    53. Einsele, G. Sedimentary basins: evolution, facies, and sediment budget. Speinger-Verlag. 1992, 366-383.
    54. England P, Houseman G. Extension during continental convergence, with application to the Tibetan plateau. Journal of Geophysical Research, 1989, 94: 17561-17579.
    55. England P. and Houseman G. A. Finite strain calculations of continental deformation Ⅱ: application to the India-Asia plate collision. Journal of Geophysical Research, 1986, 91: 2664-3676.
    56. England P., Molnar P. Surface uplift, uplift of rocks and exhumation of rocks. Geology, 1990, 18(12): 1173-1177.
    57. England, P., Houseman, G. Finite strain calculations of continental deformation, 2. comparison with the India-Asia collision zone, J. geophys. Res., 1986, 91:3664-3676.
    58. F. Metivier, Y. Gaudemer, P. Tapponnier, B. Meyer, Northeastward growth of the tibet plateau deduced from balanced reconstruction of two depositional areas: the Qaidam and Hexi Corridor basins, China, Tectonics, 1998, 17:823-842.
    59. Francois Metivier, Yves Gaudemer, Paul Tapponnier et al. Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int., 1999, 137:280-318
    60. Funahara S, Nishiwaki N, Murata F et al. Clockwise rotation of the Red River fault inferred from paleomagnetic study of Cretaceous rocks in the Shan-Thai -Malaya block of the western Yunnan, China. Earth Planet. Sci. Lett. 1993, 117:29-42.
    
    
    61. Funahara S, Nishiwaki, Miki Met al. Paleomagnetic study of Cretaceous rocks from the Yangtze Block, central Yunnan, China: Implication for the India-Asia collision. Earth Planet. Sci. Lett. 1992, 113: 77-91.
    62. Galer S J G. Interrelationships between continental freeboard, tectonics and mantle temperatures. Earth Planet Sci. Lett., 1991,105(1-3): 214-228.
    63. Galloway, W. E. Genetic stratigraphic sequences in basin analysis Ⅰ: Architecture and genesis of flooding-surface bounded depositional units: American Association of Petroleum Geologists Bulletin, 1989, 73: 125-142.
    64. Gansser, A. Jurassic marine bivalve faunas and biogeography in Southeast Asia. Geol. Palaeont. Se Asia, 1964, 25: 229-237.
    65. Gerard Wittlinger, Frederic Masson, Georges Poupinet et. Al. Seismic topography of northern Tibet and Kunlun: Evidence for crustal blocks and mantle velocity contrasts. Earth and Planetary Science Letters, 1996, 139:263-279.
    66. Gerhard Einsele, Lothar katschbacher, Andreas Wetzel. The Himalaya-Bengal Fan Denudation-Accumulation System during the past 20 Ma. The Journal of Geology, 1996, 104:163-184.
    67. Gill J. Geochemistry of Viti Levu, Fiji, and its evolution asanisland arc. Contrib. Mineral. Petrol., 1970, 27: 179-203.
    68. Guillaume Dupont-Nivet, Robert F. Butler, An Yin. Paleomagnetism indicates no Neogene rotation of the Qaidam Basin in northern Tibet during Indo-Asian collision. Geology, 2002, 30(3): 263-266.
    69. Haihong C, Dobson J, Heller F et al. Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous: A consequence of India-Asia collision. Earth Planet. Sci. Lett. 1995, 134:203-217.
    70. Halim et. al. New Cretaceous and early Tertiary paleomagnetic results from Xining-Lanzhou basin, Kunlun and Qiangtang block, China: implications on the geodynamie evolution of Asia. J. Geophys. Res., 1998, 103 (B9): 21025-21045.
    71. Harding T P, Vierbuchen R C., Christie-blick, N. Structural styles, plate-tectonic settings, and hydrocarbon traps of divergent (transtensional) wrench faults, In: Biddle K T and Christie-Blick N, ed. Strike -Slip Deformation, Basin Formation and Sedimentation. Society of Economic Palenotologists and Mineralogists. Spe. Publ. 1985, 37:51-77
    72. Harding T P. Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion. American Association of Petroleum Geologist Bulletin,. 1985, 69:582-600
    73. Harland W B, Armstrong R L, Cox A V, Craig L E, Smith A G, Smith D G. A geologic time scale 1989. Cambridge: Cambridge University Press, 1990. 263.
    74. Harnet J et al. The production of granitic melts during ultrametamorphism[J]. Contr Miner Petrol, 1970, (28): 310-318.
    75. Harrision T M, Copelend P. et al. Raising Tibet. Science, 1992, 22: 1663-1670.
    76. Harrison C G A, Miskell K J, Brass G W et al. Continental hypsography. Tectonics, 1983, 2(2): 357-377
    77. Harrison C G A. Rates of continental and mountain building. Geol. Rundch. 1994, 83(2):431-447.
    78. Harrison et. al. The origin of Himalaya anatexis and invertedmetamorphism models and constrains. J. Asian Earth.Sci. 1999, 17: 755-772.
    79. Harrison T M et al. An early Miocene transition in deformation, and its significance for Indo-Asian
    
    tectonics. T. Geophys, Res. 1992, 97:7159-7182.
    80. Harrison T M., Copeland P. Kidd W S F et al. 1992, Raising Tibet. Science, 255:1663-1670
    81. Hauck et. al. Crustal structure of Himalayan orogen at 90 degreeseast longitude from the Project INDEPTH deep reflection profiles. Tectonics 1998, 17:481-500.
    82. Hay, W. W., Shaw, C. A., and Wold, C. N. Mass-balanced paleogeographic reconstruction: Geologische Rundschau. 1989, 78(1): 207-242.
    83. Houseman G. A. and England P. C. Crustal thickening verus lateral expulsion in the India-Asian continental collision. Journal of Geophysical Research, 1993, 98:12233-12249.
    84. Houseman G. A. and England P. C. Finite strain calculations of continental deformation Ⅰ: Methods and general results for convergent zones. Journal of Geophysical Research, 1986, 86:6115-6132.
    85. Houseman G. A., and England P. C. A lithosphere- thickening model for the Indo-Asian collision: In Yin A., and Harrison M., The Tectonic evolution of Asia. Cambridge, Cambridge University Press. 1996, 1-17.
    86. Huang K, Opdyke N D. Paleomagnetic results from Cretaceous and Jurassic rocks of south and Southwest Yunnan: evidence for large clockwise rotations in the Indochina and Shan-Thai-Malaya terrenes. Earth Planet. Sci. Lett. 1991, 17:507-524.
    87. Ingersool R V. Tectonics of sedimentary basins. Geological Society of America Bulletin, 1988, 100: 1704-1719.
    88. Ishtiaq A. K. Jadoon, Wofgang Frisch, Tariq M. Jaswal et al. Triangle zone in the Himalayan foreland, north Pakistan. Geological Society of America, 1999, Special Paper 328: 275-286.
    89. J. Dewey, K. Burke, Tibetan, Variscan and Precambrian basement reactivation: products of continental collision, J. Geol. 81 (1973) 683^692.
    90. Jaeger J J, Courtillot V, Tapponnier P. Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary and the India-Asia collision. Geology, 1989, 17:316-319.
    91. Jakes P and White A J R. Major and trace element abundances involcanic rocks of orogenic areas. Bull. Geol. Soc. Am., 1972, 83:29-40.
    92. Jean-Philippe Avouac, Paul Tapponnier. Kinematic model of active deformation in central Asia. Geophysical Research Letters, 1993, 20(10):859-898.
    93. Jeff D Corrigan, Kevin D. Crowley Unroofing of the Himalayas: A view from apatite fission-track analysis of Bengal Fan sediments. Geoghysical Research Letters, 1992, 19(23): 2345-2348.
    94. Jiang M, Hirn A, Poupinet G. Tibetan Plateau seismic experiment: Design and preliminary results, 1992-1993. Global Tectonics and Metallogeny, 1995, 4:199-201
    95. Johnson N M, Opdyke, N J, Johnson G D, et al. Magnetic polarity stratigraphy and ages of Siwalik Group rocks of the Potwar Plateau, Pakistan. Palaeogeography, Palaeoclimatology, Palaeoecology, 1982, 37:17-42.
    96. Johnson, C.M, Powell C.M and Veevers J.J. Spreading history of the eastern Indian Ocean and Giant India's northward flight from Antarctica and Australia, Geo. Soc.Am.Bull. 1976, 87:1560-1566.
    97. Josegh R. Curray, Sediment volume and mass beneath the Bay of Bengal, Earth and planetary Science letters, 1994, 125: 371-383.
    98. Joseph R. Curray, David G. Moore. Growth of the Bengal Deep-sea Fan and Denudation in the Himalayas. Geological Society of America Bulletin, 1971, 82: 563-572.
    99. Joseph R. Curray. Possible greenschist metamonphism at the base of a 22-km sedimentary section, Bay of Bengal, Geology, 1991, 19:1097-1100.
    
    
    100. K. Fuchs, G. Mueller, Computation of synthetic seismograms with the reectivity method and comparison with observations, Geophys. J. Roy. Astron. Soc. 1971, 23:417-433.
    101. Kazuo A, Asahiko T. Two phases uplift of Higher Himalayas since 17 Ma. Geology, 1992, 20: 391-394.
    102. Kevin R. Pogue, Michael D. Hylland, and Robert S. Yeats. Stratigraphic and structural framework of Himalayan foothills, northern Pakistan. Geological Society of America, 1999, Special Paper 328: 257-274.
    103. Krishnan, M. S. Geology of India and Burma, Higginbothams (Private)Press LTD. 1956.
    104. Krishnaswami, S., et al. Strontium isotopes and rubidium in the Ganga-Brahmaputra river system: Weathering in the Himalaya, fluxes to the Bay of Bengal and contributions to the evolution of oceanic ~(87)Sr/~(86)Sr: Earth and Planetary Science Letters. 1992, 109: 243-253.
    105. Larson R L, Peter O. Mantle plumes control magnetic reversal frequency. Earth Planet Sci Lett, 1991, 107: 437-447.
    106. Le Fort P. Manaslu leucogranite: a collision signature of the Himalaya, a model for its genesis and emplacement. J Geophys Res, 1981, 86(B11): 10545-10568.
    107. Le Pichon, X., Fournier, M., Jolivet, L. Kinematics. Topography, shortening, and extrusion in the India-Eurasia collision: Tectonics, 1992, 11:1085-1098.
    108. Leighton, M. W. Interior cratonic basins: A record of regional tectonic influences, in van der Pluijm, B. A., and Catacosinos, P.A., eds., Basins and basins basement of eastern, North America: Boulder, Colorado, Geoloigical Society of America Special Paper 1996, 308: 77-93.
    109. Leloup P H, Harrison T M, Ryerson F Jet al. Structural, petrological and thermal evolution of Tertiay ductile strikeslip shear zone, Diancang Shan, Yunnan. J. Geophys. Res., 1993, 98:6715-6743
    110. Leopold, L. R. And Langbein. W. H. The concept of entropy in landscape processes evolution, United States geological survey professional paper, 1962, 500-A, 1-20.
    111. Levera O M et al. The ~(40)Ar/~(39)Ar theremochronometry for slowly cooled samples having a distribution of diffiusion domain sizes. J. G eophys. Res. 1989, 94(17): 917-935.
    112. Liu Z, Wang C. Oil shale in the Tertiary Hoh Xil basin, northern Qinghai-Tibet plateau. Am. Assoc. Pet. Geol. Bull., 1999, 83: 1890.
    113. Lorenzo J M. Vera E E. Thermal uplift and ersion across the continent - ocean transform boundary of the southern Exmouth Plateau, Earth Planet Sci. Lertt., 1992, 108(1-3): 79-92.
    114. Lyon-Caen H. Comparison of the upper mantle shear wave velocity structure of the Indian shield and the Tibetan plateau and tectonic implications. Geophys J Royal Astronom Soc, 1986, 86: 727-749.
    115. Lyon-chen et. al. Gravity anomalies,flexure of the India plate ,and the structure support and evolution of Himalaya and Ganga basin. Tectonics, 1985, 4: 513-538.
    116. M. R. W. Johnson. Volume balance of erosional loss and sediment deposition related to Himalayan uplifts. Journal of the Geological Society, 1994, 151: 217-220.
    117. Mahmood Alam. Geology and Depositional History of Cenozoic sediments of the Bengal Basin of Banglandesh. Palaeogeography, Palaeoclimatology, Paleoecology, 1989, 69:125-139.
    118. Mann P, Hempton P R, Bradley D C et al. Development of pull-apart basins. Jour. Geology, 1983, 91: 529-564.
    119. Mattauer, M. Les subductions intracontinentales des chaines tertiaires d'Asie: leurs relations avec les decrochements, Bull. Soc. geol. Fr., 1986, 8:143-157.
    120. Mattauer, M. Intracontinental subduction, crust-mantle decollement and crustal-stacking wedge in
    
    the Himalayas and other collision belts, in Collision Tectonics, eds Coward, M.P. & Ries, A.C., Geol. Soc. Spec. Publ., 1986, 19: 37-50.
    121. Matte P, Tapponnier P, Arnaud N, et al. Tectonics of western Tibet, between the Tarim and Indus. Earth and Planetary Science Letters, 1996, 142:311-330.
    122. Mazhar Qayyum, Robert D. Lawrence, Alan R. Niem Molass-Delta-Flysch Contnunm of the Himalayan Orogeny and clsure of the Paleogene Katawaz Remnant Ocean, Pakistan. International Geology Review, 1997, 39: 861-875.
    123. Mazhar Qayyum, Robert D. Lawrence, Alan R. NiemDiscovery of the palaeo-Indus delta fan complex. Journal of the Geological Society, 1997, 54: 753-756.
    124. Mckenna L. W, Walker J D, Geochemistry of crustally derived leucocratic igneous rocks from the Ulugh Muztag Area, Nothren Tibet and their implications for the formation of the Tibetan Plateau. Geophys Tes, 1990, 95(B13):21483-21502.
    125. McNutt M K, Diament M, Kogan M G. Variations of elastic plate thickness at continental thrust belts. J. Geophys Res. 1988, 93(A9): 8825-8838.
    126. Métivier F, Gaudemer Y, Tapponnier P, Klein M. Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int,, 1999, 137:280-318.
    127. Métivier F, Gaudemer Y, Tapponnier P, Meyer B. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics, 1998, 17: 823-842.
    128. Metivier, F., and Gaudemer, Y. Mass transfer between eastern Tien Shan and adjacent basins (central Asia): Constraints on regional tectonics and topography: Geophysics Journal International, 1997, 128: 1-17.
    129. Metivier, F., Gaudemer, Y., Tapponnier, P., and Klein, M. Mass accumulation rates in Asia during the Cenozoic: Geophysics Journal International, 1999, 137:280-318.
    130. Metivier, F., Gaudemer, Y., Tapponnier, P., and Meyer, B. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China: Tectonics, 1998, 17:823-842.
    131. Meyer, B., Tapponnier, P., Bourjot, L., et al. Crustal thickening in Gansu-Qinhai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibret plateau. Geophys. J. Int. 1998, 135: 1-47.
    132. Miall A D. Principles of sedimentary basin analysis. New York: Springer-Verlag, 1984, 668
    133. Miller C, Schuster R, Klotzli U, et al. Post-collisionai potassic and ultrapossic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for Mantle source characteristics and petrogenesis. J Petrol, 1999, 40(9): 1399-1424.
    134. Milliman J D. Meade R H. World-wide delivery of river sediment to oceans. J. Geol., 1983, 91(1): 1-21.
    135. Molnar P, Burchfiel B C, Lian K, et al. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and quatative estimates of its contribution to the convergence of India and Eurasia[J].Geology, 1987, 15:249-253
    136. Molnar P. England P. Late Cenozoic uplift of mountain ranges and global climate change: chicken of egg? Nature, 1990, 246:29-34
    137. Molnar P., Tapponnier. Cenozoic tectonics of Asia: effects of a continental collision. Science, 1975, 189: 419-426.
    
    
    138. Molnar, P. & Lyon-Caen, H. Some simple physical aspects of the support, structure, and evolution of mountain belts, Geol. Soc. Am. Spec. Paper, 1988, 218:179-207.
    139. Molnar, P. & Tapponnier, P. Apossible dependence of tectonic strength on the age of the crust in Asia. Earth planet. Sci. Lett., 1981, 52:107-114.
    140. Molnar, P., England, P., and Martinod, J. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon: Reviews of Geophysics, 1993, 31: 357-396.
    141. Moody J D and Hill M J. Wrench-fault tectonics. Bulletin of the Geological Society of America. 1956, 67: 1207-1246
    142. More. P and Iriving E. Tentative paleocontinental maps for the early phanerozoic and Proterozoic. The journal of geology, 1978, 86(5): 535-561.
    143. Mugnier J.L., Leturmy P., Mascle G. The Siwaliks of western Nepal I. Geometry and Kinematics. Journal of Asian Earth Sciences, 1999, 17: 629-642..
    144. Murphy et. al. Did the Indo-Asian collision alone create the Tibetan plateau? Geology, 1997, 25: 719-722.
    145. Ni, J., Barazangi, M. Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian Plate beneath the Himalaya, J. geophis. Res., 1984, 89:1147-1163.
    146. Nilsen T H, Mclaughlin R J. Comparsion of tectonic framework and depositional patterns of the Hornelen strike-slip basin of Norway and the Ridge and Little Sulphur Creek strike-slip basins of California. In: Biddle K T and Christie-Blick N, ed. Strike -Slip Deformation, Basin Formation and Sedimentation. Society of Economic Palenotologists and Mineralogists. Spe.Publ. 1985, 37: 79-104.
    147. Owen H G. Has the earth increased in size? In: Chattrergee S and N Hotton Ⅲ eds. New Concepts in Global Tectonics, Lubbock, Texas Tech. Univ. Press, 1992, 450
    148. P. Molnar, P. Tapponnier, Cenozoic tectonics of Asia, efects of a continental collision, Science 189 (1975) 419-426.
    149. P. Tapponnier, B. Meyer, J.P. Avouac, G. Peltzer, Y. Gaudemer, S. Guo, H. Xiang, K. Yin, Z. Chen, S. Cai, H. Dai, Active thrusting and folding in the Qilian Shah, and decoupling between upper crust and mantle in northeastern Tibet, Earth Planet. Sci. Lett. 97(1990) 382^403.
    150. Palmer M. R., Edmend J. M. The strontium istope budget of the moden ocean. Earth Planet. Sci. Lett. 1989, 92: 11-26.
    151. Parrish et. al. Mioocene metamorphism and two stage thrusting in the greater Himalayan sequence,Annapuma Sanctuary, Nepal, Geol.Soc. Am., 1993, 108: 904-911.
    152. Patriat P, Achache J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 1984, 311: 615-621.
    153. Pelter G, Tapponier P. Formation and evolution of strike-slip faults and basins during the India-Asia collision an experiment approach, J. Geophys. Res., 1988, 93: 15085-15117.
    154. Peter G. Decelles, George E. Gehrels, Jay Quade et al. Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, Western and Central Nepal. tectonics, 1998, 17(5): 741-765.
    155. Pinet P. Sourian M. Continental erosion and large-scale relief. Tectonics, 1988, 7(3): 563-582.
    156. Pitman W.C., Ⅲ, Andrew J. A. Subsidence and thermal history of small pull-apart basins; In K. T. Bidddle and Christie-Blick, Eds. Strike-slip deformation, basin formation and sedimentation; Society of Economic Paleontologists and Mineralogists. Spe. Pub. 1985,37: 45-49.
    157. Polanchan S et al. The formation of Neozoic Era Basins in Thailand. Marine and Petroleum Geology,
    
    1991, 8: 84-96.
    158. Qizhi Chen, Jeffrey T. Freymueller, Qi Wang et al. A deforming block model for the present-day tectonics of Tibet. Journal of Geophysical Research, 2004, 109(B01403): 1-16.
    159. Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in Northern Pakistan, Nature, 1989,342; 163-165.
    160. Rasoul B. Sorkhubi, Kazunori Arita. Toward a solution for the Himalayan puzzle: Mechanism of inverted metamorphism constrained by the Siwalk sedimentary record, Current science, 1997, 71(11): 862-873.
    161. Ratschbacher et. al. Distributed deformation in southern and western Tibet during and after the India-Asia collision,J. Geophys. Res., 1994, 99: 19817-19945.
    162. Reading H G. Chacteristics and recognition of strike-slip fault systems, in P F Balance and H. G Reading, Eds. Sedimentation in oblique-slip mobile zones, International Association of Sedimentologists Special Publication, 1980, 7-26.
    163. Rebecca Bendick and Roger Bilham. Search for buckling of the southwest Indian coast related to Himalayan collision. Geological Society of America, 1999, Special Paper 328: 313-321.
    164. Richard A. Beck, Douglas W. Burbank, William J. Sercombe et al. Stratigraphic evidence for an early collision between northwest India and Asia, Nature, 1995, 375: 55-58.
    165. Richard A. Beck, Thomas Mulder, The Himalayan Foreland basin. Douglas W. Burbank, 149-188
    166. Rohtash Kumar, Sumit K. Ghosh, and Satish J. Sangode. Evolution of a Neogene fluvial system in a Himalayan foreland basin, India. Geological Society of America, 1999, Special Paper 328:239-256.
    167. Rowley D B. Minimum age of initiation of collision between India and Asia North of Everest based on the subsidence history of the Zhepure Mountain section. The Journal of Geology, 1998, 106: 229-235.
    168. Rowley, D. Minimum age of initiation of collision between India and Asia North of Everest based on the subsidence history of the Zhepure Mountain section: The Journal of Geology, 1998, 106: 229-235
    169. Ruddiman W F, Raymo M E, Prell W L, Kutzbach J E. The uplift-climate connection: A synthesis. In: Ruddiman W F. (Ed.), Tectonic uplift and climate change, New York and London: Plenum Press, 1997, 471-515.
    170. Rumelhart et. al. Cenozoic vertical rotation of southern Tarim: constrains on the tectonic evolution of the Altyn Tagh faultsystem,Geology, 1999, 27: 819-822.
    171. Ruxton B P, Mc dougall I. Denudation rare in NE Papua from K-Ar dating of lavas. American Journal of Science. 1967, 265:545-561
    172. Schelling. The tectonostratigraphy and strcture of the eastern Nepal Himalaya. Tectonics, 1992, 11925-11943.
    173. Schumm S A. The disparity between rates of Denudation and orogeny. In: US Feological Survey Professional Paper, 1963, 13.
    174. Schumm, S. A. Draimage Basin Morphology, 1977, 21-44.
    175. Sengor A M C. Plate tectonics and orogenic research after 25 year—a Tethyan perspective. Earth Sci. Rev., 1990, 27: 1-201.
    176. Shanley K. W., McCabe P. J. Prospectives on the sequence stratigraphy of continental strata. AAPG Bullentin, 1994, 78: 544-568.
    177. Sloss, L. L. Sequences in the cratonic interior of North America: Geological Society of America Bulletin, 1963, 75:93-113.
    
    
    178. Srivastavad et. al. Thrust geomietries and deep structures of the outer and lesser Himalaya, Kumaon and Garwal (India): implications for evolution of the Himalaya fold-and -thrust belt. Tectonics, 1994, 13: 89-109.
    179. Stephenson R. Lambeck K. Erosion - isostatic rebound models for uplift: on application to south-eastern Austrilia. Geophys. J. R. Astron Soc., 1985, 820):31-55
    180. Sulvatore Critelli, Raymond V. Ingersoll Sandstone Petrology and Provenance of the Siwalik Group, (Northwestern Pakistan and westernsoutheastern Nepal), Journal of Sedimentary Research, 1994, A46(4): 815-823.
    181. Sylvester A G. Strike-Slip faults. Geol. Soc. America Bull, 1988, 100:1666-1703.
    182. Takao Yano, Wu Genyao, Tang Mingqing, and Sha Shaoli. Tectono-sedimentary development of backarc continental basin in Yunnan, southern China. Journal of Southeast Asian Earth Science, 1994, 9(1): 153-166.
    183. Tapponier P, Molner E Active faulting and Cenozoic tectonics of the Tien Shah, Mongolia, and Baykal regions. J. Geophys. Res., 1979, 84: 3425-3459.
    184. Tapponier P, Molner P. Slip-line field theory and large scale continental tectonics. Nature, 1976, 264:319-324.
    185. Tapponier P, Pelter G, and Yin A et al. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 1982, 10:611-616.
    186. Tapponier P, Pelter G, Armijo R. On the mechanics of the collision between India and Asia, In: collision tectonics, Coward M. P and Ries A.C eds, Geol. Soc. London Spec. Publ., 1986, 19:115-157
    187. Tapponnier, P., Molnar, P. Active faulting and tectonics in China, Journal of Geophysical Research, 1977, 82(20): 2905-2930.
    188. Timothy R. Mchargue, James E. Webb Internal Geometry, Seismic Facies, and Petroleum Potential of Canyons and Inner Fan Channels of the Indus Submarine Fan, The American Association of petroleum Geologists Bulletin, 1989, 70(2): 161-180.
    189. Topping, David, J. Paleogeographic reconstruction of the death valley extended region, Evidence from Miocene large rock-avalance deposites the Amargosa Chaos Basin, California, Geological Society of America Bulletin, 1993, 105(9):1190-1213.
    190. Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan Plateau: Implications for convective thinning of the lithosphere and the source of Ocean Island Basalts. J Petrol, 1996, 37(1):45-71.
    191. Turner S, Arnaud N, Liu J, et al. Timing of Tibet uplift constrained by analysis of volcanic rocks. Nature, 1993, 364(1):49-54.
    192. Turner S, Hawkesworth C, Liu J, et al. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 1993, 364: 50-54.
    193. Upreti B.N. An overview of the stratigraphy and tectonics of the Nepal Himalaya. Journal of Asian Earth Sciences, 1999, 17: 577-606.
    194. Van-der Woerd J, Ryerson F J, Tapponnier P, et al. Uniform slip-rate along the Kunlun fault: Implication for seismic behaviour and large2scale tectonics. Geophysical Research Letters, 2000, 27 (16) :2353-2356.
    195. Vauchez A., Nicolas A. Mountain building: strike-parallel motion and mantle anisotropy. Tectonophys, 1991, 185: 183-201.
    196. Veizer, J., and Jansen, S. L. Basement and sedimentary cycling-2: Time dimension to global
    
