用户名: 密码: 验证码:
单纯疱疹病毒Ⅱ型gD糖蛋白加趋化因子MIP-1α核酸疫苗的构建及初步免疫观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单纯疱疹病毒Ⅱ型(HSV-Ⅱ)主要引起生殖器疱疹。近年来,生殖器疱疹的发病率在迅速上升,危害性亦日益显得突出,但目前尚无特效药控制其发生和复发,因此研制疱疹病毒疫苗已成为预防生殖器疱疹感染的关键。在现已研制的疫苗中,DNA疫苗尽管诱导的免疫应答效力较低,可因其具有制备简单、安全、诱导的免疫应答广泛长久,并且可以共表达免疫调节因子,根据需要诱导产生最适免疫应答等特性,受到人们的青睐。近几年来,国外学者们一直在探索应用分子佐剂来加强DNA疫苗的免疫效果,并取得了一定的成效。为构建有效预防HSV-Ⅱ的DNA疫苗,探讨分子佐剂对DNA疫苗的作用机制,本研究完成了以下工作:
     1.HSV-Ⅱ gD DNA疫苗的构建:根据GenBank中HSV-Ⅱ HG52株gD基因序列设计了一对引物,采用PCR方法扩增出HSV-Ⅱ Sav株gD全部编码区的基因片段,经中介pUCm-T载体,将其插入到真核表达质粒pcDNA3中相应的位点,并转化E.coli DH5α,构建出HSV-Ⅱ gD DNA疫苗。通过PCR、酶切和测序鉴定,证明gD基因片段在pcDNA3中插入正确,并将构建出的重组质粒命名为Pg。经原位ELISA法证实,Pg在COS-7细胞中瞬时表达的蛋白能够与gD单克隆抗体结合,这表明所构建的Pg DNA疫苗能够在哺乳动物细胞中表达。
     2.小鼠趋化因子MIP-1α重组真核表达质粒的构建:首先用细菌脂多糖
    
     天津医科大学博士研究生学位论文
     (LPS)刺激RAW264.7细胞,提取总RNA,然后应用RT一PCR方法,扩增出MIP一1
    。基因的全部编码序列。经中介pucm一T载体和Hindln、Xbal双酶切处理后,
    将其插入到用相同酶切的真核表达质粒peDNA3中,并转化E.coh DHS“。通
    过PCR、酶切和测序鉴定,证明MIP一la基因片段在PcDNA3中插入正确,
    并将构建出的重组质粒命名为Pm。经RT一PCR和Boyden趋化小室法鉴定,证
    实了所构建的Pm在哺乳动物细胞中能够表达具有生物学活性的MIP一1。。
     3.pg+pm DNA疫苗对小鼠的初步免疫观察:每次用200林g/200林1 peDNA3、
    Pg、Pg十Pm和等体积生理盐水(NS)肌肉注射免疫BALB/C小鼠,连续免疫3
    次,末次免疫后一个月用IOOLDS。病毒量进行阴道内攻击。结果表明Pg+Pm疫
    苗组的存活率(86.7%)明显高于Pg疫苗组的(53.3%);通过阴道组织病理切
    片和半定量积分分析,证明了Pg+Pm疫苗比Pg疫苗明显降低了小鼠的发病率。
     为探讨Pg+Pm DNA疫苗诱导的免疫应答,于末次免疫后第二周及第四周
    收集小鼠血清和脾细胞,采用微量细胞中和试验和EL工SA法检测血清特异性抗
    体,采用淋巴细胞转化试验检测脾T细胞增殖反应程度。结果显示Pg+Pm DNA
    疫苗没有比Pg DNA疫苗诱导出更高的特异性抗体,但脾T细胞增值反应程度
    明显高于Pg疫苗组的,表明Pg+Pm DNA疫苗诱导了更高的细胞免疫应答。
     综上所述,本研究以HSv一H gD和M护一1。成功构建了预防HSv一H感染
    的DNA疫苗。动物初步免疫发现,gD加MIP一1。的DNA疫苗免疫效应优于单
    独的gD DNA疫苗,可以显著地提高小鼠的保护率和降低发病率。提示以
    MIP一1。作为分子佐剂的HSV一H DNA疫苗具有潜在的应用价值。
Herpes simplex virus type II is the principal cause of genital herpes. In recent years, morbidity of genital herpes has been rising heavely, and its impairment becomes severe increasingly. But now there are no workable medicine to control its infection and recurrence. It is crucial to develop vaccine to prevent genital herpes. Although immune responses induced by DNA vaccine are lower, DNA vaccine is the most favorable among the developed vaccines, for it is safe and simple to make. Furthermore, DNA vaccine can effectively stimulate cell-mediated and humoral immune responses, and can coexpress with cytokines to induce the most appropriate immune responses on the basis of need. Recently, foreign scholars have been working for enhancing immune responses of DNA vaccine by using molecular adjuvant, and had got some achievement. In order to construct effective DNA vaccine to prevent HSV-II infection and explore modulation mechanisms of immunity of molecular adjuvant, we have made the following works in this study
    : 1. Construction of DNA Vaccine of Herpes Simplex Virus Type II gD:
    According to HSV-II strain HG52 gD gene sequence in GenBank, a pair of primers were designed and the whole encoding sequence of HSV-II strain Sav gD
    
    
    
    was amplified by PCR. The PCR product was inserted into pUCm-T vector. Subsequently it was digested by restriction endonucleases HindIII and XbaI, and inserted orientally into mammlian vector pcDNA3 at corresponding sites. Thus the recombinant was transformed into E.coli DH5 a . Identified by PCR, restriction enzymes analysis and sequencing, recombinant eukaryotic expression plasmid was named Pg. When Pg was transiently transfected into COS-7 cell, specific recombinant protein gD was demonstrated by in situ ELISA with specific gD McAb. It indicated that Pg was able to express in mammalian cells.
    2. Construction of recombinant eukaryotic expression plasmid of murine chemokine MIP-1α
    The total RNA was extracted from LPS-stimulated RAW264.7 cell before the whole encoding sequence of MIP-1 a was amplified by RT-PCR. The RT-PCR product was inserted into pUCm-T vector. After RT-PCR product was digested by restriction endonucleases Hindlll and Xbal in pUCm-T vector, it was inserted orientally into mammlian vector pcDNA3 at corresponding sites. Then the recombinant was transformed into E.coli DH5 a . Identified by PCR, restriction enzymes analysis and sequencing , recombinant eukaryotic expression plasmid was named Pm. Specific recombinant protein rMIP-1α transiently expressed in COS-7 cell was demonstrated by RT-PCR and boyden chemotaxis chamber. It suggested that Pm be able to express in mammalian cells.
    3. Assessment for protective effects of Pg +Pm DNA vaccine on mice
    Mice were injected in the quadriceps with 200ug Pg, Pg+Pm in a final volume of 200ul of NS separately. The control mice were immunized with pcDNA3 and NS, respectively. Immunization was made for three times. One month after the last immunization, mice were challenged intravaginally with 100LD50 of HSV-II strain
    
    
    Sav. Mice were then examined daily to evaluate pathological conditions and survival rates within 14 days. The results showed that Pg+Pm DNA vaccine improved, the survival rate of mice and reduced both the number of mice with lesions and severity of herpetic lesions significantly. 4. Evaluation of the immune responses induced by Pg +Pm DNA vaccine:
    To detect the specific antibody titers by ELISA and microneutralization test, we collected serum at the second week and the fouth week after the last immunization. Lymphocyte transformation test (LTT) was made using MTT in the first month after the last immunization. Pg+Pm DNA vaccine resulted in a moderate but not significant enhancement of gD-specific IgG levels and induced significant enhancement of Th-cell proliferation responses. These results illustrated that Pg+Pm DNA vaccine induced higher antigen-specific cell-mediated immune responses than Pg DNA vaccine alone.
    In sum, we have successfully constructed the DNA vaccine of HSV-II strain Sav gD with MIP-1α
引文
1. Corey L. Increasing prevalence of HSV-Ⅱ points to need for more effective prevention strategies. Herpes. 2002; 9(1): 3-8
    2. Corey L, Handsfield HH. Genital herpes and public health: addressing a global problem. JAMA. 2000; 283(6): 791-794
    3.赖伟红,邵长庚.生殖器疱疹临床研究的某些新进展.国外医学·皮肤性病学分册 2000;26(3):162-166
    4. Wald A, Link K. Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. J Infect Dis. 2002;185(1): 45-52
    5. Yeung-Yue KA,Brentjens MH, Lee PC, et al. Herpes simplex viruses 1 and 2.Dermatol Clin. 2002; 20(2): 249-266
    6. Mbizvo EM, Msuya Sia E, Stray-Pedersen B, et al. Association of herpes simplex virus type 2 with the human immunodeficiency virus among urban woman in Zimbabwe. Int J STD AIDS. 2002; 13(5): 343-348
    7.赖伟红,邵长庚.发展中国家生殖器疱疹的流行在增加:对HIV异性间传播和性传播感染控制规划的意义.国外医学·皮肤性病学分册 2001;27(2):112-114
    8.赵萍,黄绍敏,王琳.新生儿单纯疱疹病毒感染.中国优生与遗传杂志 1998;6(3):79-80
    9. Brown ZA, Selke S, Zeh J, et al. The acquisition of herpes simplex virus during pregnancy. N Engl J Med. 1997; 337(8): 509-515
    10.赵天恩,邵长庚.生殖器疱疹的研究进展.国外医学·皮肤性病学分册
    
    1995; 21(3): 165-168
    11. Gilbert LK, Schulz SL, Ebel C. Education and counselling for genital herpes: perspective from patients. Herpes. 2002; 9(3): 78-82
    12. Stanberry LR. Herpes simplex virus infections: behavioural and biomedical aspects. Herpes. 2002; 9(3): 59-65
    13. Mishkin EM. Native. HSV glycoprotein D vaccines immunogenecity and protection in animal models. Vaccine. 1991 ; 9:148-152
    14. Langenberg AG, BURke RL, Adair SF. A recombinant glycoprotein vaccine for HSV-2 safety and efficacy. Ann Intern Med.1995;122:88-94
    15. DunconJ, McGEOCH. The genome of HSV: structure, replication and evolution. J Cell Sci Suppl. 1987; 7:67-94
    16. Jawerz E, et al. Review of Microbiology. Seventeenth Edition. Chapter 44. Herpes virus family. 1987; 502-606
    17. Wollff JA, Malone, RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990; 247:1465-8
    18. Danko I. Wollf JA. Direct gene transfer into muscle[J]. Vaccine.1994; 12(16):1499-1502
    19. Gurunathan S, Klinman DM, Seder RA, DNA vaccine: immunology, application and optimization. Annu Rev Immunol. 2000; 18:927-974
    20. Ertl H C, Xiang Z Q. Genetic Immunization[J]. Viral Immunology. 1996; 9:1-9
    21. Bourne N. Stanberry LR. Bernstein DI. DNA immunization against experimental genital herpes simplex virus infection. J Infection Dis. 1996; 173:800-807
    22. Lagging LM, Meyer K, Hoft D, et al. Immune responses to plasmid DNA encoding the hepatitis C virus core protein[J]. J Virol. 1995; 69:5859-5863
    23. Bourne N, Milligan GN, Schleiss MR, et al. DNA immunization confers
    
    protective immunity on mice challended intravaginally with herpes simplex virus type 2[J]. Vaccine. 1996; 14:1230-1236
    24. Cohen J. DNA points way to vaccines [nnews][J]. Science.1993; 259(6): 1691-1692
    25. Chow YH, Huang WL, Cli WK, et al. Improvement of hepatitis B virus DNA vaccines by plasmids coexpressing hepatitis B surface antigen and interleukin-2[J]. J Virol. 1997; 71: 169-178.
    26. Iwasaki A, Stiemholm BJN, Chan AK, et al. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecule and cytokine[J]. J Immunol. 1997; 158:4591-4601
    27. Kim JJ, Bagarazzi ML, Trivedi N, et al. Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule gene[J]. Nat. Biotechnol. 1997; 15:641-645
    28. Barouch DH, Santra S, Steenbake TD, et al. Augmentation and suppression of immune responses to an HIV-1DNA vaccine by plasmid cytokine/Ig administration [J]. J Immunol. 1998; 161:1875-1882
    29. Lu Y, Xin KQ, Hamajima K, et al. Macrophage inflammatory protein-1 α (MIP-1 α ) expression plasmid enhances DNA vaccine-induced immune response against HIV-1[J].Clin Exp Immunol. 1999;115:335-341
    30. Cho JH, Lee SW, Sung YC, et al. Enhanced cellular immunity to hepatitis C virus nonstructural proteins by codelivery of granulocyte macrophage-colony stimulating factor gene in intramuscular DNA immunization[J].Vaccine. 1999; 17:1136-1144
    31. Lim YS, Kang BY, Kim EJ, et al. Potentition of antigen-specific, T_H1 immune responses by multiple DNA vaccination with an ovalbumin/interferon-r hybridconstruct [J]. Immunol. 1998; 94:135-141
    
    
    32. Tuting T, Wilson CC, Martin DM, et al. Autologous human monocytederived dendritic cells genetically modified to express melanoma antigens elicit primary cytotoxic t-cell responses in vitro: enhancement by cotransfection of genes, encoding the T_H1-basing cytokines IL-12 and IFN-alpha[J]. J Immunol. 1998; 1139-1147
    33. Tsuji T, Fukushima J,Hamajima K,et al. HIV-1-specifie cell-mediated immunity is enhanced by coinoculation of TCA3 expression plasmid with DNA vaccine[J].Immunol. 1997; 90:1-6
    34. Geissier M,Gesien A,Tokushige K,et al. Enhancement of celluar and humoral immune responses to hepatitis C virus core protein using DNA-based vaccinges augmented with cytokine-expressing plasmids[J]. J Immunol. 1997; 158:1231-1237
    35. Eo SK, Sujin lee, Sangjun Chun, et al. Modulation of immunity against Herpes Simplex Virus infection via mucosal genetic transfer of plasmid DNA encoding chemokines. J Virology Jan. 2001; 569-578
    36. Eo SK, Lee S, Kumaraguru U, et al. Immunopotentiation of DNA vaccine against herpes simplex virus via co-delivery of plasmid DNA expressing CCR7 ligands. Vaccine. 2001; 19(32): 4685-4693
    37. Kim JJ, Ayyavoo V, Bgarazzi ML, et al. In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen[J]. J Immunol. 1997; 158:816-826
    38. Tsuji T, Hamajima K, Fukushima J, et al. Enhancement of cell-mediated immunity against HIV-1 induced by coinoculation of plasmid-encoded HIV-1 antigen with plasmid expressing IL- 12 [J]. J Immunol. 1997; 158: 4008-4013
    39. Xiang ZQ, and Erd HCJ. Manipulation of the immune response to a plasmid-encoded viral antigen by coinocultion with plasmids expressing cytokines[J]. Immunity. 1995; 2:129-135
    
    
    40. Xiang ZQ, He Z, Wang Y, et al. The effect of interferon-gamma on genetic immunization[J]. Vaccine. 1997; 15:896-902
    41. Irvine KR, Rao JB, Rosenberg SA, et al. Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases[J]. J Immunol. 1996; 156: 238-245.
    42. Conry KM, Widera G, LoBuglio AF, et al. Selected strategies to augment polynucleotide immunization[J]. Gene Ther. 1996; 273(5): 352-354
    43. Mandoza RB, Cantwell MJ, and Kipps TJ. Cutting edge: immunostimulatory effects of a plasmid expressing CD40 ligand[J]. (CD154) on gene immunization[J]. J immunol. 1997; 159:5777-5781
    44. Sato .Y, Roman M, Tighe H, et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization[J]. Science. 1996; 273(5): 352-354
    45. Lee SW, Sung YC, Immunostimulatory effects of bacterialderived plasmid depend on the mature of the antigen in intramuscular DNA inoculations[J]. Immunol. 1998; 94:285-289
    46. Sin JI, Kim JJ, Arnold RL, et al. IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-Mediated protective immunity against herpes simplex virus-2 challenge. J Immunol. 1999; 162(5): 2912-21
    47. Sin JI, Kim JJ, Boyer JD, et al. In Vivo Modulation of vaccine-induced immune responses toward a Th1 phenotype increases potency and vaccine effectiveness in a herpes simplex virus type 2 mouse model. J Virol. 1999; 73(1): 501-509
    48. Sin JI, Kim JJ, Pachuk C, et al. DNA Vaccines Encoding Interleukin-8 and RANTES enhance antigen-specific Th1-type CD4+ T-cell-mediated Protective
    
    immunity against herpes simplex virus type 2 in vivo. J Virol. 2000; 74(23): 1173-80
    49. Sin JI, Kim J J, Zhang D, et al. Modulation of cellular responses by plasmid CD40L: CD40L plasmid vactor enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Hum Gene Ther. 2001; 12(9): 1091-102
    50. Gallichan WS, Woolstencroft RN, Guarasci T, et al. Intranasal immunizaion with CpG oligodeoxynucleotides as an adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J Immunol. 2001; 166(5): 3451-7
    51. Flo J, Tisminetzks, Baralle F, et al. Modulation of the immune response to DNA vaccine by co-deliveery of costimulatory molecules. Immunology. 2000; 100(2): 259-67
    52. Sin JI, Kim JJ, UgenKE,et al. Enhancement of protective humoral(Th2)and cell-mediated(Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocyte-macrophage colony-stimulating factor expression cassettes. Eur J Immunol. 1998; 28(11): 3530-40
    53. Eo SK, Sujin lee, Sangjun Chun, et al. Modulation of immunity against herpes simplex virus infection via mucosal genetic transfer of plasmid DNA encoding chemokines. J Virol. 2001; 75(2): 569-578
    54. Krishna S, Blacklaws BA, Overton HA, et al. Expression of glycoprotein D herpes simplex virus type 1 in a recombinant baculovirus: protective responses and T cell recognition of the recombinant-infected cell extracts[J]. J Gen Virol. 1989;70(Pt7): 1805-1814
    55. Watson Rj, weis JH, Salstrom JS, et al. Herpes simplex virus type1
    
    glycoprotein D gene: nucleotide sequence and expression in Escherichia coli[J]. Science. 1982; 218:318-322
    56. Martin S, Rouse BT. The mechanisms of antiviral immunity induced by a vaccine virus recombinant expressing herpes simplex virus type 1 glycoprotein D: clearance of local infection[J]. J Immunol. 1987;138:3431-3437
    57. Ghiasi HM, Kaiwar R, Nesbum AB, et al. Expression of seven herpes simplex virus type 1 glycoproteins (gB,gC,gE,gG,gH,and gI): comparative protection against lethal challenge in mice[J]. J Virol. 1994; 68:217-222
    58. Rajcani J, Vojvodova A. The role of herpes simplex virus glycoproteins in the virus replication cycle[J] Acia Virol. 1998; 42(2): 103-118
    59. Flo J, Perez AB, Baralle F, et al. Superiority of intramuscular route and full length glycoprotein D for DNA vaccination against herpes simplex 2. Enhancement of protection by the co-delivery of the GM-CSF gene[J]. Vaccine 2000; 19(18): 3242-3253
    60. Koelle DM, Corey L. Recent progress in herpes simplex virus immunobiology and vaccine research. Clin Microbiol Rev. 2003; 16(1 ): 96-113
    61.杨雄虎,候云德.我国单纯疱疹病毒Ⅰ型168株糖蛋白gD基因的克隆及序列分析.病毒学报1993;9(4):308-315
    62. Terhune ss, Coleman KT, Sekulovich R, et al. Limited variability of glycoprotein gene sequences and neutralizing targets in herpes simplex virus type 2 isolates and stability on passage in cell culture.JID. 1998; 178:8-15
    63.杨惠兰,廖元兴,李明等.一例复发性生殖器疱疹的临床及其致病的HSV-2野生株的糖蛋白D基因序列分析.中华皮肤科杂志 1998;31(3):168-170
    64.张维溪,李昌崇.巨噬细胞炎性蛋白—1α与支气管哮喘.国外医学·儿科学分册 2002;29(2):65-67
    
    
    65. Oppenheim J. J., Zachariae C. O., Mukaida N. et al. Properties of the novel proinflammatory supergene 'intercrine' cytokine family. Annu Rev Immunol. 1991; 9:617-621
    66. Sherry B, Horii Y, Manogue KR, et al. Macrophage inflammatory proteins 1 and 2: an overview. Cytokines. 1992;4:117-200
    67. Schall T. J. Biology of the RANTES/SIS cytokine family. Cytokine. 1991; 3:165-170
    68. Jeong-Im Sin, Velpandi Ayyavoo, Jean Boyer, et al. Protective immune correlates can segregate by vaccine type in a murine herpes model system. International Immunology. 1999; 11(11): 1763-1773
    69.金冬雁,黎孟枫译.分子克隆实验指南[M].第2版,北京:科学出版社.1996:19—22;322-323;793—797
    70.颜子颖,王海林译.精编分子生物学实验指南.北京:科学出版社.1998:680—682.
    71. Geraghty R.J., A.Fridberg, C.Krummenacher, et al. Use of chimeric nectin-1(HevC)-related receptors to demonstrate that ability to bind alphaherpesvirus gD is not necessarily sufficient for viral entry. Virology. 2001; 285:366-375
    72. Geraghty R.J., C.R.Jogger, P G.Spear. Celluar expression of alphaherpesvirus gD interferes with entry of homologous and heterologous alphaherpesvirus by blocking access to a shared gD receptor. Virology. 2000;268:147-158
    73. Kinghorn GR. Herpes simplex type 1 genital infection. Herpes. 1999; 6(1): 4-7
    74. Honer AA, Van Uden JH, Zubeldia JM, et al. DNA-based immunotherapeutics for the treatment of allergic disease. Immuological Reviews. 2001 ;179:102-18
    75. Bocchia M, Bronte V, Colombo M, et al. Antitummor vaccination where we
    
    stand. Haematologica. 2000; 85:1172-206.
    76. Terry J. Higgins, Kathleen M. Herold, Renee L. Arnold, et al. Plasmid DNA-expressed secreted and nonsecreted froms of Herpes Simplex Virus. glycoprotein D2 induce different types of immune responses. J Infect Dis. 2000;182:1311-1320
    77. J.E. Strasser, R. L. Arnold, C. Pachuk, et al. Herpes Simplex Virus DNA vaccine efficacy: effect of glycoprotein D plasmid constructs. J Infect Dis. 2000;182:1304-1310
    78. Flo J. Co-immunization with plasmids coding the full length and a soluble form of glycoprotein D of HSV-2 induces protective celluar and humoral immune response in mice. Vaccine. 2003; 21 (11-12): 1239-45
    79. Theodore M. Danoff, Peter A. Lalley, Young S. Chang, et al. Cloning, genomic organization, and chromosomal localization of the Scya5 gene encoding the murine chemokine RANTES. J Immunology. 1994; 152:1182-1189
    80. Patricia Tekamp-Olson, Carol Gallegos, Diane Bauer, et al. Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologues. J.Exp.Med. 1990; 172(9): 911-919
    81. George Davatelis, Patricia Tekamp-Olson, Stephen D. Wolpe. Cloning and characterization of a cDNAs for murine macrophage inflammatory protein(MIP), a novel monokine with inflammatory and chemokinetic properties. J Exp Med. 1988; 167(6):1939-1944
    82. Urs Widmer, Zhi Yang, Sander van Deventer. Et al. Genomic structure of murine macrophage inflammatory protein-1α and conservation of potential regulatory sequences with a human homolog,LD78. J Immunology. 1991; 146(6): 4031-4040.
    
    
    83.黄祯祥主编.医学病毒学基础及实验技术.北京:科学出版社.1990;142-148
    84. Ghias HM, Nesbum AB, Kaiwar R, et al. Immunoselection of recombinant baculoviruses expressing high levels of biologically active herpes simplex virus type 1 glycoprotein D[J]. Arch Virol. 1991; 121:163
    85.杜平主编.医学实验病毒学[M].第一版.北京:人民军医出版社.1985;81-109
    86. Stanberry LR, Cunningham AL, Mindel A, et al. Prospects for control of herpes simplex virus disease through immunization. Clin Infect Dis. 2000; 30(3): 549-566
    87. Stanberry LR, Spruance SL, Cunningham AL, et al. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med. 2002; 347(21): 1652-1661
    88. Nass PH, Elkins KL, Weir JP. Protective immunity against herpes simplex virus generated by DNA vaccination compared to natural infection. Vaccine. 2001; 19(11-12): 1538-1546
    89. Morrison LA, Vaccines against genital herpes: progress and limitations. Drugs. 2002; 62(8): 1119-1129
    90.孙树汉,戴建新,张平武等.核酸疫苗.第二军医大学出版社.2000;前言
    91.Hsiung GD(许德芳节译).生殖器疱疹:豚鼠模型的发病与化疗.国外医学·微生物学分册 1984;12:252-255
    92. Bravo FJ, Stanberry LR, Kier AB, et al. Evalution of HPMPC therapy for primary and recurrent genital herpes in mice and guinea pigs. Antiviral Res. 1993; 21:59-72
    93. Jennings R, Smith TL, Myhren F, et al. Evaluation of a novel, antiherpes simplex virus compound, acyclovir elaidate(P-4010), in the female guinea pig
    
    model of genital herpes. Antimicrob Agents Chemother. 1999; 43: 53-61.
    94. Da Costa, X. J., Bourne,N., et al. Construction and characterization of a replication-detective herpes simplex virus 2 ICP8 mutant strain and its use in immunization studies in a guinea pig model of genital herpes. Virology. 1997; 232:1-12
    95. Mclean, C.S., Erturk,M., Jennings,R., et al. Protective vaccination against primary and recurrent disease caused by herpes simplex virus(HSV) type 2 using a genetically disabled HSV-1. J Infect Dis. 1994; 170:1100-1109
    96. Corey L., Langenberg,A.G.M,, Ashley, R., et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: Two randomized controlled trials. J Am Med Assoc. 1999; 282:331-340
    97. Mertz G. J.,Ashley R.,Burke R.L.,et al. Double-blind, placebo-controlled trial of a herpes simplex virus type 2 glycoprotein vaccine in persons at high risk for genital herpes infection. J infect Dis. 1990; 161:653-660
    98. Straus S.E., Wald A., Kost R.G., et al. Immunotherapy of recurrent genital herpes with recombinant herpes simplex virus type 2 glycoproteins D and B: Results of a placebo-controlled vaccine trial. J infect Dis. 1997; 176:1129-1134
    99. Xavier J.Da Costa,Lynda A.Morrison,David M.Knipe. Comparison of different forms of herpes simplex replication-defective mutant viruses as vaccines in a mouse model of HSV-2 genital infection. Virology. 2001:288:256-263
    100.徐建青,司静懿,刘世德等.DNA疫苗.国外医学·免疫学分册 1998;21(2):82—86
    101. Danko I, Fritz JD, Jiao S. et al. Pharmacological enhancement of in vivo foreign gene expression in muscle. Gene Ther. 1994; 1:114-121
    102.张涛,徐葛林.DNA疫苗的基因佐剂.国外医学·预防诊断、诊断、治疗
    
    用生物制品分册 2002;25(1):21—23
    103. Notkins A. L. Immune mechanisms by which the spread of viral infections is stopped. Cell. Immunol. 1974; 11:478-483
    104. Manickan E., Rouse R. J., Yu Z., et al. Genetic immunization against herpes simplex virus. Protection is mediated by CD4~+ T lymphocytes. J. Immunol. 1995; 155:259-265
    105. Sethi K. K., Omata Y, Schneweis K.E. Protection of mice from lethal herpes simplex virus type 1 infection by adoptive transfer of cloned virus-specific and H-2-restricted cytotoxic T lymphocytes. J Gen Virol. 1983; 64:443-447
    106. Tigges M. A., Leng S., Johnson D.C, et al. Human herpes simplex virus (HSV)-specific CD8~+ CTL clones recognize HSV-2 infected fibroblasts after treatment with IFN-γamma or when virion host shutoff functions are disabled. J. Immunol. 1996; 156:3901-3910
    107. Korsager B., Spencer S., Mordhurst C, et al. Herpesvirus hominis infections in renal transplant recipients. Scand. J Infect Dis. 1975; 7:11-15
    108. Sheridan J. F., Donnenberg A. D., Aurelian L, et al. Immunity to herpes simplex virus type 2: Ⅳ. impaired lymphokine production during recrudescence correlates with an imbalance in T lymphocyte subsets. J Immunol. 1982; 129:326-334
    109. Kapoor A. K., Nash A. A., Wildy P. Pathogenesis of herpes simplex virus in B cell-suppressed mice: the relative roles of cell mediated and humoral immunity. J Gen Virol. 1982; 61:125-134
    110. Minano FJ, Vizcaino M, Myers RD. Action of cyclosporine on fever induced in rats by intrahypothalamic injection of macrophage inflammatory protein-1 (MIP-1 ). Neuropharmacology. 1992; 31 (2): 193-197
    
    
    111.杜德伟,吴学勤,李谨革等.HBsAg DNA疫苗诱导小鼠特异性细胞和体液免疫.天津医药 2001;29(4):217-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700