用户名: 密码: 验证码:
近场强地震动预测的有限断层震源模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强地震动研究是工程科学与地球科学交叉的基础研究领域中一个关键的科学问题,也是保障人类社会稳定和发展、减少地震灾害的迫切需求。大量震害调查、统计资料表明,人身伤亡和经济损失主要是由建、构筑物等工程结构的破坏、倒塌造成的,而工程结构的破坏、倒塌主要是由强烈的地震动造成的。此外,强烈地震动也是地基失效、滑坡等其它地震破坏作用的外部条件。
     在最近的十几年中,强地震动数据积累得很快。在一次地震中获取的空间覆盖面相当大、又有一定密度的观测数据的研究结果显示强地震动不仅受场地条件的影响,而且受震源破裂面上破裂子源的空间分布特点、子源破裂的先后顺序的控制。我国强地震动工程预测常用的经验性衰减关系过于简单,不能很好地描述强震、近场的地震动工程特征,只有用有限断层才能更好地描述震源的特点。当前主要的难点是如何在未来地震发生之前恰当的估计震源滑动的不均匀分布,进展相当艰难。
     本文在大量文献调研的基础上采用基于运动学的矩形有限断层震源网格模型,通过以下三方面艰苦地推进,创造性的成果集成了一个有特色的近场地震动预测的有限断层模型,与地震动的随机合成相结合,形成了一套可实际应用的工程预测方法,以满足我国活断层地震动估计的迫切需求。
     1.对于有限断层的全局参数,在归纳遥感图像识别,地震地质调查,人工地震勘探,余震分布范围研究的基础上,重点研究定量化的定标律。为了克服许多研究者基础数据各不相同的分散研究得到的经验关系难以得出表达参数之间的制约关系和震级的不一致带来使用中的困难,本文在迄今最系统的破坏性地震震源数据库的基础上向前推进,进一步验核、补充震源参数数据,根据数据分布趋势表现的具体变化改进分析方法,同时,建立断层尺度和断层面上平均滑动与矩震级之间的关系。
     (1) 本文从Wells和Coppersmith(1994)的数据库中严格选择了149个地震的震源数据,用Hanks和Kanamori(1979)的公式校正了地震矩,另补充收集了9个1993年以后的地震震源数据。系统研究了地震断层破裂尺度和断层面上平均滑动与矩震级之间的关系,建立了一套可实用的地震定标律。根据地震学的相似性原理把地震破裂尺度和断层面上平均滑动与矩震级之间的关系归纳成统一的简单形式logY=αM_W-C_y,当α=1.0时,Y代表断层破裂面积;α=0.5时,Y代表断层破裂长度和宽度,以及断层面上的平均滑动,C_y为相应的参数值。
     (2) 根据数据分布趋势显示的规律指出上式中的常数项C_y在不同的震级范围内可能是不同的,在约束斜率不变的同时,放松对截距的限制。这一震级范围上的分段不仅适应性更好,而且可以表达一些物理上的限制,例如破裂宽度不能无限制地随矩震级增大而增大。
    
     (3)本文对三种断层类型中不同的震级段,系统地得出了一套预测地震
    断层破裂长度、宽度、破裂面积、平均滑动等四个参数的公式。实际上涵盖了
    己有的各种关系式,可以用来确定有限断层模型全局参数的上、下限和平均值。
     (4)本文研究发现,走滑断层的破裂宽度达到饱和的临界矩震级为
    7 .0。
     2.近断裂地震动,尤其是高频部分,十分强烈地受到地震断层破裂面上
    滑动分布不均匀性和破裂过程的影响,目前数据十分有限,认识到了复杂性、
    尚未有可靠的规律性。许多有限断层模型被称为随机模型,就是由于重点用随
    机方法描述了不确知的这一方面,最经典的是k平方模型。至少有一点在最近
    得到共识,断层破裂面上有一些部分的滑动量明显高,是高频地震动的主要激
    发源,有的研究者用凹凸体描述、有的用障碍体描述。本文抓住凹凸体的概念,
    从有限的数据中探索规律性,在Somerville等人(1999)开创性工作的基础上补
    充数据,分类分析,提取凹凸体的特征参数、建立其定标关系。
     (1)本文在Somerville等人(1999)的长周期地震动波形反演的滑动
    分布数据中选择了13个地震的数据,补充收集了16个,总数增加了近一倍,
    扩大了涵盖的范围。提取了浅源地震凹凸体的特征参数、建立了其定标关系。
    地震断层破裂面上是仅有一个凹凸体,还是有多个凹凸体,有原则区别,参数
    的个数和数值都会有所不同。本文根据地震断层面上凹凸体的数量,将凹凸体
    模型分成所有凹凸体、单凹凸体和多凹凸体三类模型。所有凹凸体模型包括所
    有地震数据,是为了与Somerville等人(1999)整体分析的结果比较而设置的;
    单凹凸体模型地震占地震总数的40%左右,多凹凸体模型地震占地震总数的60%
    左右。为便于应用,本文建立了倾滑断层凹凸体数量与矩震级、断裂长度的关
    系。
     (2)众所周知,在其它条件完全相同时一般逆断层引起的地震动最强,
    走滑断层次之,正断层更弱,为了反映断层滑动类型对强地震动的影响,分析
    中进一步区分所有断层、倾滑断层和走滑断层三种类型。前者包括所有数据,
    是为了与Somervi 11e等人(1999)整体分析结果的比较而设置的;后两者是面
    向实际应用的。
     (3)提取的凹凸体参数,包括最大、所有和其它凹凸体的面积及其平均
    滑动;最大凹凸体的长度、宽度及其中心位置,地震破裂初始点位置等。最大
    凹凸体中心位置和地震破裂初始点
Study on strong ground motion is a key research field in the intercross area of engineering and earth science, and is also an urgent requirement of ensuring stabilization and progress of mankind society & reducing earthquake disaster. A lot of investigation and statistic result of earthquake disaster show that casualty and economic losses are both mainly from the damage and collapse of buildings and other engineering structures that are further mainly caused by strong ground motion. Strong ground motion is also an inducing factor of other earthquake destructiveness, such as ground failure, landslip, and so on.
    In the past ten odd years, strong ground motion records were accumulated very much faster than before. The research results from motion records that were obtained in one earthquake, covered quite large area with a certain density, show the fact that ground motion is not only affected by local site condition, but also governed by spatial distribution of slip and the rupture process on the source plane. In general, it is believed that the empirical attenuation relationships widely adopted in China are too simple and cannot describe the engineering features of the motion very well at near field during strong earthquake, but the finite fault model FFM can do it better. The most difficult problem at present on FFM is how to estimate the in inhomogeneous distribution of slip before an earthquake, and the progress is quite slow.
    In this paper, a FFM, rectangle finite fault grid model based on kinematics, is adopted after a comprehensive review of plentiful published literatures, the creative achievements are integrated into a specific FFM for predicting near field strong ground motion, and formed a set of doable and applied engineering approach by combined the model with stochastic synthesis of ground motion, in order to satisfy urgent requirement from the project of exploration the assessment of earthquake active fault in urban areas in China, by means of the following three hard works.
    1. The quantitative scaling laws between global parameters of FFM and moment magnitude are studied in detail while other methods such as remote sensing image recognition, seismo-tectonic investigation, study of aftershock distribution, et al., are summarized. The most systemic database of destructive earthquake source parameters so far is checked and supplemented, analysis methods on relationships between faulting size parameters and moment magnitude are improved from the inherent trends in the data, and a relationship between average slip on the fault plane
    IV
    
    
    ABSTRACT
    and moment magnitude is established, in this paper, in order to overcome the disadvantages in application of the empirical relationships derived from various source data by some researchers separately, such as the difficulty to express the constraint between each other of some source parameters and the difficulty from different earthquake magnitude scales.
    (1) The seismic source parameter data of 149 history earthquake world wide from the database by Wells and Coppersmith (1994) are selected, the moment magnitude in the database are corrected by Hanks and Kanamori (1979)'s formula, in addition, the source parameter data of 9 earthquakes since 1993 are supplemented. The relationships between fault size parameters on the fault plane and moment magnitude, and between the average slip on the fault plane and moment magnitude, are systemically studied, and a set of doable and applied scaling laws are worked. The theoretic relationships are simplified to a uniform form log7=aMw-Cy, in which Yis for fault rupture area if o=1.0, but Y for fault rupture length, width or average slip, if a=0.5, Cy is corresponding constant.
    (2) The different Cy values in the above mentioned equation for different magnitude intervals mean that the limitation on intercept is unbent while the slope is constrained as 1.0 or o.5, from the inherent trend in the data. This subsection of moment magnitude is better to match the data, and to express some physical constraints, for example, rupture
引文
王国新,强地震动衰减研究[D]。中国地震局工程力学研究所博士学位论文。2001.8。
    陶夏新和王国新,2003,近场强地震动模拟中对破裂方向效应和上盘效应的表达[J]。地震学报,25(2),191-198.
    笠原庆一著,郑斯华,庄灿涛译,防灾工程学中的地震学[S]。地震出版社,北京,1992。
    金森博雄,1980,地震活动地震予知,地震予知研究,1980,163-164.
    Abe, K. (1975), Reliable estimation of the seismic moment of large earthquakes, J Phys. Earth, 23, 381-390.
    Acharya, H. K. (1979). Regional variations in the rupture-length and magnitude relationships and their dynamical significance, Bull. Seism. Soc. Am. 69, 2063-2084.
    Aki, K. (1967). Scaling law of seismic spectrum, J Geophys. Res. 72, 1,217-1,231.
    Aki, K. (1968). Seismic displacement near a fault. J. Geophys. Res., 73, 5359-5376.
    Aki, K. (1972). Scaling law of earthquake source time-function, Geophys. J. R Astr. Soc. 31,3-25.
    Aki, K. (1979). Characterization of barriers on an earthquake fault, J. Geophys. Res., 84,6140-6148.
    Aki, K. and Richards (1980). Quantitative Seismology: Theory and Methods, W.H. Freeman, San Francisco.
    Albee, A. L. and J. L. Smith (1966). Earthquake characteristics and fault activity in southern California, in Engineering Geology in southern California, R. Lung and D. W. Proctor (Editors), Association of Engineering Geologists, Los Angeles Section, 9-34.
    Andrews, D.J. (1976). Rupture propagating with finite stress in anti-plane strain, J. Geophys. Res., 81, 3575-3582.
    Andrews D.J. (1980). A stochastic fault model, 1. Static case, J. Geophys. Res. 85, 3,867-3,877.
    Andrews D.J. (1981). A stochastic fault model, 2. Time-independent case, J. Geophys. Res. 86, 10,821-10,834.
    Andrews, D.J., (1985). Dynamic plane-strain shear rupture with a slip-weakening friction law calculated by a boundary integral method, Bull. Seismol. Soc. Am., 75, 1-21.
    Antolik, Micheal, Kaverina, Asya, Dreger, and S. Douglas (2000). Compound rupture of the great 1998 Antarctic plate earthquake. J. Geophys. Res. 105(10), 23,825-23,838.
    Archuleta, R.J. (1982). Analysis of near source station and dynamic measurements from the 1979 Imperial Valley earthquake, Bull. Seism. Soc. Am. 72, 1,927-1,956.
    Anderson, J. G. and S. E. Hough, (1984), A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies, Bull. Seismol. Soc. Am. 74, 1969-1993.
    Atkinson, G. M. and R. F. Mereu (1992). The shape of ground motion attenuation curves in southeastern Canada. Bull. Seism. Soc. Am. 82(5), 2014 {2031.
    
    
    Atkinson, G. M. and Boore, D. M. (1995), Ground Motion Relations for Eastern North America, Bull. Seismol. Soc. Am. 85, 17-30.
    Atkinson, G. M. (1996), The High-frequency Shape of the Source Spectrum for Earthquakes in Eastern and Western Canada, Bull. Seismol. Soc. Am. 86, 106-112.
    Atkinson, G. and Silva, W. (1997). An empirical study of earthquake source spectra for Californian earthquakes, Bull. Seism. Soc. Am. 87, 97{113.
    Atkinson, G. M. and boore, D. M. (1998), Evaluation of Models for Earthquake Source Spectra in Eastern North America, Bull. Seismol. Soc. Am. 88, 917-934.
    Atkinson, G. M. and Silva, W. (2000), Stochastic Modeling of California Ground Motions, Bull. Seismol. Soc. Am. 90, 255-274.
    Ben-Menahem, A. (1961). Radiation of seismic surface waves from finite moving sources, Bull. Seism. Soc. Am. 51,401-435.
    Beresnev, I. A. and G. M. Atkinson (1997). Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, Earthquake. I. Validation on rock sites. Bull. Seism. Soc. Am., 88(6), 1392-1401.
    Beresnev, I. and G. Atkinson (1998a). FINSIM-a FORTRAN program for simulating stochastic acceleration time histories from finite faults. Seism. Res. L., 69, 27-32.
    Beresnev, I. A. and G. M. Atkinson (1998b). Modeling finite-fault radiation from the ω~n spectrum. Bull. Seism. Soc. Am., 87(1), 67-84.
    Beresnev, I. and G. Atkinson (2000). Subevent structure of large earthquakes-a ground motion perspective. Geophys. Res. L.,28, 53-56.
    Bemard, P., A. Herrero, and C. Berge (1996). Modeling directivity of heterogeneous earthquake rupture. Bull. Seism. Soc. Am. 86, 1,149-1,160.
    Boatwright, J. and Choy, G. (1992), Acceleration Source Spectra Anticipated for Large Earthquakes in Northeastern North America, Bull. Seismol. Soc. Am. 82, 660-682.
    Bonilla, M. G. and J. M. Buchanon (1970). Interim report on worldwide historical surface faulting, U S. Geol. Surv. Open-File-report, 70-34, 32pp.
    Bonilla, M. G., R. K. Mark, and J. J. Lienkaemper (1984). Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement, Bull. Seism. Soc. Am. 74, 2379-2411.
    Bos, A.G., G. Nolet, A.Rubin, H. Houston, and J. E. Vidale (1998). Duration of deep earthquakes determined by stacking global seismograph network seismograms, J. Geophys. Res. 103, 21059-21065.
    Boore, D. M. (1983), Stochastic Simulation of High-frequency Ground Motions Based on Seismological Models of the Radiated Spectra, Bull. Seismol. Soc. Am. 73, 1865-1894.
    Boore, D.M. and Atkinson, G.M. (1987), Stochastic Prediction of Ground Motion and Spectral
    
    Response Parameters at Hard-rock Sites in Eastern North America, Bull. SeismoL Soc. Am. 77, 440-467.
    Boore, D. M., Joyner, W. B., and Fumal, T. E. (1997), Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work, Seism. Res. Lett. 68, 128-153.
    Boore, D. M. (2003). Simulation of ground motion using the stochastic method. Pure appl. Geophys. 160, 635-676.
    Bouchon, M., H. Sekiguchi, K. Irikura and T. Iwata (1998). Some characteristics of the stress field of the 1995 Hyogoken Nanbu (Kobe) earthquake. J. Geophys. Res., 103, 24,271-24,282.
    Brune, J. N. (1970), Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. Geophys. Res. 75, 4997-5009.
    Brune, J. N. (1971), Correction, J. geophys. Res. 76, 5002.
    Brune, J.N. (1991). Seismic source dynamics, radiation and stress. Rev. geophys., supplement 29,688-699.
    Chinnery, M. A. (1969). Earthquake magnitude and source parameters, Bull. Seism. Soc. Am. 59,1969-1982.
    Dan, K. and T. Sato (1999). A semi-empirical method for simulating strong motions based on variable-slip rupture models for large earthquake. Bull. Seism. Soc. Am. 89, 36-53.
    Das, S. and K. Aki (1977). Fault plane with barriers: A versatile earthquake model. J. Geophys. Res. 82, 5,658-5,670.
    Day, S.M. (1982a). Three-dimensional finite difference simulation of fault dynamics: rectangular faults with fixed rupture velocity, Bull. Seism. Soc. Am. 72, 705-727.
    Day, S.M. (1982b). Three-dimensional simulation of spontaneous rupture: the effect of nonuniform prestress, Bull. Seism. Soc. Am. 72, 1881-1902.
    Dietz, L.D. and W.L. Ellsworth (1990). The October 17, 1989, Loma-Prieta, California, earthquake and its aftershocks-geometry of the sequence from high-resolution locations. Geophys. Res. Lett. 17, 1417-1420.
    Darragh, R.B., and B.A. Bolt (1987). Acomment on the statistical regression relation between earthquake magnitude and fault rupture length, Bull. Seis. Soc. Am., 77, 1,479-1,484.
    Ekstom, G., and E.R.Engdahl (1989). Earthquake source parameters and stress distribution in the Adak Island region of the central Aleutians Islands. J. Geophys. Res. 94, 15499-15519.
    Ekstom, G., R.S. Stein, J.P. Eaton, and D.Eberhart-Phillps (1992). Seismicity and geometry of a100-km long blind thrust 1. The 1985 Kettleman Hills, Califomia, earthquake, J. Geophys. Res. 97, 4843-4863.
    Frankel, A. (1991). High-frequency spectral falloff of earthquakes, fractal dimension of complex
    
    rupture, b value, and the scaling strength on fault, J. Geophys. Res. 96, 6,291-6,302.
    Frankel, A., Mueller, C., Bamhard, T., Perkins, D., Leyendecker, E., Dickman, N., Hanson, S. and Hopper, M. (1996), National Seismic Hazard Maps: Documentation June 1996. U.S. Geol. Surv. Open-File Rept. 96-532, 69 pp.
    Fukuyama, E. and K. Irikura (1986). Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using waveform inversion method. Bull. Seism. Soc. Am. 76, 1623-1640.
    Fukuyama, E. and T. Mikumo (1993). Dynamic rupture analysis: inversion for the source process of the 1990 Izu-Oshima, Japan, earthquake (M=6.5), J. Geophys. Res. 98, 6,529-6,542.
    Furumoto, M., and I. Nakanishi (1983). Source times and scaling relations of large earthquakes, J. Geophys. Res. 88, 2191-2198.
    Gallovic, F. and J., Brokesove (2002) On strong ground motion synthesis with k~(-2) slip distributions, Submitted to J. Seismo..
    Gutenberg, B., and C. E Richter (1956). Magnitude and energy of earthquakes, Ann. Geofis., 9,1-15.
    Guatteri, M., P. Martin Mai, Gregory C. Beroza, and John Boatwright (2003). Strong ground motion prediction from stochastic dynamic source models, Bull. Seism. Soc. Am., 93, No.1, 301-313.
    GSS(2002), New manual of seismological observatory practice, http://www.seismo.com
    Hadley, D.M. and D.V. Helmberger (1980). Simulation of strong ground motions. Bull. Seism. Soc. Am. 70, 617-630.
    Haddon, R. (1996), Earthquake Source Spectra in Eastern North America, Bull. Seismol. Soc. Am. 86, 1300-1313.
    Hanks, T.C. (1979). b value ω~(-γ) seismic source models: implication for tectonic stress variations along active crustal fault zones and the estimation of high frequency strong ground motion, J. Geophys. Res. 84, 2235-2242.
    Hanks, T. C. and H. Kanamori (1979). A moment-magnitude scale, J. Geophys. Res. 84. 2348-2350.
    Hanks, T. C. and McGuire, R. K. (1981), The character of high-frequency strong ground motion, Bull. Seism. Soc. Am. 71, 2071-2095.
    Hanks, T. C. (1982), fmax, Bull. Seismol. Soc. Am. 72, 1867-1879.
    Haskell, N.A. (1964). Total energy and energy spectral density of elastic wave radiation from propagating faults, Bull. Seism. Soc. Am. 54, 1811-1841.
    Hartzell, S.H. (1978). Earthquake aftershocks as Green's functions. Geophys. Res. Letters, 5, 1-14.
    Hartzell, S.H. and T.H. Heaton (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seism. Soc. Am. 73, 1,553-1,583.
    Hartzell, S.H. and T.H. Heaton (1986). Rupture history of the 1984 Morgan Hill, California, earthquake (?)om the inversion of strong motion records, Bull. Seism. Soc. Am. 76, 649-674.
    
    
    Hartzell, S. H. (1989). Comparison of seismic waveform inversion techniques for the rupture history of a finite fault: application to the 1989 North Palm Springs, California, earthquake, J. Geophys. Res., 94, 7515-7534.
    Hartzell, S.H. and C. Mendoza (1991). Application of an iterative least-squares waveform inversion of strong motion and teleseismic records to the 1978 Tabas, Iron, earthquake, Bull. Seism. Soc. Am. 81, 305-331.
    Hatzell, S.H., GS., Stewart, and C. Mendoza (1991). Comparison of L_1 and L_2 norms in a teleseismic waveform inversion for the slip history of the Loma Prieta, California, earthquake, Bull. Seism. Soc. Am. 81, 1,518-1,539.
    HartzeIl, S.H., C. Langer, and C. Mendoza (1994). Rupture histories of eastern North American earthquake, Bull. Seism. Soc. Am. 84, 1,703-1,724.
    Hartzell, S.H., ELiu, and C. Mendoza (1996). The 1994 Northridge, California earthquake: Investigation of rupture velocity, rise time, and high-frequency radiation, J. Geophys. Res. 101, 20,091-20,108.
    Heaton, T., and S. Hartzell (1986). Source characteristics of hypothetical subduction earthquakes in the Northwestern United States. Bull. Seism. Soc. Am., 76, 675-708.
    Heaton, T.H. (1990). Evidence for and implications of self-healing pulse of slip in earthquake rupture, Phys. Earth Planet. Interiors 64, 1-20.
    Hemandez, B., N.M. Shapiro, S.K. Singh, J.F. Pacheco, E Cotton, M. Campillo, M., A. Iglesias, V. Cruz, V., J.M. G?mez, L. Alc?ntara (2001). Rupture History of September 30, 1999 Intraplate Earthquake of Oaxaca, Mexico (Mw=7.5) from Inversion of Strong-Motion Data. Geophys. Res. Lett., 28, 363-366.
    Herrero, A. and E Bernard (1994). A kinematic self-similar rupture process for earthquake, Bull. Seism. Soc. Am. 84, 1,216-1,228.
    Hough, S.E. and J.G Anderson (1988). High frequency spectra observed at Anza: Implications for Q structure, Bull. Seismol. Soc. Am. 78, 692-707.
    Houston, H., H. M. Benz, and J. E. Vidale (1998). Time functions of deep earthquakes from broadband and short-period stacks, J. Geophys. Res. 103, 29895-29913.
    Hisade, Y. (2000), A theoretical omega-square model considering the spatial variation in slip and rupture velocity. Bull. Seism. Soc. Am. 90(2), 387-400.
    Hisade, Y. (2001), A theoretical omega-square model considering the spatial variation in slip and rupture velocity. Part 2: case for a two-dimensional source model. Bull. Seism. Soe. Am. 91(4), 651-666.
    Ide, S. (1999). Source process of the 1997 Yamaguchi, Japan, earthquake analyzed in different frequency bands, GeophysicalResearch Letters, 26, 1973-1976.
    Iida, K. (1959). Earthquake energy and earthquake faults, Nagoya University, J, Earth Sci. 7,
    
    98-107.
    Irikura, K. (1983). Semi-empirical estimation of strong ground motions during large earthquakes. Bull. Disaster Prevention Research Institute, Kyoto Univ., 33, 63-104.
    Irikura, K. (1986). Prediction of strong acceleration motion using empirical Green's function, Proc. 7th Japan Earthquake Symp. 151-156.
    Irikura, K. (2000). Prediction of strong ground motions from future earthquakes caused by active faults-Case of the Osaka Basin. Report on the 12th World Conference on Earthquake Engineering (12WCEE), CDROM, No.2687. Auckland, New Zealand during 30 January-4 February 2000.
    Irikura, K. and H. Miyake (2001). Prediction of strong ground motions for scenario earthquakes, J. Geography, 110(6), 849-875.
    Irikura, K. (2002). Recipe for estimating strong ground motions from active fault earthquakes. Seismotectonics in Convergent Plate Boundary, Eds. Y. Fujinawa and A. Yoshida, pp. 45-55.
    Ito, K. (1990). Regional variations of the cutoff depth of seismicity in the crust and their relation to heat flow and large inland-earthquakes. J. Phys. Earth, 38, pp.223-250.
    Ito, K. (1999). Seismogenic layer, reflective lower crust, surface heat flow and large inland earthquakes. Tectonophysics, 306, pp.423-433.
    Iwata, T., H. Sekiguchi, and A. Pitarka (2000). Source and site effects on strong ground motions in near-source area during the 1999 Chi-Chi, Taiwan, earthquake, AGU fall meeting, S72-P05.
    Ji, C., Wald, D.J., and D. V. Helmberger (2000). Slip history of 1999 Hector Mine, California earthquake, Seism. Res. Lett., 71, 224,.
    Joyner, W. (1984). A scaling law for the spectra of large earthquakes, Bull. Seism. Soc. Am. 74, 1,167-1,188.
    Joyner, W. and D. Boore (1986). On simulating large earthquakes by Green's function additon of smaller earthquakes. In: Earthquake Source Mechanics. Maurice Ewing Volume 6. Geophys. Monogr. Am. Geophys. Union, 37, 269-274.
    Joyner, W. B. (1997), Ground Motion Estimates for the Northeastern U.S. or Southeastern Canada. In Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, Senior Seismic Hazard Analysis Committee (R. Budnitz, G. Apostolakis, D. Boore, L. Cluff, K. Coppersmith, A. Comell, and P. Morris eds.), U.S. Nuclear Reg. Comm. Rept. NUREG/CR-6372, Washington, D.C.
    Kamae, K., K. lrikura and A. Pitarka (1998). A technique for simulating strong ground motion using hybrid Green's function. Bull. Seis. Soc. Amer 88(2), 357-367.
    Kamae, K. and K. Irikura (1998). Source model of the 1995 Hyogoken Nanbu earthquake and simulation of near-source ground motion, Bull. Seism. Soc. Am. 88, 400-412.
    Kanamori, H. and D. L. Anderson (1975). Theoretical basis of some empirical relations in seismology, Bull. Seism. Soc. Am. 65, 1073-1096.
    Kanamori, H. and J.W. Given (1981). Use of long-period surface waves for rapid estimation of
    
    earthquake source parameters, Phys. Earth Planet. Interiors 27, 8-31.
    Kostrov, B.V. (1966). Unsteady propagation of longitudinal shear cracks, J Applied Math. and Mechanics, 30, 1241-1248.
    Lam, N., J. Wilson and G. Hutchinson (2000). Generation of synthetic earthquake accelerograms using seismological modeling: A Review. Journal of Earthquake Engineering, 4(3), 321-354.
    Lee, W. H. K., T. C. Shin, K. W. Kuo, and K. C. Chen (1999). "CWB Free-Field Strong-Motion Data from the 921 Chi-Chi Earthquake: Volume 1. Digital Acceleration Files on CD-ROM." Seismology Center, Central Weather Bureau, Taipei, Taiwan, Pre-Publication Version, December 6.
    Liu, H.L. and D.V. Helmberger (1983). The near-source ground motion of the 6 August 1979 Coyote Lake, California, earthquake, Bull. Seism. Soc. Am. 73, 201-218.
    Madariaga, R. (1976). Dynamics of an expanding circle fault. Seis. Res. Lett., 66, 163-182.
    Madariaga, R., K.B. Olson, and R.J. Archuleta (1997). 3-D elastic finite difference simulation of a spontaneous rupture, Seis. Res. Lett., 68, 312 (abstract).
    Mai, P.M. and Gregory C. Beroza (2000). Source scaling properties from finite-fault-rupture models. Bull. Seism. Soc. Am., 90, No.3, pp.604-615.
    Mai P. M. and G.C. Beroza (2002). A spatial random field model to characterize complexity in earthquake slip. J Geophys. Res., 107(B11), 2308.
    Mark Stirling, David Rhoades, and Kelvin Berryman (2002). Comparison of earthquake scaling relations derived from data of the instrumental and preinstrumental Era, Bull. Seism. Soc. Am. 92, 812-830.
    McGuire, R. K. and Hanks, T. C. (1980), RMS accelerations and spectral amplitudes of strong ground motion during the San Fernando, California, earthquake, Bull. Seismol. Soc. Am. 70, 1907-1919.
    Mendoza, C. and S.H. Hartzell (1988a). Inversion for slip distribution using GDSN p wave: North Palm Springs, Borah Peak, and Michocan earthquake, Bull. Seism. Soc. Am. 78, 1,092-1,111.
    Mendoza, C. and S.H. Hartzell (1988b). Aftershock pattems and mainshock faulting, Bull. Seism. Soc. Am. 78, 1,438-1,449.
    Mendoza, C. (1993). Coseismic slip of two large Mexican earthquakes from teleseismic body waveforms: Implications for asperity interaction in the Michoacan plate-boundary segment. J Geophys. Res. 98, 8197-8210.
    Mendoza, C. and S. Hartzell (1999). Fault-slip distribution of the 1995 Colima-Jalisco, Mexico, earthquake. Bull. Seis.Soc. Am. 89(5), 1338-1344.
    Mikumo, T. and T. Miyatake (1978). Dynamic rupture process on a three -dimensional fault with non-uniform frictions and near-field seismic waves, Geophys. J. R. Astr. Soc., 54, 417-438.
    Miyakoshi, K., T. Kagawa, H. Sekiguchi, T. lwata and K. Irikura (2000a). Source characterization of inland earthquakes in Japan using source inversion results, Proc. 12th World Conf. Earthq.
    
    Eng., Auckland, New-Zealand, 1850, 8pp (CDROM).
    Miyake, H., T. Iwata, and K. Irikura (2001), Estimation of rupture propagation direction and strong motin generation area from azimuth and distance dependence of source amplitude spectra. Geophys. Res. Lett., 28(14), 2,727-2,730.
    Miyake, H., T. Iwata, and K. Irikura (2003), Source characterization for brandband ground-motion simulation: kinematic heterogeneous source model and strong motion generation area. Bull. Seism. Soc. Am. 93(6), 2531-2545.
    Motazedian and Atldnson (2003). Dynamic corner frequency: a new concept in stochastic finite fault modeling, reviewing
    Nakata, T., K. Shimaaaki, Y. Suzuki, and E. Tsukuda (1998). Fault branching and directivity of rupture propagation, J. Geography, 107, 512-518 (in Japanese).
    Ohnaka, M. (1978). Earthquake-source parameters related to magnitude, Geophys. J. R Astr. Soc.55, 45-66.
    Olson, A.H. and R.J. Aspel (1982). Finite fault and inverse theory with application to the 1979 Imperial Valley earthquake, Bull. Seism. Soc. Am. 72, 1969-2001.
    Papageorgiou, A. S. and K. Aki, (1983), A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion. Part Ⅱ. Applications of the Model, Bull. Seismol. Soc. Am. 73, 953-978.
    Rovelli A., Bonamassa, O., Cocco, M., Dibona, M., and Mazza, S. (1988), Scaling Laws and Spectral Parameters of the Ground Motion in Active Extensional Areas in Italy, Bull. Seismol. Soc. Am. 78, 530-560.
    Safak, E. (1988). Analytical approach to calculation of response spectra from seismological models of ground motion. Earthq. Engrg. Struct. Dyn. 16, 121 {134.
    Safak, E. and Boore, D. M. (1988), On Low-frequency Errors of Uniformly Modulated Filtered Whitenoise Models for Ground Motions, Earthq. Eng. Struct. Dyn. 16, 381-388.
    Saragoni, G. R. and Hart, G. C. (1974), Simulation of Artificial Earthquakes, Earthq. Eng. Struct. Dyn. 2, 249-267.
    Sato, T. and T. Hirasawa (1973). Body wave spectra from propagating shear cracks, J. Phys. Earth, 21, 415-431.
    Sato, R. (1979). Theoretical basis on relationships between focal parameters and earthquake magnitude, J. Phys. Earth, 27, 353-372
    Sato, R. and T. Hiram (1980). One method to compute theoretical seismograms in a layered medium, J. Phys. Earth, 28, 145-168.
    Scholz, C. H. (1982). Scaling laws for large earthquakes: consequences for physical models, Bull. Seism. Soc. Am. 72, 1-14.
    Scholz, Ch. H. (1990). The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge, 439 pp.
    Sekiguchi, H., K. Irikura, T. Iwata, Y. Kakehi, and M. Hoshiba (1996a). Determination of the location of faulting beneath Kobe during the 1995 Hyogo-ken Nanbu, Japan, earthquake from near-source particle motion, Geophys. Res. Lett., 23,387-390.
    
    
    Sekiguchi, H., K. Irikura, T. