用户名: 密码: 验证码:
西藏玉龙斑岩铜(钼)矿成矿作用与矿床定位预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,西藏玉龙铜矿是我国单个矿床规模最大、位于著名的特提斯构造—成矿域的特大型斑岩铜(钼)多金属矿床,它所属的藏东玉龙斑岩铜(钼)矿带不仅是我国重要的铜矿成矿远景区带,而且是我国铜资源的后备基地之一。
     尽管自上世纪70年代末以来,众多单位的学者从不同角度的对该矿床进行研究,但对青藏高原的快速隆升与斑岩铜(钼)矿床生储盖的关系;成矿斑岩形成和侵位的动力学和热力学机制与模式问题;深部过程与壳幔物质交换及其形成的矿床系列问题;影响我国资源结构和面貌的喜山期斑岩成矿的机理和潜力问题等都缺乏可信与深入的了解,也较难解释玉龙铜矿复杂的成矿背景、元素组合、矿体组合等实际问题。然而,随着大陆动力学理论的不断完善,地球物理和地球化学资料的不断积累,已经有可能通过对玉龙铜矿成矿作用的研究,以建立大陆碰撞—高原隆升条件下玉龙型斑岩铜矿综合找矿模型以及建立特殊地质、地貌条件下的氧化富铜矿的成矿模式。为此,1995年以来,作者参加包括国家科委“95”科技攻关计划项目在内的多项攻关课题,配合地勘项目,对该矿床进行了系统的研究,取得一系列成果,不仅扩大了储量,查明了成因,而且基本解决了投入开采所需的富铜似层状氧化矿的资源量等关键问题。
     本文以玉龙斑岩铜矿及其产出的昌都盆地沉积—岩浆—构造演化为主要研究对象,以研究斑岩铜矿区域成矿背景和富碱斑岩铜矿的特殊成矿作用,建立各系列矿体的定位预测模型为研究重点,建立了特殊地质、地貌条件下的氧化富铜矿的成矿模式,以及以建立在大陆碰撞与高原隆升控矿条件下玉龙型斑岩铜矿床综合信息找矿模型为切入点,从而达到对该矿床进行全面而系统的研究,为青藏高原及邻区斑岩铜矿的勘查和经济评价起到示范之目的。
     玉龙铜矿是迄今为止我国矿化系列最全、成矿元素最复杂、成矿条件最独特的斑岩铜矿。矿床位于喜马拉雅构造成矿域东部的金沙江—红河斑岩型铜(钼)成矿带。
     区域地球物理、区域地球化学、构造地层学、古地貌学、岩石化学、地质年代学研究表明,玉龙斑岩铜矿形成于陆—陆碰撞、陆内裂谷、陆内造山等多种构造体制从伸展背景向挤压背景的转换过程中。研究表明区域内地壳厚度较大(50~80km),具有南薄北厚特点;深部存在厚20km(60~80km深度)壳幔混合体(壳幔过渡带),软流圈厚度大(100~200km),存在软流圈上涌体,10~100km深度的持续的低速特征,反映存在软流圈的上涌和强烈的底侵作用。Cu、Ag、Au、Pb、Zn等主要成矿元素区域地球化学特征、层析分析等均印证了深部存在的北东向构造及其活跃的岩浆—流体活动,而在造山作用下,这些NE向构造处于引张状态,使得岩浆易于沿此构造带上侵,形成一系列成带的侵入岩带。
     玉龙斑岩成矿带成矿年龄峰值为37.27Ma,处于早喜马拉雅阶段变形变质造山高峰期(43.04Ma)与中喜马拉雅阶段变形变质造山高峰期(28.44Ma)之间,表明它们形成于早、中喜马拉雅期陆内对冲褶皱推覆造山的间隙期,大规模岩浆侵入略滞后于早期造山,发生在两次造山高峰期之间的间造山期。
     含矿斑岩富K_2O、MgO,而贫SiO_2、Fe_2O_3+FeO、MnO、CaO、Na_2O,主成矿元素Cu、Mo含量高,Co、Ag、Au、W、Pb、Zn等元素含量富集,可作为有益伴生元素。Rb、Sr、Ba含量高,Ba/Sr比值大部分接近1,Ba/Rb比值大多在1.66~5.77,Rb/Sr比值在0.19~0.67之间。稀土元素的丰度高,其中轻稀土含量明显高于重稀土,呈现左高右低的较平滑的曲线,
    
    犯u大多大于0.75。以上表明玉龙含矿岩体具有埃达克质岩的特征,属于富钾的C型埃达克
    岩或埃达克质岩。
     对控矿构造的定量分析和解析,认为玉龙斑岩体被动侵位于一个总体向北开口的鼻状圈
    闭构造中,该鼻状构造为各矿体的形成提供了一个不可多得的成矿空间。成矿时期的古构造
    应力场恢复表明,最小主应力轴主要是NW一SE走向,与恒星错一甘龙拉背斜的轴向相一致;
    最大主应力轴主要为NE一SW向,它代表构造挤压力的方向。
     根据各矿化体的特征,划分了五种矿体类型,并对其(斑岩型、接触带矽卡岩型、接触
    带角岩型、接触带矽卡岩一次生氧化氧化富集型、隐爆角砾岩型)产出特征、空间分布及变
    化规律等方面有了总体的把握和新的认识。其中角岩型矿体是玉龙铜矿床扩大铜储量的最重
    要的矿体类型。斑岩型、角岩型、隐爆角砾岩型、矽卡岩型矿体属Cu(Mo)建造型矿体,
    11号矿体属C~Ag一CO一-Au建造次生氧化富集型矿体,V号矿体属Cu一Co一W一Ag一Au
    建造次生氧化富集型矿体,其中n矿体北段Ag含量最高达104x10一“,平均51.375xl0一6,
    c。含量最高0.108%,平均0.042%;而v号矿体Au含量最高3.588xl0一6,c。:0.265只10一2。
     各矿体的产出状态、矿石特征、矿石类型、微量元素地球化学特征、同位素地球化学特
    征、稀土元素地球化学特征的系统研究表明,玉龙铜矿床各矿体是同一构造一岩浆一成矿体
    系在时空演化过程中流体化学动力学状态和成矿元素迁移性状综合演变的产物,它们共同构
    成了一套完整的浅成中酸性岩浆热液系统所特有的铜矿化系列。成矿物质一部分物质来自于
    花岗斑岩体,另一部分物质则可能来自于三叠纪围?
It is well known that Yulong copper deposit, situated in the Tethys Tectonic-Metallogenic domain, is the largest porphyry Cu (Mo) polymetallic deposit in our country. And Yulong porphyry Cu (Mo) ore belt, east Tibet, is an important copper prospecting zone, and one of the Cu metal resource reserve regions of our country.
    Numerous specialists and scholars have studied the deposit through various ways and views since the end of 1970s. But we still lack of credible and general understanding on the relation between quick plateau uplift and the forming-reserving-covering of the deposit, the problem about the models and mechanisms of dynamics and thermodynamics of the mineralization porphyry forming and emplacement, the problem of mineralization series formed in deep process and exchange between the crust and the mantle, and the problem of mineralization potentiality and mechanism of the porphyry in the Himalayan period which have an effect on the resource structure and resource situation of our country. And it is difficult to define the practical problem about the complicated mineralization setting, element association and ore body series. However, with unceasingly perfecting of the theory of continental dynamics and unceasingly accumulating geophysical and geochemical formation, it is possible to study the metalization of the Yu
    long Cu deposit, to build up a synthetical information ore-finding model for Himalayan porphyry copper deposit with the continent collision and plateau uplift controlling ore forming, and to build up a metallogenic model of porphyry-skarn oxidized copper ore body in such unique geological and geomorphologic conditions. So from 1995, the author has taken part in some projects sponsored by former National Planning Department, National Science Department, the Ministry of Land and Resource (former Ministry of Geology and Minerals) and Tibetan Geology Bureau. Exploration work and research projects of various levels have been carried out corporately by the Sixth Geology Team of Tibetan Geology Bureau and Chengdu University of Technology. Through
    
    
    systematic study, some progresses have been acquired, which have not only enlarged the reserve of the deposit and found out the mineralization genesis, but also basically resolved the key problem about the reserve of the oxidized copper ore body which will be mined in the first stage.
    So, this thesis takes Yulong porphyry copper deposit and sedimentary-volcanic-tectonic evolution of Changdu basin where the deposit occurs as study subject, and centers around the specific mineralizing process of alkaline porphyry Cu deposits and regional metallogenic background of porphyry copper deposits. It builds up a location prediction model of all series ore bodies, and metallogenic model of porphyry-scarn oxidized copper ore body in such unique geological and geomorphologic conditions, and also builds up a synthetical information ore-finding model for Himalayan porphyry copper deposit with the continent collision and plateau uplift controlling ore forming by studying Yulong deposit comprehensively and systematically.
    So far as we know, the Yulong porphyry copper deposit, situated in the Jinshajiang-honghe porphyry Cu (Mo) ore belt in the east Himalayan tectonic-metallogenic domain, has the most thorough mineralization series, most complex mineralization elements, and most unique
    metallogenetic condition among the porphyry deposits.
    By region geophysics, region geochemistry tectonic-stratigraphic, paleo-geomorphologic, lithochemical, geochronological study, it has been pointed out that the Yulong copper deposit has undergone several tectonic settings transforming from continent collision, continental rifts development to inland orogeny. The crust of the area is thick with the thickness of 50 to 80 km, and the northern is thicker than the southern. There is an admixture of the crust and the mantle whose thickness is 20 km and depth from 60 to 80 km. There are some up-flowing bodies of asthenosphere whose thickness is from 100 to 200 km. The evidences o
引文
1 毕献武,胡瑞忠,叶造军.等.A型花岗岩类与铜成矿关系研究—以马厂筹铜矿为例[J].中国科学(D),1999,29:389-495.
    2 陈永清,王世称.综合信息成矿系列预测的基本原理和方法[J].山东地质,1995,Nol:55~61.
    3 陈建平.矿产资源勘查与评价学科发展动态[J].地质科技情报,1999,Vol.18,No.3
    4 陈建平,等.玉龙铜矿带北段遥感地质综合研究.第11届全国遥感技术学术讨论会论义集.1999,5
    5 陈建平,等.西藏玉龙上三叠统甲丕拉组沉积特征及铜矿质的初步富集[J].沉积学报,1997,Vol.15,No.1:111-117.
    6 陈建平,王成善,唐菊兴,等.西藏玉龙铜矿床次生氧化富集作用机制[J].地质学报,1998,Vol.72,No.2:513-161
    7 陈文明.斑岩铜矿与杂色砂页岩型层状铜矿内在联系的初步探讨.地质论评,1980,26卷,6期
    8 陈文明.论玉龙斑岩铜矿与砂页岩型铜矿的内在联系及其成矿规律与找矿标志[A].青藏高原地质文集(13)(增刊).[C].北京:地质出版社,1983
    9 陈文明.论斑岩制矿的成因[J].现代地质,2002,v16(no.1):1-8.
    10 陈福忠,等.藏东花岗岩类及铜锡金成矿作用[M].北京:地质出版社,1994
    11 陈好寿.同位素地球化学研究[M].杭州:浙江大学出版社,340p.1994
    12 陈建国,王仁铎,陈永清.利用分形统计学提取化探数据中的隐蔽信息并圈定地球化学异常.地球科学,1998,23(2):175-178.
    13 陈炳蔚,等.三江地区主要大地构造问题及其与成矿的关系.地质出版社,1991
    14 崔文军,等.青藏高原岩石圈变形及其动力学[M].北京:地质出版社,1992
    15 地质矿产部直属单位管理局.沉积岩区1:5万区域地质填图方法指南[M].北京:中国地质大学出版社,1991
    16 地质矿产部直属单位管理局.变质岩区1:5万区域地质填图方法指南[M].北京:中国地质大学出版社,1991
    17 地质矿产部直属单位管理局.花岗岩类区1:5万区域地质填图方法指南[M].北京:中国地质大学出版社,1991
    18 戴自希.全球超巨型金属矿床(区)[A].见:中国地质矿产信息研究院(编著).走向21世纪的地学与矿产资源[M].北京:地质出版社.1996,35-42.205.E
    19 贵州省地矿局区调队.1:20万察雅、左贡幅区域地质调查报告.贵州省地矿局,1992
    20 黄卫、唐菊兴、李保华、陈建平.西藏玉龙铜矿床氧化带地球化学特征.表生环境地球化学问题.四川省地球化学专委会学术讨论会论文集.1997
    21 胡明铭、唐菊兴、陈建平.藏东玉龙铜矿似层状矿体表生氧化成矿作用[J].矿物岩石,1998,Vol.18,No.2:78-84.
    22 韩同林.青藏大冰盖[M].北京:地质出版社,1991
    23 黄朋,顾雪祥,等.西藏玉龙斑岩铜(钼)矿床物质来源研究[J].大地构造与成矿学,2002,V26(4):429-435.
    24 黄朋,顾雪祥,唐菊兴.西藏玉龙斑岩铜(钼)矿金属迁移、沉积机制探讨[J].四川地质学报,2000(1),Vol.61(1):57-62.
    25 侯增谦,莫宣学,等.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩——以西藏和智利斑岩铜矿为例[J].矿床地质,2003,Vol.22(1):1-12.
    26 侯增谦,曲晓明,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄,成矿作用时限与动力学背景应用[J].中国科学,2003,Vol.33,No.7:610-618.
    27 金章东,朱金初,等.德兴斑岩铜矿成矿过程的氧、锶、钕同位素证据[J].矿床地质,2002,Vol.21,No4:341-349.
    28 蒋少涌,杨竞红.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报(自科版),2000
    29 克里夫佐夫AL1(1986).世界斑岩铜矿床[M].王肇芬等译,北京:地质出版社,1990
    30 吕伯西.三江地区花岗岩类及其成矿专属性[M].北京:地质出版社,1993
    31 李吉均,等.西藏冰川[M].北京:科学出版社,1989
    
    
    32 刘增乾,李兴振,叶庆同,等.三江地区构造岩浆岩带的划分与矿产分布规律[M].北京:地质出版社,1993
    33 陆彦.特提斯斑岩铜矿成矿域及其成矿大地构造背景[J].西藏地质,2002,(1):61-68.
    34 李晓峰,毛景文.等.斑岩铜矿中铂族元素的研究现状及展望[J].矿床地质,2003,Vol.22,(1):95-98
    35 莫宣学,等.三江特提斯火山作用与成矿[M].北京:地质出版社,1993
    36 马鸿文.西藏玉龙斑岩铜矿带花岗岩类与成矿[M].武汉:中国地质大学出版社,1990
    37 马鸿文.论藏东玉龙斑岩铜矿带岩浆活动的构造环境[J].岩石学报,1989.No.1:1-11.
    38 曲晓明,黄卫,等.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,2001,Vol.20(4):355-366.
    39 芮宗瑶,等.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984
    40 芮宗瑶,刘玉琳,等.新疆东天山斑岩型铜矿带及其大地构造格局[J].地质学报,2002,Vol76(1);83-94.
    41 芮宗瑶,侯增谦,等.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质[J],2003,Vol22(3):217-225.
    42 芮宗瑶.西北、华北、东北斑岩铜矿床研究[A](见:涂光炽,等).中国超大型矿床(1)[M].北京:科学出版社,2000,pp.397-425.
    43 芮宗瑶,王福同,李恒海,等.新疆东天山斑岩铜矿带的新进展[J].中国地质,2001,28:11-16.
    44 四川省地矿局区调队.1:20万类乌齐、拉多幅区域地质调查报告.四川省地矿局,1993
    45 四川省地质局第三区域地质测量队.1:100万昌都幅区域地质调查报告.四川省地质局,1974
    46 唐仁鲤,罗怀松,等.西藏玉龙斑岩铜(钼)矿带地质[M].北京:地质出版社,1995
    47 汤懋苍,柳艳香.青藏高原隆升的深层原因及其环境后果[J].第四纪研究.2001
    48 涂光炽.初议中亚成矿域[J].地质科学,1999,34:397-404
    49 王成善,陈建平,等.西藏玉龙铜矿床似层状矿体成矿作用及有用元素赋存状态研究(研究报告).1996
    50 王成善,唐菊兴.喜马拉构造-成矿域及其成矿效应初步分析.矿物岩石[J],2001,Vol22(3):146-153.
    51 王奖臻,李朝阳,等.斑岩铜矿研究的若干进展[J].地球科学进展,2001,Vol.16(4):514-519.
    52 王强,赵振华,许继峰,等.扬子地块东部埃达克质((adakite-like)岩浆及其动力学与成矿意义[A].埃达克质岩及其地球动力学意义学术研讨会论文摘要[C].北京,2001,pp.41-44.
    53 西藏自治区地矿厅第6地质大队.西藏自治区江达县玉龙铜矿Ⅱ矿体0—10线矿段勘探地质报告.1996
    54 西藏地矿局区调队.1:20万洛隆、昌都幅区域地质调查报告.西藏地矿局,1990
    55 项仁杰,茹湘兰.中国斑岩铜矿中的铂族金属.国外地质科技[J],1999,No.3:29-33.
    56 余光明,王成善.西藏特提斯沉积地质[M].北京:地质出版社,1990
    57 冶金工业部地质研究所.中国斑岩铜矿[M].北京:科学出版社,1984
    58 云南省地质局区域地质调查队.1:20万兰坪幅区域地质调查报告.云南省地质局,1974
    59 云南省地质局区域地质调查队.1:20维西幅区域地质调查报告.云南省地质局,1984
    60 云南省地质局区域地质调查队.1:20永平幅区域地质调查报告.云南省地质局,1980
    61 云南省地质矿产局.云南省区域地质志.北京:地质出版社,1990
    62 云南省地质矿产局.云南省岩石地层[M].北京:中国地质大学出版社,1996
    63 朱训,等.德兴斑岩铜矿[M].北京:地质出版社,1983
    64 郑明华.现代成矿学导论[M].重庆:重庆大学出版社,1988
    65 张理刚.稳定同位素在地质科学中的应用—金属活化热液成矿作用及找矿[M].西安:陕西科学技术出版社,1985
    66 周宜吉.玉龙矿带中斑岩铜矿的控矿因素及其成因探讨[J].地质论评,1980,Vol.26(4)
    67 张旗,王强,等.埃达克岩与斑岩铜矿.华南地质与矿产[J],2002(3):85-90
    68 张旗,王焰,王元龙.埃达克岩的特征及其意义[J].地质通报,2002,(21)
    69 张旗,等.中国东部燕山期埃达克岩的特征及其构造—成矿意义[J].岩石学报,2001,Vol.17(2)
    70 张旗.埃达克质岩及其地球动力学意义学术研讨会在北京召开[J].地质通报,2002,Vol.21(2)
    71 张旗.等.燕山期中国东部高原下地壳组成初探:埃达克质岩Sr、Nd同位素制约[J].岩石学报,2001,Vol.17(4)
    72 张玉泉,谢应雯,邱华宁,等.钾玄岩系列:藏东玉龙铜矿带含矿斑岩元素地球化学特征[J].地球科学,1998,23:557-561.
    73 赵一鸣,邹晓秋.黑龙江多宝山、铜山大型斑岩铜(钼)矿床中辉钼矿的组成[J].地球学报:中国地质科学院院报,1997,V18(1):61-67.
    74 Atkinson, William W,Ware, Hunter.Comb quartz layers in the porphyry copper deposit at Yerington,Nevada.
    
    Abstracts with Programs-Geological Society of America,2002, Vol.34, No.5, pp. 15.
    75 Alpers C. N.,et al.Paleohydrologic evolution and geochemical dynamics of cumulative supergene metal enrichment at La Escondida,Atacama desert,northern Chile.Economic Geology,1989, 84:229-255.
    76 Alan H. Clark, Douglas A.Archibald,And rew W.Lee, et al.~(40)Ar/~(39)Ar Ages of Early-and Late-stage Alteration Assemblages,Rosario Porphyry Copper-molybdenum Deposit,Collahuasi district,I region,Chile. Economic Geology,1998, 93: 326-337.
    77 Ardeshir Hezarkhani and Anthony E.Williams-Jones.Controls of Alteration and Mineralization in the Sungun Porphyry Copper Deposit,Iran: Evidence from Fluid Inclusions and Stable Isotopes. Economic Geology, 1998, 93: 651-670.
    78 Auge J.J. and Brimhall G. H..Geochemical modeling of steady state fluid flow and chemical reaction during Supergene enrichment of porphyry copper deposits. Econ. Geol,1989, Vol.84, pp.506-528.
    79 Allcock J, B..Skarn and porphyry copper mineralization at Mines Gasp, Murdochville, Quebec. Econ. Geol., 1982, Vol.77, pp,971-999.
    80 Antofagasta's Chilean Push.2000. Mining Magazine, 182(4):200~208.Bauchau, C.1999. The state of the mining industry in 1999:A Briew. SGA NEWS, 1~10.
    81 B.Stribrny, F.-W. Wellmer, K. -P. Burgath, et al.Unconventional PGE occurrences and PGE mineralization in the Great Dyke:metallogenic and economic aspects.Mineralium Deposita, 2000. Vol.35, No.2-3
    82 Bajwah Y. U., Seccombe P. K.,and Offler R..Trace element distribution, Co:Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineral. Deposita, 1987, Vol.22: 292-300.
    83 Bellon H,Yumul Jr G P.Miocene to Quaternary adakites and related rocks in western Philippine arc sequences.Earth and Planetary Sciences,2001, 333: 343-350.
    84 Bralia A.,Sabatini G.,and Troja F.A revaluation of the Co/Ni ratio in pyrites as geochemical tool in ore genesis problems.Minera.Deposita,1979, Vo1.14, pp.353-374.
    85 Brimhall G. H.Jr. Mechanisms of vein formation at Butte,Montana:element recycling by hypogene leaching and enrichment of low-grade K-silicate protore (abs.).Econ. Geol.,1978, Vol.73, pp. 1389.
    86 Brimhall G. H. Jr.Lithologic determination of mass transfer mechanisms of multiple-stage porphyry copper mineralization at Butte,Montana:vein formation by hypogene leaching and enrichment of potassium-silicate protore. Econ. Geol.,1979, Vol.74, pp.556-589.
    87 Brimhall G. H. Jr.,Deep hypogene oxidation of porphyry copper potassium-silicate protore at Butte, Montana: a theoretical evaluation of the copper remobilization hypothesis. Econ. Geol.,1980, Vol.75, pp.384-409.
    88 Brimhall G. H., et al. Analysis ofsupergene ore-forming processes and ground-water solute transport using mass balance principles. Economic Geology, 1985, 80: 1227-1256.
    89 Brent I.A. Mcinnes, Kenneth A. Farley, Richard H. Sillitoe,and Barry P. Kohn. Application of Apatite (U-Th) /He Thermochronometry to The determination of The Sense and Amount of Vertical Fault Displacement at The Chuquicamata Porphyry Copper Deposit, Chile. Economic Geology, 1999, 94: 937-948.
    90 Borden, Richard K. Environmental geochemistry of the Bingham Canyon porphyry copper deposit, Utah. Environmental Geology (Berlin),2003, Vol.43, No.7, pp.752-758.
    91 Bouzari, Farhad,Clark, Alan H. Anatomy,evolution,and metallogenic significance of the supergene orebody of the Cerro Colorado porphyry copper deposit;I Region,northern Chile.Economic Geology and the Bulletin of the Society of Economic Geologists, 2002, Vol.97, No.8, pp. 1701-1740.
    92 Babcock, Russell C, Jr;Ballantyne, et al.Summary of the geology of the Bingham District,Utah. Guidebook Series-Society of Economic Geologists,1997, Vol.29, pp.113-132.
    93 Cabello J.Exploration rewards in Chile. Mining Magazine, 2000,182(4):198-208.
    94 Chadwick J.. Peru booms. Mining Magazine, 1998, 178(2): 87~105.
    95 Chadwick J..Collahuasi.Mining Magazine, 1999,180(3):122~126.
    96 Chadwick J..Pen continues to impress the world,Mining Magazine, 2000, 182(1): 6~24.
    97 Chadwick J and Bawden M..Chile Success Breeds Success. Mining Magazine, 2000, 182(4): 209~212.
    98 Chernicoff. Carlos J,Richards,Jeremy P, et al..Crustal lineament control on magmatism and mineralization in northwestern Argentina;geological, geophysical,and remote sensing evidence. Ore Geology Reviews, 2002, Vol.21, No.3-4, pp.127-155.
    99 Campos E, Touret J L R, Nikogosian I, Delgado J. Overheated, Cu-bearing magmas in the Zaldivar porphyry-Cu deposit,northern Chile;geodynamic consequences.Tectonophysics, 2002, Vol.345, No.1-4.pp.229-251.
    100 Cornejo, Paula C, Tosdal,Richard M, et al..El Salvador, Chile porphyry copper deposit revisited; geologic and geochronologic framework.International Geology Review,1997, Vol.39, No.1,pp.22-54.
    101 Campbell F.A.and Ethier V.G..Nickel and cobalt in pyrrhotite and pyrite from the Faro and Sullivan
    
    orebodies.Canadian Mineralogist,1984, Vol. 11, pp.503-506.
    102 Candela P. A. and Holland H. D..A masstransfer model for copper and molybdenum in magmatic hydrothermal systems:the origin of porphyry-typr ore deposits. Econ. Geol.,1986,Vol.81.
    103 CHEN Jianping etc..A metallogenic model of secondary oxidation for the Yulong copper deposit, Xizang (Tibet), 5th International Symosium on Mineral Exploration. 1996
    104 Cuadra C, Patricio,Rojas S, Gonzalo.Oxide mineralization at the Radomiro Tomic porphyry copper deposit, northern Chile.Economic Geology, 2001, Vol.96, No,2, pp.387-400.
    105 Chesley, John T, Ruiz, Joaquin. Preliminary Re-Os dating on molybdenite mineralization from the Bingham Canyon porphyry copper deposit, Utah. Guidebook Series-Society of Economic Geologists,1997, Vol.29, pp.165-169.
    106 Coleman M and Hodges K. Evidence for Tibetan plateau uplift before 14 Ma ago from a new minimun age for east-west extension [J]. Nature, 1995, 374: 49-52.
    107 Crerar D A and Barnes H L.Ore solution chemistry.5. Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200° to 350℃. Econ. Geol.,1976, Vol.74, pp.772-749.
    108 Fernando Barra,Joaquin Ruiz.,Ryan Mathur,Spencer Titley.A Re-Os study of sulfide minerals from the Bagdad porphyry Cu-Mo deposit, northern Arizona, USA.Mineralium Deposita,2002, Vol.38, No.5, pp.585-596.
    109 Defant M I,Drummond M S.Derivartion of some modern arc magmas by melting of young subduction lithosphere. Nature,1990, pp.662 -665.
    110 GrafJ L,Jr. Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks. Econ. Geol, 1977, Vol.72, pp.527-548.
    111 Garza, Ruben A Padilla, Titley, et al. Geology of the Escondida porphyry copper deposit,Antofagasta region, Chile.Economic Geology, 2001, Vol.96, No.2, pp.307-324.
    112 Humphris S S. The mobility ofthr rare earth elements in the crust. In: Rare Earth Element Geochemistry, Developments in Geochemistry 2 (ed., Henderson P.), 1984, pp.317-342.
    113 Harrison T M,Copeland P, Kidd W S F,et al. Raising Tibet [J]. Science, 1992, 255: 1663-1670.
    114 Harrison T M, Copeland P and Kidd W S F.Activation of the wyaingentanghla shear zone:implication for uplift of the southern plateau[J].Tectonics, 1995,14: 656-676.
    115 Hacker, B. R. Evolution of the northern Sierra Nevada metamorphic belt:Petrological, structural and Ar/Ar constraints: Geology Society of America Bulletin. 1993, Vol. 105, pp.637-656
    116 Ishihara S.The granitoid series and mineralization[J].Economic Geology, 1981, 75th Anniversary Volume: 458-484.
    117 Jeremy P Richiards,Stephen R Noble and Macolm S Pringle.A Revised Late Eocene Age for Porphyry Cu Magmatism in the Escondida Area, Northern Chile. Economic Geology, 1999, 94:1231-1248.
    118 James R Lang and Spencer R Trrley.Isotopic and Geochemical Characteristics of Laramide Magmatic Systems in Arizona and Implications for the Genesis of Porphyry Copper Deposits.Economic Geology, 1998, 93: 138-170.
    119 Jeffrey W Hedenquist, Antonio Arribas JR, and T James Reynolds.Evolution of an Intrusion- Centered Hydrothermal System:Far Southeast-lepanto Porphyry and Epithermal Cu-Au Deposits.Philippines. Economic Geology,1977, 98: 373-404.
    120 Jensen, Paul W, Titley, S R. Wrench fault control of porphyry emplacement at the Sierrita porphyry copper deposit, Arizona.Abstracts with Programs -Geological Society of America, 1998, Vol.30, No.7. pp.367.
    121 Klootwijk C T,Conaghan P J and Powell C M. The Himalayan arc:large-scale continental subduction oroclinal bending and back arc spreading [J].Earth Planar.Sci.lett, 1985, 75:167-183.
    122 Kay R W,Kay S M. Andean adakites:three ways to make them.Acta Petrologica Sinica,2002,19:303-311.
    123 Kendrick, M A,Burgess R, Pattrick,R A D,Turner G.Halogen and Ar-Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques, Chemical Geology, 2001, Vol.177, pp.351-370.
    124 Kudrin A V, Varyash L N, Pashkov Yu N, and Rekharsky.The geochemical behaviour of copper and molybdenum in ore-forming processes.In: Geology and Metallogeny of Copper Deposits (Friedrich G. H., Genkin A. D.,Naldrett A. J., Ridge J. D., Sillitoe R. H., and Vokes F. M., edts). Springer-Verlag, 1986.
    125 Lichtner P C and Biino G G. A first principles approach to supergene enrichment of a porphyry copper protore: I.Cu-Fe-S subsystem.Geochim.Cosmochim. Acta, 1992, Vol.56, pp.3987-4013.
    126 Lowell J D and Guilbert J M.Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ. Geol, 1970,Vol.65, pp.373-408.
    127 Lewis M H. Characterization of primary sulphide assemblages at the Chuquicamata porphyry copper deposit,
    
    Chile, section 4500N.Atlantic Geology, 1996, Vol.32, No. 1, pp.79.
    128 Martin Reich,Miguel A Parada, Carlos Palacios, et al. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile:metallogenic implications. Mineralium Deposita,2003, Vol.38, No.7 pp.876-885.
    129 Meinert L D,Hefton K K, Mayes D, and Tasiran I..Geology,zonation, and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg District, Irian Jaya. Econ. Geol, 1997, Vol.92, pp.509-533.
    130 Mookherjee A and Philip R, Distribution of copper,cobalt and nickel in ores and host rocks,Ingladhal, Karnataka, India. Mineral. Deposits,1979, Vol.14, pp.33-35.
    131 Melissa A Lamb and Dennis Cox. New ~(40)Ar/~(39)Ar Age Data and Implications for Porphyry Copper Deposits of Mongolia.Economic Geology,1998, 93: 524-529.
    132 Manske, Scott L,Paul, Alex H.Geology of a major new porphyry copper center in the Superior (Pioneer) District, Arizona. Economic Geology, 2002, Vol.97, No.2, pp. 197-220.
    133 Melissa, A Lamb and Dennis, Cox. New 40Ar/39Ar and implications for porphyry copper deposits of Mongola. Economic Geology,1998, Vol.93, pp.524-529.
    134 Martin Reich.A,Miguel A Parada, Carlos Palacios,Andreas Dietrich, Frank Schultz,Bernd Lehmann. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile:metallogenic implications.Mineralium Deposita,2003, Vol.38, pp: 876-885.
    135 Mote,Timothy I,Becket, Tim A, et al. Chronology of exotic mineralization at El Salvador,Chile, by (super 40) Ar/(super 39) Ar dating of copper wad and supergene alunite.Economic Geology.2001, Vol.96,No.2, pp.351-366.
    136 Mathur, Ryan,Ruiz,Joaquin,et al. Different crustal sources for Au-rich and Au-poor ores of the Grasberg Cu-Au porphyry deposit. Earth and Planetary Science Letters. 2000, Vol. 183, No.1-2, pp.7-14.
    137 McLemore V T,Munroe E A,Heizler M T, McKee C.Geochemistry of the Copper Flat porphyry and associated deposits in the Hillsboro mining district,Sierra County,New Mexico.USA.Journal of Geochemical Exploration,1999, Vol.67, No. 1-3, pp. 167-189.
    138 Mahmud Tarkian, Ulf Hünken, Margarita Tokmakchieva,Kamen Bogdanov.Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria.Mineralium Deposita,2003, Vol.38, No3(-4), pp.261-281.
    139 Mclnnes,Brent l A,Farley, Kenneth A et al.Application of apatite (U-Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit, Chile.Economic Geology.1999, Vol.94,No.6, pp.937-947.
    140 Nielsen R L.Hypogene texture and mineral zoning in a copper bearing granodiorite porphyry stock,Santa Rita, New Mexico [J].Econ Geol. 1968, 63, (1): 37-50.
    141 Ohmoto H.Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol., 1972, Vol. 67, pp.551-579.
    142 Ohmoto H and Rye R O.Isotopes of sulfur and carbon.In: Geochemistry of Hydrothermal Ore Deposits, 2nd edn.(ed., Barnes H. L.). Wiley-Interscience, New York, 1979, pp.509-567.
    143 Oyarzun R, Marquez A, Lillo J,et al. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile:adakitic versus normal calCalkaline magmatism.Mineral Deposit,2001, 36:794-798.
    144 Patriat P and Achche J.India-Eurasia collision chnonogy has implications for crustal shorting and driving mechanism of plate [J]. Nature, 1984, 311:615-621.
    145 Peter Laznicka.Quantitative Relationships among Giant Deposits of Metals.Economic Geology,1999,94: 455-474.
    146 Peter Reynolds.Casey Ravenhurst 1,Marcos Zentilli,Darryl Lindsay.High-precision ~(40)Ar—~(39)Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system. Chile: Chemical Geology, 1998, Vol. 148, pp.45-60.
    147 Pemberton, Greg. Dating of alteration at the Radomiro Tomic porphyry copper deposit, northern Chile, by the high-precision ~(40)Ar/~(39)Ar method. Atlantic Geology, 1997, Vol.33, No.1,pp.73-74.
    148 Price B G.Minor elements in pyrites from the Smithers Map area, B. C. and exploration applications of minor elements studies.Thesis Uni.Of British Columbia (unpub.),1972, 270p.
    149 Ryan Mathura,JoaquinRuiza,Spencer Titleya,et al. Different crustal sources for Au-rich and Au-poor ores of the Grasberg Cu-Au porphyry deposit.Mineralium Deposita, Vol. 183, pp.7-14
    150 Reynolds, Peter,Ravenhurst,et al.High-precision ~(40)Ar/~(39)Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system. Chile:Chemical Geology,1998, Vo1.148, pp.45-60.
    151 Roddick j c.The application of isochron iagrams in ~(40)Ar-~(39)Ar dating:a discussion:Earth and planetary science letters, 1978, Vol.41, pp.233-244.
    
    
    152 Robin M Bouse, Joaquin Ruiz, Spencer R Trrley, et al.Lead Isotope Compositions of Late Cretaceous and Early Tertiary Igneous Rocks and Sulfide Minerals in Arizona:Implications for the Sources of Plutons and Metals in Porphyry Copper Deposits. Economic Geology, 1999, 94:211-244.
    153 Rusk, Brian,Reed, Mark. Scanning electron microscope-cathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit. Montana. Geology (Boulder), 2002, Vol.30, No.8, pp.727-730.
    154 Ruben A,Padilla G, et al.Geology of the Escondida porphyry copper deposit,Antofagast region, Chile. Econ. Geol., 2001,96(2):307~324.
    155 Ranjbar H, Hassanzadeh H,Torabi M, Ilaghi O.Integration and analysis of airborne geophysical data of the Darrehzar area,Kerman Province,Iran, using principal component analysis.Journal of Applied Geophysics, 2001, Vol.48, No.1,pp.33-41.
    156 Sillitoe R H.A Plate tectonic model for the origin of porphyry copper deposits. Economic Geology,1972, Vol.67, pp.184-197.
    157 Sillitoe R H. Are porphyry copper and kuroko-type massive sulfide deposits incompatible?.Geology,1980,Vol.8, pp.11-14.
    158 Sakai H.Isotopic properties of sulfur compounds in hydrothermal processes.Geochem. J., 1968, Vol.2, pp.29-49.
    159 Shelton S L.Compositions and origin of ore-forming fluids in a carbonate-hosted porphyry copper and skarn deposit: a fluid inclusion and stable isotope study of Mines Gasp, Quebec.Econ. Geol.,1983, Vol.78. pp.387-421.
    160 Sotnikov, Vitaliy I..Berzina, Anita N.Economou-Eliopoulos,Maria;Eliopoulos,Demetrios G.,2001,
    161 Palladium. platinum and gold distribution in porphyry Cu±Mo deposits of Russia and Mongolia.Ore Geology Reviews, 2003,Vol. 18, No.1-2, pp.95-111.
    162 Streck J M, Dilles J H. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith[J]. Geolo-gy, 1998, 26: 523-526.
    163 Shrake,Thomas C,Thurston, Peter, et al.Geology of Chile's Lomas Bayas porphyry copper deposit.Mining Engineering, 1996, Vol.48, No.3, pp.37-42.
    164 Searle M. The rise and fall of Tibet[J]. Nature, 1995, 374: 17-18.
    165 Turner S, Hawkesworth C,Liu J, et al.Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 1993, 364: 50-54.
    166 Titley S R, Beane R E.Porphyry copper deposits [J].Economic Geology, 1981,75TH Anniv Vol:214-269.
    167 Taylor D, Leeuwen T U. Porphyry-type deposits in southern Asia. Mining Geology(Specials issue),1980, 8:95-116.
    168 Takagi T, Tsukimura K. Genesis of oxidized and reduced type granite[J]. Economic Geology,1997, 92: 81-86.
    169 Tomlinson, Andrew J, Dilles,John H, Maksaev,Victor. Application of apatite (U-Th)/He thermochronometry to the determination of the sense and amount of vertical fault displacement at the Chuquicamata porphyry copper deposit,Chile. Economic Geology and the Bulletin of the Society of Economic Geologists, 2001, Vol.96, No.5, pp.1307-1309.
    170 White D E. Environments of generation of some basemetal ore deposits [J].Econ Geol,1968, 63, (4): 301-335.
    171 Weber, Bodo, Lopez Martinez, Margarita. St, Nd, Pb isotopes and Ar-Ar dating of the "El Arco" porphyry copper deposit, Baja California; evidence for Cu mineralization within an oceanic island arc. Abstracts with Programs-Geological Society of America, 2002, Vol.34, No.6, pp.88.
    172 Watanabe,Yasushi, Hedenquist,Jeffrey W.Mineralogic and stable isotope zonation at the surface over the El Salvador porphyry copper deposit, Chile.Economic Geology, 2001, Vol.96, No.8, pp.1775-1797.
    173 von Quadt,Albrecht,Peytcheva, et al.The Elatsite porphyry copper deposit in the Panagyurishte ore district, Srednogorie Zone,Bulgaria;U-Pb zircon geochronology and isotope-geochemical investigations of magmatism and ore genesis. Geological Society Special Publications, 2002, Vol,204, pp. 119-135.
    174 Venable, Margaret E. Mineralization in northeast Nicaragua;known deposits and exploration potential. Special Publication-Society of Economic Geologists, 2001, Vol.8, pp.339-347.
    175 Vargas R, Ricardo, Gustafson, et al, M Alexandr Ore breccias in the Rio Blanco-Los Bronces porphyry copper deposit. Chile.Special Publication-Society of Economic Geologists, 1999, Vol,7, pp.281-297.
    176 XX. Gu, JX.Tang, CS. Wang,JP.Chen. Himalayan magmatism and porphyry copper-molybdenum mineralization in the Yulong ore belt, East Tibet. Miineralogy and petrology, 2003, 2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700