用户名: 密码: 验证码:
中国中西部几个新元古代镁铁、超镁铁岩体研究及对Rodinia超大陆裂解事件的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华南板块新元古代中期(~800 Ma)各种类型火成岩的广泛分布目前已引起地学界的普遍关注,这一时期岩浆活动的构造环境是地幔柱还是大陆边缘弧,在Rodinia超大陆构建、我国华南等陆块在Rodinia再造模型中的位置,以及Rodinia超大陆裂解事件的动力学机制等重要地质问题的讨论中至关重要。本文选择秦—祁—昆大陆造山带及两侧地块中的三个重要、且著名的镁铁—超镁铁岩体为解剖对象,在详细的野外地质工作基础上,通过岩石学、地球化学、矿物学、包裹体地质学和SHRIMP锆石U—Pb定年等综合研究和分析,探讨各岩体的成岩作用、成岩构造环境和成岩年龄,进而对比分析了相关古陆块的区域古构造背景及它们对新元古代构造岩浆事件性质和Rodinia超大陆裂解事件的示踪意义。主要研究进展如下:
     1、通过元素地球化学分析,认为赋存超大型铜镍矿床的金川橄榄岩体的成岩作用受橄榄石的结晶所控制,现存岩体可能是上部岩石单元被剥蚀后的结晶于岩浆房底部的超镁铁质岩石单元。主量、微量和Nd同位素组成反映与岩体伴生的辉绿岩脉与金川超镁铁岩岩体的母岩浆为同源、不同成分的幔源熔浆,均源于富集地幔源区(εNd(t)≈—3),但金川超镁铁岩体显示了更强烈的地壳物质混染性,这一特征可能由其母岩浆具有的高温、富镁特性所造成。金川岩体中铬铁矿成分也反映TiO_2含量高,指示成岩环境为大陆板块内部。利用SHRIMP锆石U—Pb年代学分析技术,获得了含超大型铜镍硫化物矿床的金川橄榄岩体和伴生辉绿岩脉的确切成岩年龄分别为827±8 Ma和827±4 Ma,在误差范围内完全一致。据此提出,出露于龙首山隆起区的金川橄榄岩体等镁铁/超镁铁岩可能是与Rodinia裂解时期(约825 Ma)地幔柱岩浆作用(Li Z X,1999;Li X H,2003)相关的高镁苦橄质拉斑玄武岩浆结晶形成的深成侵入体。
     2、通过详细的构造—岩相学分析,揭示扬子板块北缘汉南基性杂岩是一由超镁铁岩带、辉长岩带、辉长闪长岩带组成的大型层状堆晶杂岩体,并特别指出杂岩体底部有稳定的橄长岩类岩石堆晶层位,反映其母岩浆为非岛弧环境产生的“干”的玄武质熔浆,成岩作用表现为纯橄岩—橄长岩—橄榄辉长岩—辉长岩的斜长石优先结晶趋势。不同层位岩石元素地球化学对比研究发现,造成汉南层状基性杂岩被认为具有Zr、Hf负异常等似岛弧玄武岩成分特征的主要原因是由于杂岩体下部堆晶岩系中橄长岩、浅色辉长岩中斜长石的过量堆积所造成。同时发现,汉南基性杂岩辉长岩中斜长石、单斜辉石、斜方辉石及钛铁矿等矿物内普遍存在矿物出溶现象,且首次在斜长石中首次发现钛铁矿的出溶现象,表明其结晶
    
    于高温富钦熔浆。这些新的观察和研究,以及其中大型钒钦磁铁矿矿床(毕机沟
    钒钦磁铁矿床)的产出等,一致地反映汉南层状基性杂岩体是由地慢柱源高温、
    富Ti“干”熔浆结晶分异形成的层状基性杂岩体,而非形成于大陆边缘的岛弧低
    Ti“湿”熔浆结晶形成的深成岩体。
     3.对倍受关注的北秦岭松树沟地区松树沟纯橄岩体和其周围石榴辉石岩和
    其退变质的(石榴)斜长角闪岩等深变质岩,以及富水杂岩体等的研究认为这些
    岩石并非“中新元古代蛇绿岩”的不同岩石单元。主要依据(1) 51刃又压尸错石
    U一Pb定年揭示,石榴辉石岩的变质年龄为501士10 Ma,富水基性杂岩体的成
    岩年龄为490士10 Ma,同为早古生代秦岭洋俯冲一闭合事件的产物。(2)石榴
    辉石岩/(石榴)斜长角闪岩等深变质岩与松树沟岩体的接触关系表现为似包裹
    状,而不呈构造岩片关系。(3)首次在松树沟纯橄岩体橄榄石等矿物中发现典型
    岩浆包裹体,同时其岩石组合表现出的特殊性(岩体出露面积95%以上为纯橄
    岩)、岩石结构构造、元素地球化学特征都显示出与蛇绿岩底部残留地慢岩不同
    的特征,进而提出该岩体是形成于大陆岩石圈壳慢过渡带的渗滤成岩纯橄岩体,
    其球粒陨石标准化的LREE富集分布形式等显示渗滤熔体为地慢柱源高镁熔体,
    依岩体内部巨晶辉石40Ar/39Ar高温坪年龄834士3 Ma(陈丹玲,2002),推测其
    也与约825 Ma的地慢柱源岩浆作用相关。
     4、出露于扬子地块北缘、龙首山隆起和北秦岭构造块体的上述3个镁铁、
    超镁铁岩体研究表明:(1).它们的成岩年龄在误差范围内基本一致:819士1 OMa、
    827士SMa和834士4Ma;(2).虽从岩石组合、成因类型看它们存在明显差异,
    但成岩(矿)作用过程、元素地球化学指标等反映他们均不具有岛弧富挥发份“湿”
    熔浆结晶岩石的特征,而都显示母岩浆是地慢柱源的高温“干”熔浆。因此,中
    国中西部这3个重要(著名)的镁铁一超镁铁岩体均可能与Rodinia超大陆裂解
    早期(~825 Ma)强烈的岩浆活动(如华南板块等)相关,是地慢柱构造背景下
    产生的大量岩浆,短时期内上涌分别在壳慢过渡带渗滤改造地慢橄榄岩形成的纯
    橄岩体,以及侵入于深地壳和上部岩浆房结晶形成的深成侵入体。这些近同时形
    成的不同类型镁铁灌镁铁岩体的被识别,对示踪新元古代中期岩浆作用性质和
    Rod而a超大陆裂解的动力学机制等提供了新的、重要依据。
The various igneous rocks of the middle Neoproterozoic (~ 800 Ma) that are well developed in the South China Platform have been received a great deal of attention to many researchers over the world. The nature of magmatic activities in this period, whether in mantle plume or in island arc of continental margin, directly constrains the re-construction and breakup of Rodinia supercontinent, as well as the location of the South China platform in the re-constructed model of Rodinia supercontinent. On the basis of field investigations, three Neoproterozoic mafic and ultramafic intrusions in Qinling-Qilian-Kunlun orogenic super-belt and adjacent areas were selected for comprehensive studies on petrology, geochemistry, mineral structures, melt and fluid inclusions and SHRIMP zircon U-Pb dating in this paper. Rock-forming processes and environments of the three intrusions have been analyzed. These studies play important roles in comparing analysis and exploring the regional tectonic settings in the Neoproterozoic er