    tectonics: Journal of Geology. 1985, 93: 625-664.
    197. Wang C H, Burner W C. Holocene mean uplift rates across an active plate-collision boundary in Taiwan. Science, 1990, 248:204-206.
    198. Wang C -S, Liu Z -F, Zhao X, et al. Sedimentary of the Fenghuoshan Group in the Hoh Xil basin, northern Qinghai-Tibet plateau: Implication for the plateau uplift history. In: Universities of Potsdam, Tübingen and Würzburg. The 14th Himalaya-Karakorum-Tibet Workshop. Kloster Ettal: Terra Nostra, 1999, 166-167.
    199. Wang Chengshan, Wang Guozhi, and Zeng Yunfu. Sedimentary response in the Yingge sea basin to uplift of the western Yunnan plateau. In: Hamidullah Set al Eds. 13th Himalaya-Karakoram-Tibet International Workshop, Abstract Volume. Special Issue, Geological Bulletin, University of Peshawar, 1998,31:42-43
    200. Wang E, Burchfile, Royden L H, Chen L. Late Cenozoic Xianshuihe-Xiaojing, Red River, and Dali fault system of Southwestern Sichuan and Central Yunnan, China. The Geological Society of America, Special Paper, 1998, 36-69.
    201. Wang J H, Yin A, Harrison T M, et al. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth Planet Sci Lett, 2001, 188(1-2): 123-133
    202. Wang Qi, Zhang Peizhen, Freymueller J T et al. Present-day crustal deformation in China constrained by Global Positioning System Measurements. Science, 2001, 294: 574-577.
    203. Wang-Ping Chen, Chu-Yung Chena, John L. Na'belek. Present-day deformation of the Qaidam basin with implications forintra-continental tectonics. Tectonophysics, 1999, 305:165-181.
    204. Wilcox R E, Harding T P, and Seely D R. Basic wrench tectonics. American Association of Petroleum Geologist Bulletin. 1973, 57: 74-96.
    205. Wittlinger G, Tapponnier P, Poupinet G, et al. Tomographic evidence for localized lithospheric shear along the Altyn Tagh Fault. Science, 1998, 28: 74-76.
    206. Wolfgang Rosler, Wolfgang Metzler, Erwin Appel. Neogene Magnetic polarity of some fluviatile Siwalik sections. Nepal, Geophys. J. Int., 1997, 130:89-110.
    207. Yang Jing-sui, Xu Zhi-qin, Bai Wen-ji, et al. Cenozoic volcanism on the Qinghai-Tibet plateau and its genesisi. Contin Geodynam, 1997, 2(1): 1-11.
    208. Yang Z, Besse J. Paleomagnetic study of permin and Mesozoic sedimentary rocks from Northern Thailand supports the extrusion model for Indochina. Earth Planet. Sci. Lett. 1993, 117: 525-552.
    209. Yin An et. al. Geologic evolution of Himalaya-Titetan orogen,Annu. Rev. Earth Planet.Sci., 2000, 28: 211-180.
    210. Ying A., Nie S. A phanerozoic palinspastic reconstruction of China and its neighboring region. In "The tectonic evolution of Asia", edited by Ying A and Harrison T M., Cambridge University Press, 442-485
    211. Yongjun Yue, Bradley D. Ritts, Stephan A. Graham et al. Slowing extrusion tectonics: lowered estimate of post-Early Miocene slip rate for the Altyn Tagh fault, Earth and Planetary Science Letters, 2003, 217: 111-122.
    212. Yongjun Yue, Bradley D. Ritts, Stephan A. GrahamInitiation and Long-Term Slip History of the Altyn Tagh Fault, Int. Geol. Rev. 2001, 43: 1087-1093.
    213. Zechun Liu, Wang Yongjina, Chen Yea et al. Magnetostratigraphy and sedimentologically derived geochronology of the Quaternary lacustrine deposits of a 3000 m thick sequence in the central Qaidam basin, western China, Palaeogeography, Palaeoclimatology, Palaerecology, 1998, 140:
    
    459-473.
    214. Zeitler P K. Cooling history of the new Himalaya, Pakistan. Tectonics, 1985, 4(1): 127-151.
    215. Zhang Peizhen, Peter Molnar, William R. Downs. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature, 2001, 410: 891-897.
    216. Zhang Qingsong et al. Basic characteristics of Neotectonic Movement of Qinghai-Xizang Plateau. Beijing: Science Press, 1981.
    217. Zhao Xixi, Liu Zhifei, Wang Chengshan et al. New Magnetostratigraphic and sedimentologic results from tertiary sediments of the Hohxil Basin, northern Qinghai-Tibet plateau: implications for the Cenozoic tectonic history of the Tibet Plateau, Earth Science Frotiers(China University of Geoscience, Beijing), 2000, 7Sup: 239-240.
    218. Zhao. W., Morgan. W. J. Uplift of Tibetan Plateau. Tectonics, 1985, 4:359-369.
    219. Zhu Lidong, Wang Chengshan, Liu Dengzhong. The evolution of Lanping relft basin from Ladinian in middle Triassic epoch to early Jurassic epoch. Earth Science Frontiers(China University of Geoscience, Beijing), 2000, 7Sup:290.
    220.安作相.反转构造与老君庙油田形成.西安石油学院学报,1999,14(2):5-9.
    221.曹兴山,甘肃酒泉Qy1钻孔磁性地层划分与对比。地层学杂志,1997,21(4):259-266.
    222.曹永清,邓晋福.东昆仑—柴达木盆地北缘岩浆活动、构造演化、深部过程与成矿.现代地质,2000.8.
    223.陈炳蔚,王彦斌.左国朝青藏高原北部地体划分及其构造演化.地球物理学报,1995,38(增刊Ⅱ):98-113.
    224.陈布科,赵永胜.邝平河等滇西陇川盆地形成机制.石油与天然气地质,1994,15(4):308-315
    225.陈海泓,郝杰,Dobson J P等.云南思茅地区新生代的持续旋转.科学通报,1993,38(24):2269-2272.
    226.陈建平,陈建军,张立平等.酒西盆地油气形成与勘探方向新认识(二)。石油勘探与开发,2001,28(2):15-18.
    227.陈建平,陈建军,张立平等.酒西盆地油气形成与勘探方向新认识(三)。石油勘探与开发,2001,28(3):12-16.
    228.陈建平,陈建军,张立平等.酒西盆地油气形成与勘探方向新认识(一)。石油勘探与开发,2001,28(1):19-22.
    229.陈杰,卢演俦,丁国瑜.祁连山西段及酒西盆地地区阶地构造变形的研究。西北地震学报,1998,20(1):28-36.
    230.陈杰,卢演俦,丁国瑜.祁连山西段及酒西盆地第四纪构造运动的阶段划分。第四纪研究,1996,3:263-271.
    231.陈隆勋,刘骥平等.青藏高原隆起纪海陆分布变化对亚洲大陆气候的影响.第四纪研究,1999,4
    232.陈文彬,刘百篪,徐锡伟等.祁连山西段玉门断裂晚第四纪活动特征及相关问题的讨论。西北地质学报,1999,21(4):389-394.
    233.陈文寄,李齐.汪一鹏哀牢山一红河左旋走滑剪切带中新世抬升时间序列.地质论评,1996,42(5):385—390.
    234.陈正乐,万景林,王小凤。阿尔金断裂带8Ma左右的快速走滑及其地质意义.地球学报,2002,23(4):295-300.
    235.陈正乐,张岳桥,陈宣华等.阿尔金断裂中段晚新生代走滑过程的沉积响应.中国科学(D)2001,31(增刊):90-96
    