    a and in tracing information for tectono-magmatism associated with breakup of the Rodinia Supercontinent. Some achieves are as following:
    1. Jinchuan Cu-Ni-ore-bearing ultramafic intrusion occurs as lensoid or dyke-like bodies in NW direction in the Longshushan Rise, the south margin of Alax block. It consists of dunite, lherzolite, plagioclase lherzolite and olivine-pyroxenite. Zircon U-Pb SHRIMP analyses yield precise magmatic crystallization ages of 827? Ma for the ultramafic body and 828? Ma for the accompanied dykes. Petrological and geochemical studies reveal that the parental magma of Jinchuan Cu-Ni ultramafic body is high-Mg picritic tholeiite, and mafic dykes within or outside the body are also the products of tholeiitic intrusion from the same parental magma. Nd isotope, REE and trace elements reveal that this body and mafic dykes were sourced from a long-term enriched mantle (eNd(t) < -3). The results suggest that Jinchuan ultramafic body and the accompanied dykes are deep-seated intrusions related to within-plate mantle plume magmatic activity.
    2. Based on detailed tectono-petrographic investigations, this paper demonstrates that Hannan Complex is a large layered cumulate hybrid body that consists of ultramafic zone, gabbro zone and gabbro-diorite zone from the bottom to the top. Troctolite layers that steadily occur in the basal part of the complex reflect that the
    
    
    parental magma generates in a "dry" environment rather than the "wet" island arc, which is characterized by crystallization of plagioclase earlier than that of pyroxenes and shows a cumulate sequence of dunite-troctolite-olivine gabbro-gabbro from bottom to top. The negative anomaly of Zr and Hf in some rocks can be readily explained as excessive cumulation of plagioclase in troctolite and light-colored gabbro in the low part of the cumulate sequence, because Kd of Zr and Hf between plagioclase and melt is much lower than that between pyroxene and melt. Discovery of ilmenite exsolution lamellae in plagioclase suggests that minerals crystallized from a high-T and Ti-rich parental magma. Combining all aspects of fact, for instance, the LREE-enriched patterns of all rocks, the E-MORB-affinity trace element spidergram shown by most cumulate gabbro and gabbroic diorite, and occurrence of the large ore deposit of V-bearing titanic magnetite, we can conclude that Hannan complex crystallizes from a high-temperature
    
    magma at an environment of mantle plume.