    
    236.陈志勇,林兴荣.莺歌海盆地低水位沉积体系发育特征.中国海上油气,1992,6(5):1-9.
    237.陈智梁,刘宇平,张选阳等.全球定位系统测量与青藏高原东部流变构造.第四纪研究,1998,2:262-270.
    238.陈智梁,张选阳,沈凤等.中国西南地区地壳运动的GPS监测.科学通报,1999,44(8):851-854
    239.成鑫荣,陈东敬,陆培德.古高度再造与集水盆地古地形,海洋出版社,1993,15-35.
    240.程绍平,邓起东,闵伟,杨桂枝黄河晋陕峡谷河流阶地和鄂尔多斯高原第四纪构造运动,第四纪研究,1998,(3):238-248.
    241.迟效国,李才,金巍等.藏北新生代火山作用的时空演化与高原隆升.地质论评,1999,45(增刊):978-986
    242.丛柏林,吴根耀,张旗,张儒媛等.中国滇西古特提斯构造带岩石大地构造演化,中国科学,1993,23(11):1201-1207
    243.崔春龙,张锦泉.滇西耿马晚第三纪盆地沉积学及含油气性.矿物岩石,1994,14(3):54-61
    244.崔军文,唐哲民,邓晋福等.阿尔金断裂系,地质出版社,北京,1999.
    245.崔之久,高全洲,刘耕年等,夷平面、古岩溶与青藏高原隆升.中国科学(D辑),1996,26(4):378-386.
    246.崔作舟,李秋生,吴朝东等。格尔木-额济纳旗地学断面的地壳结构与深部构造。地球物理学报,1995,38(S):15-28
    247.戴俊生,曹代勇.柴达木盆地构造样式的类型和展布.西北地质科学,2000,21(2):57-63.
    248.戴苏兰,刘树根,赵永胜,赵泽江等.云南保山盆地的形成与演化.石油实验地质,1998,20(2):116-123.
    249.邓晋福,杨建军,赵海玲等。格尔木—额济纳旗断面走廊域火成岩-构造组合与大地构造演化。现代地质,1996,10(3):330-343.
    250.邓晋福,赵海玲,赖绍聪等,白云母/二云母花岗岩形成与陆内俯冲作用[J]。地球科学,1994,19(2):139-147.
    251.邓万明,郑锡澜,松本征夫.青海可可西里地区新生代火山岩的岩石特征和时代.岩石矿物学杂志,1996,15(4):289-298.
    252.邓万明,黄萱.钟大赉.滇西新生代富碱斑岩的岩石特征与成因.地质科学,1998,33(4):412-425
    253.邓万明,孙宏娟.青藏北部板内火山岩的同位素地球化学与源区特征.地学前缘,1998,5(4):307-317.
    254.邓万明,郑锡澜,松本征夫.青海可可西里地区新生代火山岩的岩石特征与时代.岩石矿物学杂志,1996,15(4):289-298.
    255.邓万明.青藏北部新生代钾质火山岩微量元素和Sr,Nd同位素地球化学研究[J].岩石学报,1993,9(4):379-387.
    256.邓万明.青藏高原北部新生代板内火山岩.北京:地质出版社,1998.
    257.邓万明.青藏高原北部新生代半内火山岩,地质出版社,北京1998.
    258.邓万明.西藏阿里北部的新生代火山岩——兼论陆内俯冲作用.岩石学报,1989(3):1-11
    259.邓万明.中昆仑造山带钾玄质火山岩的地质、地球化学和时代.地质科学,1991(3):193-206
    260.邓中林,侯元才,古凤宝.青海东部第三纪西宁-贵德-化隆盆地充填特征、孢粉组合方式与古气候演变,青海地质,2000,(1):43-53.
    261.丁林,张进江,周勇等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征.岩石学报,1999,15(1):408-420.
    262.丁林,钟大赉,潘裕生等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据.科学通报,1995,40(16):1497-1500.
    
    
    263.董文杰,汤懋苍.青藏高原隆升和夷平过程的数值模型研究.中国科学(D辑),1997,27(1):65-69.
    264.端木合顺,朱莲芳.酒西盆地下白垩统下沟组重力流水下扇沉积.沉积学报,1990,8(2):76-85.
    265.顿铁军.酒西盆地碎屑岩储层研究.西北地质,1995,16(2):42-49.
    266.顿铁军.酒西盆地鸭儿峡地区变质岩储层研究.西北地质,1995,16(2):50-57.
    267.范承淹.甘肃西部侏罗系的划分与对比.煤田地质与勘探,1993,21(5):7-11.
    268.范育才.酒泉西部盆地新第三系生油的可能性。成都地质学院学报,1989,16(4):15-20.
    269.方盛明,冯锐,李长法等.亚洲中部地区地幔上部密度非均匀性研究.科学通报,1997,42(6):633-637.
    270.方小敏,李吉均,朱俊杰等。甘肃临夏盆地新生代地层绝对年代测定与划分。科学通报,1997,42(14):1457-1471
    271.高锐,李朋武,李秋生等.青藏高原北缘碰撞变形的深部过程.中国科学(D),2001,31(增刊):66-71
    272.葛肖虹,段吉业,李才等.柴达木盆地的形成与演化.1990.
    273.葛肖虹,张梅生,刘永江.阿尔金断裂研究的科学问题与研究思路.现代地质,1998,12(3):295-301.
    274.郭福祥.滇西兰坪思茅地区晚白垩世至早第三纪的成盐带和成盐期.地质科学,1986,21(2):161-169.
    275.国家地震局,兰州地震研究所.祁连山活动断裂系.北京,地震出版社,1993.
    276.国家地震局,宁夏地震局.海原活动断裂带.北京,地震出版社,1990.
    277.国家地震局《阿尔金活动断裂》编写组.阿尔金活动断层.北京,地震出版社,1990.
    278.何登发,李德生,吕修祥.中国西北地区含油气盆地构造类型.石油学报,1996,17(4):8-18.
    279.何浩生,何科昭,朱祥民等.滇西北金沙江河流袭夺的研究.现代地质,1989,3(3):319-330.
    280.何科昭,赵崇贺,何浩生.帅开业等滇西陆内裂谷与造山作用.中国地质大学出版社,1996,55-57,87-122
    281.何科昭,何浩生等.滇西造山带的形成与演化.地质论评,1996,42(2):97-106.
    282.何明喜,刘池洋主编.盆地走滑变形与古构造分析.两北大学出版社,1992,1-142.
    283.何希虎,周瑞琦,张双林,龙建章.红河断裂带地震地质特征.云南地质,1983,2(2):88-101.
    284.何熙光.南方第三纪煤田展布规律初论.云南地质,1983,2(2):122-135.
    285.胡受权,郭文平,曹运江等.柴达木盆地北缘构造格局及在中、新生代的演化.新疆石油地质,2001,22(1):13-19.
    286.黄秉维.中国综合自然地理区划草案.科学通报,1959,(18):594~6021
    287.黄汉纯,黄庆华,马生.柴达木盆地地质与油气预测——立体地质、三维应力、聚油模式.地质出版社,1996.
    288.黄华芳,彭作林,卢伟等.酒西盆地、酒东盆地第三系磁性地层的划分与对比.甘肃地质学报,1993,2(1):6-16.
    289.黄华芳,郑国东,方国庆等.酒西盆地南缘推覆构造及含油领域研究进展.1992,7(5):45-46.
    290.黄华芳,郑国东,方国庆等.酒西盆地南缘推覆构造及其含油领域.1993,14(3):181-190.
    291.姜波,徐嘉伟.一个中生代的拉分盆地——宁芜盆地的形成及演化.地质科学,1995,24(4):314-321.
    292.蒋忠信.滇西北三江河谷纵剖面的发育图示与演化规律.地理学报,1987,42(1):16-25.
    293.焦北辰.中华人民共和国地名词典(甘肃省).北京,商务印书馆,1995,343
    294.金性春,周祖翼,汪品先等.大洋钻探与中国地球科学.同济大学出版社,1995,11:119-121
    
    
    295.李炳元,潘保田,高红山.可可西里东部地区的夷平面与火山年代.第四纪研究,2002,22(5):397-405.
    296.李炳元,王富葆等.西藏第四纪地质.北京,科学出版社,1983.
    297.李炳元.青藏高原的范围.地理研究,1987,6(3):57~63.
    298.李才,范和平,徐峰.青藏高原北部新生代火山岩岩石化学特征及其构造意义.现代地质,1989,3(1):58-69.
    299.李德敏,叶素娟,张国华.莺歌海盆地LD15-1构造莺黄组砂岩储层的成岩作用.中国海上油气,1995,9(5):307—312
    300.李海兵,杨经绥,史仁灯等.阿尔金走滑断陷盆地的确定及其与山脉的关系.科学通报,2002,47(1),63-67;
    301.李海兵,杨经绥,许志琴等。阿尔金断裂带印支期走滑活动的地质及年代学证据。科学通报,2001,46(16),1333-1338;
    302.李吉均,方小敏,马海洲等.晚新生代黄河上游地貌演化与青藏高原隆起.中国科学(D辑),1996,26(4):316-322.
    303.李吉均,文世宣,张青松等.青藏高原隆起的时代、幅度和形式的探讨.中国科学,1979,6:608-616
    304.李继亮.滇西三江带的大地构造演化.地质科学,1988,23(4):337-345.
    305.李康,钟大赉.滇西高黎贡断裂带糜棱岩的显微变形特征及其构造意义.岩石学报,1991,(3):65-72.
    306.李培军,夏邦栋.走滑挤压盆地—以中晚三叠世下扬子沿江盆地为例.地质科学,1995,30(2):130-137.
    307.李朋武,崔军文,高锐等.柴达木地块新生代古地磁新数据及其构造意义.地球学报,2001,22(6):563-568.
    308.李秋生,彭苏萍,高锐等。东昆仑大地震的深部构造背景.地球学报,2004,25(1):11-16.
    309.李秋生.祁连山造山带深部构造特征与双向挤压隆升模式.地质力学学报,1996,2(3):32-33.
    310.李思田,林畅松,张启明等.南海北部大陆边缘盆地幕式裂陷的动力过程及10 Ma以来的构造事件.科学通报,1998,43(8):797-810
    311.李思田,路凤香,林畅松等.中国东部及邻区中新生代盆地演化及地球动力学背景.中国地质出版社,132-144.
    312.李思田主编.含能源盆地沉积体系-中国内陆和近海主要沉积体系类型的典型分析.中国地质大学出版社,1996,P 1-137.
    313.李铁锋,任明达.老君庙M层沉积特征及储层非均质性研究.河北地质学院学报,1995,18(4):365-370.
    314.李铁锋.酒西盆地新构造运动与油气分布关系.河北地质学院学报,1990,13(2):127-136.
    315.李翔,张玲华.利用微型计算机进行世界古大陆再造成图-方法与实例.现代地质,1989,3(1):17-26.
    316.李永军,付国民,阎海卿等.柴达木盆地干柴沟地区第三系层序地层分析及其油气勘探意义.西安工程学院学报,2000,22(3):11-18.
    317.李有利,谭利华,段烽军等.甘肃酒泉盆地河流地貌与新构造运动.干旱区地里,2000,23(4),304-309.
    318.李有利,杨景春,李保俊等.河西走廊榆木山边缘断层构造地貌研究.地质力学学报,1997,3(4):20-26.
    319.梁其中,尹济云,江能人.应用古地磁研究云南古猿的生存年代.云南地质,1994,13(3):
    
    291-305.
    320.梁世军,王发泰,胡亭等.酒泉盆地第三系新的时代划分意见.石油学报,1992,13(2):102-108.
    321.林舸,范蔚茗,尹汉辉.中国滇西兰坪-思茅地洼盆地内中轴断裂带的初步研究.大地构造与成矿学,1991,15(1):15-21.
    322.林鹤鸣,夏邦栋.下扬予区中生代溧水—南陵拉分阶盆地的厘定.石油与天然气地质,1997,18(4):276-281.
    323.林茂炳等.龙门山造山带造山模式研究.成都,成都科技大学出版社,1996.
    324.刘池阳,任战利,梁武申等.柴达木盆地西部地区构造特征及其演化,1991.
    325.刘登中,陶晓风,朱利东,王国芝等.兰坪盆地盆山耦合.西南交通大学出版社,1999,22-107
    326.刘登中,王国芝,李佑国,朱利东等.澜沧江结合带北段同位素地质研究新进展.中国区域地质,1999,(18):334-335.
    327.刘登忠,马润则,陶晓风等.西藏措勤县幅1/25万区域地质调查报告,2003.
    328.刘东生,郑绵平等.亚洲季风系统的起源和发展及其与两极冰盖和区域构造活动的时代耦合性.第四纪研究,1998,(3):194-204.
    329.刘光鼎,郝天珧,刘伊克.中国大地构造宏观格架及其与矿产资源的关系——根据地球物理资料的认识.科学通报,1997,42(2):113-118.
    330.刘光勋.东昆仑活动断裂带及其强震活动.中国地震,1996,12(2):119-126.
    331.刘桂侠,杨永泰,管全俊.从冷科1井下部地层的归属探讨柴达木盆地成盆时间.地球学报,2003,24(2):133-136.
    332.刘国惠等.西藏变质岩及火成岩.中华人民共和国地质矿产部地质专报(第11号),三、岩石矿物地球化学。北京:地质出版社,1990.
    333.刘鸿允.中国古地理图研制发展的脉络与前景.第四纪研究,1996,3:346-352.
    334.刘嘉麒,刘强.中国第四纪地层.第四纪研究,2000,20(2):129-141.
    335.刘善印,钟大赉,吴根耀.滇西景谷—镇沅地区第三纪重力流沉积及其意义.沉积学报,1998,16(2):50-53.
    336.刘善印,钟大赉,吴根耀.滇西景谷—镇沅地区早第三纪陆陆碰撞期走滑挤压盆地.地质科学,1998,33(1):1-8.
    337.刘树臣译.质量平衡的古地理再造.国外地质科技,1991,(3-4):32-50.
    338.刘树根,戴苏兰,赵永胜,宋振亚等.云南保山盆地烃源岩及其天然气生成特征.天然气工业,1998,18(1):18-24
    339.刘树根.龙门山冲断带与川西前陆盆地的形成演化.成都科技大学出版社,1993,P109-110.
    340.刘顺等.青藏高原中部风火山地区第三纪地壳缩短量.地震地质,2001,23.
    341.刘永江,叶慧文,葛肖虹等.阿尔金断裂变形岩激光微区40Ar/39Ar年龄.科学通报,2000,45(19):2101-2104.
    342.刘玉琳,张志诚,郭召杰等.库鲁克塔格基性岩墙群K-Ar等时线年龄测定及其有关问题讨论.高校地质学报,1999,5(1):54-58.
    343.刘泽纯,王建,汪勇进等.柴达木盆地茫崖凹陷井下下第三系的年代地层学与气候地层学研究.地层学杂志,1996,20(2):104-113.
    344.刘增乾,李兴振等.三江地区构造岩浆带的划分与成矿分布规律.地质出版社
    345.刘增乾,徐宪,潘桂棠等.青藏高原大地构造与形成演化.地质出版社,1990.
    346.刘志飞,王成善.可可西里盆地早渐新世雅西措群沉积环境分析及古气候意义.沉积学报,2000,18(3):355-361.
    347.隆瑞,迟振卿.对中国第四系中统划分方案的回顾与讨论.第四纪研究,2000,20(2)101-107.
    
    
    348.卢演俦,丁国瑜.与亚洲古季风有关的中国及邻区亲新生代构造演化的几个问题.第四纪研究,1998,(3):205-212.
    349.罗建宁.西南三江地区层控矿床的“盆、相、位”控矿机制剖析.成都地质矿产研究所所刊,1993,21-32.
    350.罗金海,车自成.中亚与中国西部侏罗纪沉积盆地的成因分析.西北大学学报(自然科学版),2001,31(2):167-170.
    351.罗君烈,杨友华,赵准等.滇西特提斯的演化及主要金属矿床成矿作用.地质出版社,1994,157-220.
    352.罗平,杨式升,马龙等.酒西盆地青西坳陷湖相纹层状泥质白云岩中泥级斜长石成因、特征与油气勘探意义.石油勘探与开发,2001,28(6):32-33.
    353.马宗晋,李存悌,高祥林.全球新-中生代构造的基本特征.地质科技情报,1996,15(4):21-25.
    354.孟繁聪,杨经绥,史仁灯等.可可西里雄鹰台中新世橄榄安粗质火山岩的成因.地球化学,2002,31(3):243-252.
    355.孟自芳,黄华芳,陈延章.酒西盆地晚二叠世古地磁及其大地构造意义.沉积学报,1990,8(3):58-65.
    356.潘桂棠.青藏高原新生代构造演化.北京,地质出版社,1990.
    357.潘宏勋,葛肖虹,刘俊来.对祁连山北缘榆木山隆起的质疑.长春科技大学学报,2000,30(1):9-13.
    358.潘裕生,孔祥儒,钟大赉等,高原岩石圈结构、演化和动力学.见:孙鸿烈,郑度.青藏高原形成演化与发展.广州:广东科技出版社,1998.
    359.潘祖荫,万晓樵,孙玉肖,王春修.乐东30-1-1(A)井晚第三纪沉积环境与古生产率.中国海上油气,1994,8(2):80-90.
    360.钱辉,姜枚,宿和平等.中国天然地震探测深部构造的研究现状与发展,物探与化探,2000,24(1):1-11.
    361.青藏油气区石油地质志编写组,1990,青藏油气区,中国石油地质志14卷,石油工业出版社,北京
    362.青海省地震局,中国地震局地壳应力研究所.东昆仑活动断裂带.北京:地震出版社,1999.
    363.青海省地质矿产局.青海省区域地质志.北京:地质出版社,1991,662
    364.邱楠生,顾先觉,丁丽华等.柴达木盆地西部新生代的构造.热演化研究.地质科学,2000,35(4):456-464.
    365.任建业,刘文龙,林畅松等.中国大陆东部晚中生代裂陷作用的表现形式及其幕式扩展,现代地质,1996,10(4):526-531.
    366.任金卫,汪一鹏,吴章明等.青藏高原北部东昆仑断裂带第四纪活动特征和滑动速率.活动断裂编委会编.活动断裂研究.北京:地震出版社,1999.
    367.任战利,刘池阳,张小会等.酒东盆地热演化史与油气关系研究.沉积学报,2000,18(4):619-623
    368.任战利,刘池阳,张小会等.酒泉盆地群热演化史恢复及其对比研究.地球物理学报,2000,43(5):635-645.
    369.任战利,赵重远.中生代晚期中国北方沉积盆地地热梯度恢复及对比.石油勘探与开发,2001,28(6):1-4.
    370.任战利.中国北方沉积盆地热演化史的对比.石油天然气地质,2000,21(1):33-37.
    371.阮培华,万晓樵,徐钰林等.莺琼盆地第三纪微体古生物群及地层划分.中国海上油气,1994,8(6):377-386.
    372.尚彦军,夏邦栋,杜延军等.下扬子区侏罗纪-早白垩世盆地沉积构造特征及演化.沉积学报,
    
    1999,17(2):188-191.
    373.沈振枢,程果,葛同明.柴达木盆地第四纪磁性地层特征及其意义.青海地质,1992,2:19-29
    374.施雅风,李吉均等.青藏高原晚新生代隆升与环境变化,广东科技出版社,1998.
    375.史大年,姜枚,马开义等.阿尔金断裂带地壳和上地幔结构的P波层析成像.地球物理学报,1999,42(3):341-350.
    376.孙鸿烈,郑度.绪论.见:孙鸿烈主编1青藏高原的形成演化.上海:上海科学技术出版社,1996.
    377.孙延贵.可可西里北缘中新世火山活动带的基本特征.青海地质,1992,1(2):40-47.
    378.孙延贵.可可西里山北麓橄榄白榴岩的发现及意义.青海地质科技情报,1993,(37):32-35.
    379.谭富文,潘桂棠,徐强.羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升[J].岩石矿物学杂志,2000,19(2):121-130.
    380.谭利华,杨景春,段烽军.河西走廊新生代构造运动的阶段划分.北京大学学报(自然科学版),1998,34(4):523-532.
    381.汤良杰,金之钧,张明利等.柴达木盆地构造古地理分析.地学前缘(中国地质大学,北京),2000,7(4):421-429.
    382.童国榜,张俊牌,羊向东等.云贵高原晚新生代孢粉植物群与环境变迁.海洋地质与第四纪地质,1994,14(3):91-103.
    383.万晓樵.西藏第三纪有孔虫生物地层及地理环境.现代地质,1987,1(1):15-47.
    384.万渝生,许志琴,杨经绥等.祁连造山带及邻区前寒武纪变质基底的时代和组成.地球学报,2003,24(4):319-324.
    385.汪品先,刘传联,赵泉鸿等.沙河街组沉积时期的东营期:东营凹陷沙河组古湖泊及其生储条件研究总结报告.1996,212.
    386.王成善,刘志飞,王国芝等.新生代青藏高原三维古地形再造.成都理工学院学报,2000,27(1):1-7.
    387.王成善,伊海生,朱利东等.青藏地区可可西里盆地区域石油地质调查报告(上册),1998.
    388.王非,罗清华,李齐等.柴达木盆地北缘30Ma左右的去顶剥蚀作用.矿物岩石地球化学通报,2001,20(4):228-230.
    389.王峰,徐锡伟,郑荣章.阿尔金断裂带东段距今20ka以来的滑动速率.地震地质,2003,25(3):349-358.
    390.王根绪,程国栋.内陆河流域生态环境的空间分异特征.地理科学,1998,18(4):355-361.
    391.王国灿.隆升幅度与隆升速率研究方法综述.地质科技情报,1995,14(2):17-22.
    392.王国芝,王成善,刘登中,刘树根.滇西高原第四纪以来的隆升和剥蚀.海洋地质和第四纪地质,1999,19(4):67-74.
    393.王国芝,王成善,曾允孚.中新世以来滇西高原隆升的沉积学证据.矿物岩石地球化学通报,1999,18(3):167-170.
    394.王洪潜.酒泉盆地构造特征及找油方向。石油勘探与开发,1993,20(增刊):15-19.
    395.王鸿祯主编.中国古地理图集.北京,地图出版社,1983,121-138.
    396.王建,席萍,刘泽纯等.柴达木盆地西部新生代气候与地形演变.地质论评,1996,42(2):166-173.
    397.王建力,李吉均,方小敏.临夏盆地早更新世东山古湖沉积的高分辨气候记录.地理科学,1998,18(4):349-354.
    398.王金定译.旋转极点和板块运动再造.河南地质情报,1986,2总51:29-31
    399.魏明建,王成善,万小樵等.第三纪青藏高原高程与古植被变迁.现代地质,1998,12(3):318-326.
    400.吴根耀.滇西北地区第三纪的逆冲一推覆构造.大地构造成矿学,1994,18(4):331-338.
    401.吴根耀.滇西北丽江地区第四纪断裂活动的方式、机制及其对环境的影响.第四纪研究,1992,
    
    3:265-276.
    402.吴根耀.中缅泰交界区的断裂及其新构造活动方式.第四纪研究,1991,1:28-37.
    403.吴功建,肖序常,李廷栋.青藏高原亚东-格尔木地学断面.地质学报,1989,63(4):281-295.
    404.吴汉宁,刘池阳,张小会等.用古地磁资料探讨柴达木地块构造演化.中国科学(D),1997,27(1):9-14.
    405.吴怀春,张世红,韩以贵.白垩纪以来中国西部地体运动的古地磁证据和问题.地学前缘(中国地质大学.北京),2002,9(4):355-369.
    406.吴锡浩.青藏高原东南部地貌边界与金沙江水系发育.山地研究,1989,7(2):75-84.
    407.夏伦煜.南海北部陆架巨厚海相第四系的发现.科学通报,1988,33(23):1804-1805.
    408.向树元,王国灿,邓中林.东昆仑东段新生代高原隆升重大事件的沉积响应.地球科学,2003,28(6):615-620.
    409.肖爱芳,黎敦朋,张汉军等.新疆库术库里盆地渐新—上新统孢粉组合特征与古气候演变.陕西地质,2003,21(1):36-44.
    410.肖桂英,霍本东.莺琼盆地的勘探前景.海洋地质与第四纪地质,1989,9(3):83-93.
    411.谢德宜,王燮培,1993,酒西盆地的扭断裂系统初探。石油勘探与开发,20(6),8-14;
    412.谢全民,李锋,马彩琴.酒西盆地鸭儿峡油田志留系潜山油藏地质特征及油水分布.特种油气藏,2001,8(4):5-7.
    413.邢成起,张杰,吕德徽.关于阿尔金北缘活动断裂带运动方式的转变机制的讨论.西北地震学报,1998,20(2):52-57.
    414.熊绍柏,刘宏兵.青藏高原西部的地壳结构.科学通报,1997,42(12):1309-1311.
    415.熊英,程克明,杨志明.酒西盆地石油非均质性的控制因素.沉积学报,2000,18(1):139-145.
    416.徐叔鹰.共和盆地晚新生代环境变迁,青海柴达木盆地晚新生代地质环境演化.科学出版社,1986,19-33.
    417.徐旺,霍永禄,颜玉贵.河西走廊地区构造特征与油气分布代沉积盆地.石油工业出版社。1990,169-185.
    418.徐锡伟,P.Tapponnier,J.Van Der Woerd等.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论,中国科学(D),2003,33(10):967-974.
    419.许红,蔡峰.莺歌海盆地崖13-1气田成烃地震相及有机相.海洋地质与第四纪地质,1989,9(4):59-66.
    420.许荣华,N.Harris,C.L.Lewiss等.拉萨至格尔木的同位素地球化学,(中国地质科学院主编),北京:地质出版社,1990,287-321
    421.许志琴,姜枚,杨经绥.青藏高原北部隆升的深部构造物理作用-以格尔木-唐古拉山地质地球物理综合剖面为例.地质学报,1996,70(3):195-206.
    422.许志琴,侯立伟,王宗秀等.中国松潘—甘孜造山带的造山过程.地质出版社,1992.
    423.许志琴,卢一伦,汤耀庆等.东秦岭复合山链的形成、变形、演化及板块动力学.北京:中国环境科学出版社,1988,1-193.
    424.许志琴.韧性剪切带及喜马拉雅山链的变形机制,喜马拉雅岩石圈构造演化总论.北京,地质出版社,1988.
    425.薛光琦,钱辉,姜枚等.青藏高原东北部天然地震探测与岩石圈深部特征.地球学报,2003,24(1):19-26.
    426.颜丹平,赵其强,汪新文.滇西新构造运动时期陆内伸展作用.现代地质,1993,7(3):303-311.
    427.杨达源,吴胜光,王云飞.黄河上游的阶地与水系变迁.地理科学,1996,16(2):137-143.
    428.杨惠心,禹惠民,李鹏武.柴达木地块古地磁研究及其演化.长春地质学院学报,1992,
    
    22(4):420-426.
    429.杨坤光,马昌前.大陆剥蚀速率与造山速率研究的某些进展.地质科技情报,1996,15(14):89-96.
    430.杨明慧.柴达木盆地新构造运动主要特征与成因机制.海洋地质与第四纪地质,1997,17(3):71-78.
    431.杨天水,杨振宇,孙知明等.东祁连造山带陆相盆地早白垩世古地磁新结果及其构造意义,中国科学(D):2001,31(9):735-744.
    432.杨逸畴,李炳元等.西藏地貌,北京,科学出版社,1983.
    433.杨永泰,张宝民,席萍等.柴达木盆地北缘侏罗系展布规律新认识.2001,25(2):154-159.
    434.杨友华,赵准.试论金顶超大型铅锌矿床的成矿条件.云南地质,1991,10(2):230-240.
    435.杨振德.一条巨型花岗岩推覆体.云南地质,1995,14(2):99-107,
    436.杨振德.云南临沧花岗岩的冲断叠瓦构造与推覆构造.地质科学,1996,31(2):130-137.
    437.杨振宇,Jean Besse,孙知明等.印度支那第三纪构造滑移与青藏高原岩石圈构造演化.地质学报,1998,72(2),112-125
    438.杨治林.柴达木盆地新生代岩相古地理及其演化:青海柴达木盆地晚新生代地质环境演化,北京,科学出版社,1986,1-18。
    439.杨中轩.南祁连拉脊山北缘逆冲推服构造带.石油实验地质,1993,15(2):138-145.
    440.姚金福,朱莲芳.酒西盆地石北地区晚侏罗-早白垩世沉积相研究.沉积学报,1989,7(4):106-111.
    441.尹汉辉,范蔚茗,林舸.云南兰坪-思茅地洼盆地演化的深部因素及壳幔复合成矿作用.大地构造与成矿学.1990,14(2):113-124.
    442.尹集祥,徐均涛,刘成杰等.拉萨至格尔木的区域地层:中英青藏高原综合地质考察队.青藏高原地质演化.北京:科学出版社,1990,1-48.
    443.俞伯达.关于甘肃长城纪地层划分的新认识.甘肃地质学报,1997,6(1):1-15.
    444.袁宝印,王振海.青藏高原隆起与黄河地文期.第四纪研究,1995,(4):357.
    445.张国民,田勤俭,王辉.可可西里—东昆仑活动构造带强震活动研究.地学前缘,2003,10(1):39-46.
    446.张连生,钟大赉.从红河剪切带走滑运动看东亚大陆新生代构造.地质科学,1996,31(4):327-341.
    447.张启明,郝芳.莺-琼盆地演化与含油气系统.中国科学,1997,27(2):149-154.
    448.张启明,张泉兴.莺歌海盆地深部地压气.海洋地质与第四纪地质,1992,12(1):1-8.
    449.张启明.一个独特的含油气盆地-莺歌海盆地.中国海上油气,1991,1(1):10-21.
    450.张启明.莺歌海盆地超压体系与油气聚集.中国海上油气,1996,10(2):65-75
    451.张强,邵震杰.走滑环境中陆相盆地充填层序特征-以云南先锋盆地为例.沉积学报,1997,4:30-37.
    452.张青松,李炳元主编.青藏高原喀喇昆仑山-昆仑山地区科学考察丛书.喀喇昆仑山-昆仑山地区晚新生代环境变化.北京:中国环境科学出版社,1999.
    453.张青松,王富葆,计宠祥等.西藏扎达盆地的上新世地层.地层学杂志,1998,5(3):216-220.
    454.张守仁,曹代勇,戴俊生等.柴达木盆地北缘块断带的扭动构造与阿尔金构造体系的关系.大地构造与成矿学,2000,24(3):218-223.
    455.张兴鲁.柴达木盆地第四纪地质研究的新进展.西北地质,1990,3:49-52.
    456.张以弗,郑祥身,郑健康.青海可可西里地区地质演化.北京:科学出版社,1996.
    457.张以茀,郑健康.青海可可西里及邻区地质概论.北京:地震出版社,1994,177.
    
    
    458.张玉泉,谢应雯,李献华等.青藏高原东部钾玄岩系岩浆岩同位素特征:岩石特征及其构造意义.中国科学(D辑),2000,30(5):493-498.
    459.张云翔,车自成,刘良等.新疆库木库里盆地的第三系.中国区域地质,1996,4:311-316
    460.张治洮.东昆仑西段北坡构造属性、构造岩石体系及花岗岩类型成因.西北地质,1996,17(1):10-15.
    461.赵伦,赵澄林,涂强.酒东盆地营尔凹陷碎屑岩储层成岩作用特征研究.江汉石油学院学报,1998,20(4):12-16.
    462.赵文津,纳尔逊.印度板块俯冲到藏南之下的深反射证据.地球学报,1996,17(2):131-137.
    463.赵锡奎,曹正林,邬兴威,刘豪等.滇西耿马盆地构造.沉积综合分析.矿物岩石,1998,18(1):54-59.
    464.赵应成.酒西盆地含油气系统与油气勘探方向.石油实验地质,1998,20(4):362-367.
    465.赵永贵,钟大赉,刘建华等.地震层析地质解释原理及其在滇西深部构造研究中的应用.地质科学,1992,27(2):104-113.
    466.赵永胜,陈布科,戴苏南.断陷湖盆比较沉积学与油气储层.四川科学出版社,1996,52-75.
    467.赵永胜,陈布科,邝平河等.滇西陇川盆地南林组储层砂体粒度分布特征及环境分析.矿物岩 石,1993,13(4):81-90.
    468.赵永胜,邓礼正,陈布科等.滇西陇第三系含油气盆地泥岩盖层封闭性探讨.天然气工业,1995,15(1):18-22.
    469.赵越,徐守礼,杨振宇.沿大型走滑断裂系的隆升.地质科学,1996,31(1):1-13.
    470.赵泽恒,王崇镐.滇西景谷微型断陷盆地含油气性初步认识.石油与天然气地质,1988,9(3):306-313.
    471.赵志军,方小敏,李吉均.祁连山北缘酒东盆地晚新生代磁性地层.中国科学(D辑)2001,31(增刊):197-201.
    472.赵志军,方小敏,李吉均等.酒泉砾石层的古地磁年代与青藏高原隆升.科学通报,2001,46(14):1208-1212.
    473.赵志军,史正涛,方小敏.祁连山北缘早中更新世新构造运动的地层记录.兰州大学学报(自然科学版),2001,37(6):92-98.
    474.赵重远,周立发.成盆后期改造与中国含油气盆地地质特征.石油与天然气地质,2000,21(1):7-10.
    475.赵宗浦.再论陆内造山作用.地质科学,1996,31(4):353-363.
    476.郑度,杨勤业,刘燕华.中国的青藏高原.北京:科学出版社,1985.
    477.郑度.青藏高原形成演化与环境变化研究进展.中国基础科学,2000,(1):10~14.
    478.郑度主编.青藏高原喀喇昆仑山-昆仑山地区科学考察丛书.喀喇昆仑山-昆仑山地区自然地理.北京:科学出版社,1999.
    479.郑祥身,边千韬,郑健康.青海可可西里地区新生代火山岩研究.岩石学报,1996,12(4):530-545
    480.中国科学院青藏高原综合科学考察队(李炳元,王富葆,张青松等).西藏第四纪地质.青藏高原科学考察丛书,科学出版社,1983,
    481.中国科学院青藏高原综合科学考察队.西藏岩浆活动和变质作用.北京:科学出版社,1981,363
    482.中国天然气总公司第三系研究课题协调组.中国油气区第三系与欧美标准层序的对比.科学通报,1991.19:1494-1495.
    483.钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学(D辑),1996,26(4):289-295.
    484.钟大赉,P.tapponnier,吴海威等.大型走滑断层—碰撞后陆内变形的重要方式.科学通报,
    
    1989,34(7):526-529
    485.钟嘉猷.滇西地区构造变形特征.地质科学(增刊),1992,50-59.
    486.周炎如,李相博,袁剑英.祁连-柴达木构造域盆地-造山带耦合构造体系.新疆石油地质,2000,21(5):387-390.
    487.周志毅,陈丕基.塔里木生物地层和地质演化.北京,科学出版社,1990.
    488.朱炳泉,张玉泉,谢应雯.滇西洱海东第三纪超K质火成岩系的Nd-Sr-Pb同位素特征与西南大陆地幔演化.地球化学,1992,(3):201-212.
    489.朱弟成,段丽萍,潘桂棠等.对青藏地区有重大影响的构造运动与岩浆响应事件.成都理工大学学报,2002,29(4):405-409.
    490.朱俊杰.兰州地区最高阶地与最老黄土沉积的发现及其古地磁年代学研究.青藏高原形成演化、环境变迁与生态系统研究学术论文年刊(1994),北京,科学出版社,1995,77
    491.朱利东,刘登忠,王国芝等.兰坪盆地侏罗纪陆相层序地层研究.地层学杂志,2001,25(1):40-43.
    492.朱夏,徐旺,中国中新生代沉积盆地,石油工业出版社。
    493.朱耀文,程宗颐,熊永清等.利用GPS技术监测青藏高原地壳运动的初步结果.中国科学(D),1997,27(5):385-359.
    494.邹日,朱炳泉,孙大中等.红河成矿带壳幔演化与成矿作用的年代学研究.地球化学,1997,26(2):46-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700