    3. Songshugou dunite body and accompanied garnet-pyroxenite and amphibolite and Fushui complex body in north Qinling Orogenic Belt have received a great deal of attention. Using CL and ion microprobe (SHRIMP) techniques, this study obtains a high-pressure metamorphic age at 501+ 10 Ma for garnet pyroxenite (Sm-Nd isochron age is 1030+46Ma for the protolith) near Songshugou dunite body and a magmatic age at 490+10 Ma for Fushui island-arc gabbro-diorite complex. The two concordant ages constructed the Early Paleozoic tectonic pattern of plate subduction and collision in the North Qin
引文
Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 1999, 46: 605-626.
    Barnes S J, Tang Z L. Chrome spinel from the Jinchuan Ni-Cu sulfide deposit, Gansu Province, People's Republic of China. Economic Geology, 1999, 94: 343-356.
    Barovich K M, Foden J. A Neoproterozoic flood basalt province in southern-central Australia: geochemical and Nd isotope evidence from basin fill. Precamb. Res., 2000, 100, 213-234.
    B(?)dard J H. A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids. Chem. Geol., 1994, 118: 143-153.
    Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 2003, 200:155~170.
    Black L P, Kamo S L, Williams C M, et al. The application of SHRIMP to Phanerozoic geochronology: a critical appraisal of four zircon standards. Chemical Geology, 2003, 200: 171-88.
    Bryan S E, Riley T R, Jerram D A, et al. Silicic volcanism: An undervalued component of large igneous provinces and volcanic fired margins. In: M.A. Menzies, S.L. Kiemperer, C.J. Ebinger and J. Baker (Editors), Volcanic Rifted Margins, Geol. Soc. Am. Spec. Paper, 2002, 362: 97-118.
    Buchl A, Brugmann G, Batanova V G, et al. Melt percolation monitored by Os isotopes and HSE abundances:a case study from the mantle section of the Troodos Ophiolite. Earth and Planetary Science Letter, 2002, 204:385~402.
    Bunge H P, Ri chards M A, Lithgnv-Bertelloni C. Time scale and heterogeneous structure in geodynamic Earth model. Science,1998, 280: 91-95.
    Chal G, Naldrett A J, The Jinchuan ultramafic intrusion: Cumulate of a high-Mg basaltic magma. Journal of Petrology, 1992, 33: 277-304.
    Chai G, Naldrett A J. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, northwest China. Econ. Geol., 1992, 87: 1475-1495.
    Chen Y J, Enriquez K D, Lonsdale P. Does the mid-ocean ridge propagate concurrently both on the seafloor and at depth? Implications from a gravity study of a large nontransform offset at 36.5°S, East pacific rise. J. Geophys. Res., 1996, 101: 28281-28289.
    Chen Y J. Constraints on the melt productionrate beneath the mid-ocean ridges based on passive flow models. Pure and Applied Geophys, 1996, 146: 590-620.
    Chen Y J. Thermal effects of gabbro accretion from a deeper second melt lens at the fast spreading East Pacific Rise. J. Geophys. Res., 200 1,106: 8581-8588.
    Clague D, Weber W S, Dixon J E. Picrite glasses from Hawaii. Nature, 1991, 353:553 -556.
    Ellam R M, Cox K. An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth Planet Sci. Lett., 1991, 105: 330~342.
    Ewart A, Milner S C, Armstrong R A, et al. Etendeka volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part Ⅱ: Voluminous quartz latite volcanism of the Awahab
    
    Magma System. J. Petrol., 1998, 39: 227-253.
    Frimmel H E, Zanman R E, Sp(?)th A. The Richtersveld Igneous Complex, South Africa: U-Pb zircon and geochemical evidence for the beginning of neoproterozoie continental breakup. J. Geol., 2001, 109: 493-508.
    Frost B R, Barnes C, Collins, et al. A geochemical classification for granitic rocks. J. Petrol., 2001, 42: 2033-2048.
    Ge W C, Li X H, Li Z X, et al. The "Longsheng Ophiolite" in North Guangxi Revisited. Acta Petrol. Sin., 2000, 16: 111-118.
    Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of Marion and Bouvet hotspots with the Southwest Indian, SE Pacific. Lithos, 1996, 38: 23-40.
    Godard M, Jousselin D, Bodinier J L. Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman ophiolite. Earth and Planetary Science Letter, 2000, 180: 133~148.
    Graham D W, Johnson K T M, Priebe L D. Hotspot-ridge interaction along the Southeast Indian Ridge near Amsterdam and St. Paul island: helium isotope evidence. Earth and Planetary Science Letter, 1999, 167: 297-310.
    Grand S P, van der Hilst R D, Widiyantoro S. High resolution global tomography: a snapshot of convection in the Earth. GSA Today, 1997, 7: 1-7.
    Griffiths R W, Campbell I H. Interaction of mantle plume heads with the Earth's surface and onset of small-scale convection. J. Geophys. Res., 1991, 96: 18295-18310.
    Hasse K M. Geochemical constraints on magma source and mixing processes in Easter Microplate MORB (SE Pacific): a case study of plume-ridge interaction. Chem. Geol., 2002, 182: 335-355.
    Hatton C J. Mantle plume origin for the Bushveld and Ventersdorp magrnatic provinces. J. Afr. Earth Sci. 1995, 21: 571-577.
    Hauri E H, Hart S R. Re-Os Isotopic systematics of HIMU and EMIl oceanic island basalts from the South Pacific Ocean. Earth and Planetary Science Letter, 1993, 104: 398~416.
    He B, Xu Y G, Chung S L, Xiao L, et al. Sedimentary evidence for a rapid, kilometre-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth and Planetary Science Letter, 2003, 213: 391-405.
    Heaman L M, LeCheminant A N, Rainbird R H. Nature and timing of Franklin igneous events, Canada: Implications for a Late Proterozoic mantle plume and the break-up of Laurentia. Earth and Planetary Science Letter, 117~131.
    Herzberg C, O'Hara M J. Phase equilibrium constraints on the origin of basalts, picrites, and komatiites. Earth Science Rev., 1998, 44: 39~79.
    Herzberg C, O'Hara M J. Plume-associated ultramafic magmas of Phanerzoic age. Journal of Petrology, 2002, 43: 1857~1883.
    Hill R I, Campbell I H, Davies G F, et al. Mantle plumes and continental tectonics. Science, 1992, 256: 186~193.
    Hill, RI. Starting plumes and continental break-up. Earth and Planetary Science Letter, 1991, 104: 398-416.Hirschmarm M. Melt Pathways in the mantle. Nature, 1995, 375: 737~734.
    Hitzman, M W, Oreskes N, Einaudi M T. Geological characteristics and tectonic setting of Proterozoic iron-oxide (Cu-U-Au-REE) deposits: Precambrian Research, 1992, 58: 241-287.
    
    
    Hofmann A W, Mantle geochemistry-the message from oceanic volcanism. Nature, 1997, 385: 219-227.
    Hofmann, A W, White W M. Mantle plumes from ancient oceanic cruse, Earth and Planetary Science Letter, 1982, 57: 421-436.
    Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research, 1990, 95: 2661-2678.
    Keleman P B, Koga K, Shimizu N. Geochemistry of gabbro sills in the crust-mantle trasition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth and Planetary Science Letter, 1997, 146: 457-488.
    Kelemen P B, Dick H J B, Quick J E. Formation of harzburgite by pervasion melt/rock reaction in the upper mantle. Nature, 1992, 358: 575-599.
    Kelemen P B, Hirth G., Shimizu N, et al. A review of melt migration processes in the adiabatically upwelling mantle benerath oceanic spreading ridges. Phil. Trans. R. Soc. Lond. A, 1997, 355: 283~318.
    Kelemen P B, Shimizu N, Salters V J M. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature, 1995, 375: 747-753.
    Kerr R A. A Lava model for deep Earth. Science, 1999, 283: 1826-1827.
    Kurat C, Palme H, Embery-Isztin A, et al. Petrology and Geochemistry of Peridotites and Associated Vein Rocks of Zabargad Island, Red Sea. Egypt. Mineralogy and Petrology, 1993, 48: 309~341.
    Larson R L. Geological consequences ofsuperplumes. Geology, 1991, 19: 693-966.
    Li C, Xu Z, De Waal, et al. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: implications for ore genesis: Mineralium Deposita, 2004, 39: 159-172.
    Li X H, Li Z X, Ge W, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Research, 2003, 122: 45-83.
    Li X H, Li Z X, Zhou H W, et al. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: implications for the initial rifting of Rodinia. Precambrian Research, 2002, 113: 135-154.
    Li X H, Su Li, Song B, Liu D Y. SHRJMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance. Chinese Science Bulletin, 2004, 49: 420-422.
    Li X H, Zhou H, Chung S L, et al. Geochemical and Sr-Nd isotopic characteristics of late Paleogene ultrapotassic mgamatism in southeastern Tibet. Int. Geol. Rev., 2002, 44: 559-574.
    Li X H. U-Pb zircon ages of granites from the southern margin of the Yangtze margin: timing of Neoproterozoic Jinning Orogen in SE China and implication for Rodinia assembly. Precambrian Research, 1999, 97: 43-57
    Li X H, Li Z X, Ge W C, et al. Reply to the comment: Mantle plume-, but not arc-related Neoproterozoic mdgmatism in South China. Precambrian Research, 2004:
    Li X H, Liu D Y, Sun M, et al. Precise Sm-Nd and U-Pb isotopic dating of the super-giant Shizhuyuan polymetallic deposit and its host granite, Southeast China. Geological Magazine, 2004, 141: 225-231.
    Li Z X, Cho M, Li X H. Precambrian tectonics of East Asia and relevance to supercontinent evolution. Precamb. Res., 2003, 122: 1-6.
    
    
    Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 2003, 122: 85-109.
    Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet. Sci. Lett., 1999, 173: 171-181.
    Li Z X, Li X H, Zhou H, et al. Grenville-aged continental collision in South China: new SHRIMP U-Pb zircon results and implications for Rodinia configuration. Geology, 2002, 30: 163-166.
    Li Z X, Zhang L, Powell C M. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology, 1995, 23: 407-410.
    Ling W L, Gao S, Zhang B R, et al. From subduction zone to intracontinental rifling: Neoproterozoic tectonic setting conversion along the northwestern margin of Yangtze craton, South China. Precamb. Res., 2003, 122: 111-140.
    Ludwig K R. Isoplot: a plotting and regression program for radiogenic isotope data, in: USGS Open-File Report, 1991: 91~445.
    Marsh J S, Ewart A, Milner S C, et al. The Etendeka Igneous Province: magma types and their stratigraphic distribution with implications for the evolution of the Parana-Etendeka flood basalt province. Bull. Volean., 2001, 62: 464-486.
    McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letter, 1991, 102: 358-374.
    McKenzie D, Bickle M J. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 1988, 29: 625~679.
    Melcher E, Meisel T, Puhl J, et al. Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry. Lithos, 2002, 65: 69~112.
    Middlemost E A K, Naming materials in the magma/igneous rock system. Earth-Sci. Rev., 1994, 37: 215-224.
    Morgan J, Chen Y J. The genesis of oceanic crust: Magma injection, hydrothermal circulation, and crustal flow. J. Geophys. Res., 1993, 98: 6283~6297.
    Morgan J., Chen Y J. The dependence of ridge-axis morphology and geochemistry on spreading rate and crustal thickness. Nature, 1993, 364: 706~708.
    Moront J L, Sleep N H, Normark W R, et al. Structure of the southern Juan de Fuca Ridge from seismic reflection records. J. Geophys. Res., 1987, 92: 11315~11326.
    Naldrett A J. Key factors in the genesis of Noril'sk, Subdury, Jinchuan, Voisey's Bay and other world-class Ni-Cu-PGE deposits: implications for exploration. Austrian Journal of Earth Sciences, 1997, 44: 283-316.
    Naldrett A J. World-class Ni-Cu-PGE deposits: key factors in their genesis. Min. Dep., 1999, 34: 227-240.
    Navon O, Stolper E. Geochemical consequences of melt percolation: The upper mantle as a chromatographic column. J. Geol., 1987, 95: 285-308.
    Nelson D R. Compilation of SHRIMP U-Pb zircon geochronology data, 1996, Geological Survey of Western Australia Record 1997/2, Geological Survey of Western Australia. Perth, 1997, 189p.
    Niu Y L, Bideau D., Hekinian R., Batiza R. Mantle compositional control on the extent of mantle melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation: A case study at the Mid-Atlantic Ridge 33-35°N, Earth and Planetary Science Letter, 2001, 286:
    
    383~399.
    Niu Y L, Langmuir C H, Kinzler R J. The origin of abyssal peridotites: a new perspective. Earth and Planetary Science Letters, 1997, 152: 251-265.
    Niu Y L, Regelous M, Wend I J, et al. Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letter, 2002, 199: 327-345.
    Niu Y L. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. J. Petrol., 38: 1047-1074
    Norman M D, Garcia M O. Primitive magmas and source characteristics of the Hawaiian plume: petrology and geochemistry of shield picrites. Earth and Planetary Science Letter, 1999, 168: 27-44
    Nye C J, Reid M R. Geochemistry of primary and least fractionated lavas from Okmok volcano, central Aleutians: implications for arc magma genesis. J. Geophys. Res., 1986, 91: 18531-18548
    O'Brien P J, Rotzler J. High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. Journal of Metamorphic Geology, 2003, 21: 3~20.
    O'Hara M J, Herzberg C. Interpretation of trace element and isotope features of basalts: relevance of field relations petrology, Major element data, phase equilibria, and magma chamber modeling in basalt petrogenesis. Geochim. Cosmochim. Acta, 2002, 66: 2167~2191.
    Pan X N, Zhao J X, Zhang X Y, et al. Tectonics and Rifting in Kangdian Region. Chongqing Publishing House, Congqing, 1987, 298pp.
    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letter, 1973, 19: 290-300.
    Pearce J A, Harris N B W, Tindle AG. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 1984, 25: 956-983.
    Pearee J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol., 1979, 69: 33-47.
    Pearce J A. Sources and settings of granitic rocks. Episodes, 1996, 19: 120-125.
    Pearce T H. A contribution to the theory of variation diagram: Contributions to Mineralogy and Petrology, 1968, 19: 142-157.
    Prevot M, Perrin M. Intensity of the Earth's magnetic field since Precambrian from Thellier-type palaeointensity data and inferences on the thermal history of the core. Geophys. J. Inter., 1992, 108: 613-620.
    Ratschbacher L, Hacker B R, Calvert A, et al. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 2003, 366: 1-53.
    Renne P R, Zhang Z C, Richards M A, et al. Synchrony and crustal relation between Permian-Triassic boundary crises and Siberian volcanism. Science, 1995, 269: 1413~1416.
    Roger F, Calassou S. U-Pb geochronology on zircon and isotopic geochemistry (Pb, Sr and Nd) of the basement in the Songpan-Garze fold belt (China). C. R. Acad. Sci. Paris, series Ⅱ a, 1997, 324: 819-826.
    Rollinson H. Using geochemical data: evaluation, presentation, intertation. Longman Science and Technical: Harlow, 1993, P352.
    Rudnick R L. Making continental crust. Nature, 1995, 378: 571-578.
    
    
    Schilling J G, Kingsley R, Forsyth D, et al. Dispersion of the Jan Mayen and Iceland mantle plumes in the Arctic: A He-Pb-Nd-Sr isotope tracer study of basalt from the Kolbeinsey, Mohns, and Knipovich ridges. J. Geophys. Res., 1999, 104: 10543-10669.
    Schilling J G, Ruppel A N, Davis B, et al. Thermal structure of the mantle beneath Equatorial Mid-Atlantic Ridge: Inferences from spatial variations of dredged basalt glass composition, J.Geophys. Res., 1995, 100: 10057-10076.
    Schilling J G. Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating midocean ridges. Nature, 1991, 352: 397-403.
    Schweitzer J K, Hatton C J, DeWaal S A. Link between the granitic and volcanic rocks of the Bushveld Complex, South Africa. J. Afr. Earth Sci., 1997, 24: 95-104.
    Sobolev A V, Shimizu N. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature, 1993, 363: 151~154.
    Sobolev A V. Melt inclusions in minerals as a source of principle petrological information. Petrology,1996, 4: 209~220.
    Song S G, Su L. Rheological properties of mantle peridotites at Yushigou in the North Qilian Mountains and their implications for plate dynamics. Acta Geologica Siniea (English edition), 1998, 72: 131-141.
    Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by two-stage model: Earth and Planetary Science Letters, 1975, 26: 207-221.
    Su L, Song S G, Wang Z H. CH4-rich fluid inclusions in the Yushigou mantle peridotite and their implications, North Qilian Mountains, China. Chinese Science Bulletin, 1999, 44: 1992-1995.
    Su L, Song S G, Song B, et al. SHRIMP zircon U-Pb ages of garnet pyroxenite and Fushui gabbroic complex in Song-shugou region and constraints on tectonic evolution of Qliling Orogenic Belt. Chinese Science Bulletin, 2004, 49 (11):
    Su L, Song S G, Zhou D W. Petrogenesis of Songshugou dunite body in the Qinling Orogenic Belt, Central China: Constraints from geochemistry and melt inclusions. Science in China (Seres D), (in press).
    Suhr G, Robinson P T. Origin of mineral chemical stratification in the mantle section of the Table Mountain massif(Bay of Islands Ophiolite Newfoundland, Canada). Lithos, 1994, 31: 81-102
    Suhr G. Melt migration under oceanic ridges: Inferences from reansport modeling of upper mantle hosted dunites. Journal of Petrology, 1999, 40: 575-599
    Sun M, Vuagnat M. Proterozoic ophiolites from Yanbian and Shimian. Schweiz. Mineral. Petrogr. Mitt., 1992, 72: 389-413.
    Sun S S, McDonough W F. Chemical and isotopic systematics of ocean basalt: Implications for mantle composition and processes. Geological Society Special Publication, 1989, 42: 323-345
    Tang Z, Yang J, Xu S, et al. Sm-Nd dating of the Jinchuan ultramafic rock body, Gansu, China. Chinese Science Bulletin, 1992, 37: 1988-1991.
    Tang Z. Mettallogenetic model of the Jinchuan copper and nickel sulfide deposit. Geoscience, 1990, 4: 55-64.
    Tatsumi Y, Eggins S M. Subduction Zone Magmatism. Blackwell Science, Cambridge, Boston, 1995, 211p.
    Thomposon R N, Gibson S A. Transient high temperature in mantle plume heads inferred from magnesian olivens in Phanerozoic picrites. Nature, 2000, 407: 502~506.
    
    
    van der Hilst R D, Karason K. Compositional heterogeneity in the bottom 1000 km of earth's mantle: Towards a hybrid convection model. Science, 1999, 283: 1885-1888.
    Vavra G, Gebauer D, Schmid R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southem Alps): an ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 1996, 122: 337-358.
    Vernieres J, Godard M, Bodinier J L. A Plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth's upper mantle. Journal of Geophysical Research, 1997, 102: 24771-24784.
    Walker R L, Morgan J W, Horan M F. Osminum-187 enrichment in some plumes: evidence for core-mantle interaction? Science, 1995, 269: 819-821.
    Wang J, Li X H, Duan T Z, et al. Zircon SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China. Chinese Science Bulletin, 2003, 48: 1663-1669.
    Wang J, Li Z X. History of Neoproterozoic rift basins in South China: implication for Rodinia break-up. Precamb. Res., 2003, 122: 141-158.
    White R S, Mckenzie D P. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res., 1989, 94: 7685-7729.
    Williams I S. U-Th-Pb geochronology by ion microprobe, in McKibben, M.A., et al. (eds), Applications of microanalytical techniques to understanding mineralizing processes. Review of Economic Geology, 1998, 7: 1-35.
    Wilson M. 1989. Igneous Petrogenesis. Unwin Hyman Ltd, London, 466p.
    Winchester J A, Floyd P A. Geochemical magma type discrimination: application to altered and metamorphosed igneous rocks. Earth and Planetary Science Letter, 1976, 28: 459-469.
    Wingate M T D, Campbell I H, Compston W, et al. Ion microprobe U-Pb ages for Neoproterozoic-basaltic magmatism in south-central Australia and implications for the breakup of Rodinia. Precam. Res., 1998, 87: 135-159.
    Wolfe C, Bjarnason I, Vandecar J C, et al. Seismic structure of the Iceland mantle plume. Nature, 1997, 385: 245-247.
    Xiong X L, Li X H,, Xu J F, et al. Extremely high-Na adakite-like magmas derived from alkali-rich basaltic underplate: the Late Cretaceous Zhantang andesites in the Huichang Basin, SE China. Geochem. J., 2003, 37: 233-252.
    Zhao J X., McCulloch M T, Korsch R J. Characterisation of a plume-related~800 Ma magmatic event and its implications for basin formation in central-southern Australia: Earth and Planetary Science Letters, 1994, 121: 349-367.
    Zhou M F, Kennedy A K, Sun M, et al. Neoproterozoic arc-related mafic intrusions along the northern margin of South China: implications for the accretion of Rodinia. J. Geol., 2002, 110: 611-618.
    Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China, Earth Planet. Sci. Lett., 2002, 196: 51-67.
    Zhou M F, Zhao T P, Malpas J, et al. Crustal-contaminated komatiitic basalts in Southern China: products of a Proterozoic mantle plume beneath the Yangtze Block. Precamb. Res. 2000, 103: 175-189.
    
    
    陈丹玲,刘良,周鼎武,等.东秦岭松树沟超镁铁岩中辉石巨晶的成因和~(40)Ar/~(39)Ar定年及地质意义.岩石学报,2002,18:355-362.
    董显扬,李行,叶良和,等.中国超镁铁质岩.北京:地质出版社,1995,329p.
    董云鹏,周鼎武,张国伟.东秦岭富水基性杂岩体地球化学特征及其形成环境.地球化学,1997,17:79-88.
    葛文春,李献华,李正祥,等.桂北宝坛.元宝山地区镁铁质.超镁铁质岩石的地球化学研究.地球化学,2001,30:123-130.
    葛文春,李献华,李正祥,等.龙胜地区辉长岩侵入体—年龄及意义.地质科学,2001,36:112-118.
    葛文春,李献华,李正祥,周汉文.龙胜地区丹洲群火山岩的地幔源区和构造背景.长春科技大学学报,2001,31:20~24.
    贾承造,施央申,郭令智.东秦岭板块构造.南京大学出版社,1988.
    解广轰,汪云亮,范彩云,等.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制.中国科学,1998,28(增刊):31-36.
    李怀坤,陆松年,赵风清等.柴达木北缘新元古代重大地质事件年代格架.现代地质.1999,13:224-225.
    李曙光,陈移之,张国伟.一个距今10亿年侵位的阿尔卑斯型橄榄岩体:北秦岭晚元古代板块构造体制的证据.地质论评,1991,37:235-242.
    李献华,李正祥,周汉文,等.川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究:岩石成因与地球动力学意义.地学前缘,2002,9:329-338.
    李献华,苏犁,宋彪,刘敦一.金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义.科学通报,2004,49:401~402.
    李献华,李正祥,周汉文,等.川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究:岩石成因与地球动力学意义.地学前缘,2002,9:329~338.
    李献华,周汉文,李正祥,等.川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义,地质科学,2002,37:264-276.
    李行,白文吉,陈方伦,等.扬子地块北缘和西缘前寒武纪镁铁层状杂岩体及含矿性.西安,西北大学出版社,1995.
    梁细荣,韦刚健,李献华,等.利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值.地球化学,2003,32:91-96.
    刘良,周鼎武.东秦岭商丹松树沟高压麻粒岩的发现及初步研究.科学通报,1994,39:1599-1601.
    陆松年,李怀坤,于海峰,等.中国中部年轻造山带内的新元古代重大地质事件及年代格架.现代地质.1999,13:223~224.
    陆松年.青藏高原北部前寒武纪地质初探.北京:地质出版社,2002,125p.
    石应俊,张朝文,寸树苍.龙首山推覆构造的发现及其地质意义.科学通报,1995,40:812-813.
    宋述光,苏犁,杨合群,等.陕西商南松树沟橄榄岩体的成因及侵位机制.岩石学报,1998,14:212-221.
    苏犁,董省元,宋述光,等.毕机沟基性层状杂岩体的岩相学及含矿性研究.西北冶金地质,1992,4:25-34.
    苏犁,宋述光,董省元,等.汉南基性杂岩的成因机制和成矿规律研究.中国矿物岩石地球化学研究新进展,兰州大学出版社.1994:180—181.
    苏犁,宋述光,王志海.北祁连山玉石沟地幔橄榄岩中富CH_4流体包裹体及其意义.科学通报,
    
    1999,44:855-858.
    苏犁,宋述光,周鼎武.秦岭造山带松树沟纯橄岩体成因:地球化学和岩浆包裹体的制约.中国科学(D辑),2004,(出版中).
    苏犁,宋述光,宋彪,等.松树沟地区石榴辉石岩和富水杂岩锆石SHRIMP年龄及其对秦岭造山带构造演化的制约.科学通报,2004(12):
    苏犁,宋述光,舒桂明.北祁连玉石沟地幔橄榄岩矿物晶内的动态部分熔融.自然科学进展,(评审中).
    汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比.北京:地质出版社,1995,209p.
    汤中立,杨杰东,徐士进,等.金川含矿超镁铁岩的Sm-Nd法定年.科学通报,1992,37:918-920.
    汤中立.金川硫化铜镍矿床成矿模式.现代地质,1990,4:55-64.
    涂光炽.中国超大型矿床(Ⅰ).北京:科学出版社,2000,584p.
    王剑,李献华,Duan T Z,等.仓水铺火山岩锆石SHRIMP U-Pb年龄及“南华系”底界新证据.科学通报,2003,48:1726-1731.
    徐义刚.地幔柱构造、大火山岩省及其地质效应.地学前缘,2002,9:341~353.
    许继峰,韩吟文.秦岭古MORB型岩石的高放射性成因铅同位素组成:特提斯型古洋幔存在的证据.中国科学,D辑,1996,26(增刊):34-41.
    许志琴,卢一伦,汤耀庆.东秦岭复合山链的形成—变形、演化及板块动力学.中国环境科学出版社,1988.
    颜丹平,周美夫,宋鸿林,等.华南在Rodinia古陆块位置的讨论.地学前缘,2002,9:249-256.
    杨经绥,许志琴,裴先治,等.秦岭发现金刚石:恒贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别.地质学报,2002,76:484-495.
    张本仁,高山,张宏飞,等.秦岭造山带地球化学.北京:科学出版社,2002,1-187.
    张本仁,张宏飞,赵志丹,等.东秦岭及邻区壳、幔地球化学分区和演化及其大地构造意义.中国科学,D辑,1996,26:201-208.
    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001.855p.
    张旗,周国庆.中国蛇绿岩.北京:科学出版社,2001.182p.
    张宗清,张国伟,唐索寒,等.汉南侵入杂岩年龄及其快速冷凝原因.科学通报,2000,45:2567-2572.
    郑永飞.新元古代岩浆活动与全球变化.科学通报,2003,48:1705~1720.
    周鼎武,董云鹏,刘良,等.松树沟元古宙蛇绿岩Nd、Sr、Pb同位素地球化学特征.地质科学,1998,33:31-38.
    周鼎武,张泽军,董云鹏,等.东秦岭商南松树沟元古宙蛇绿岩片的地质地球化学特征.岩石学报,1995,11(增刊):154~164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700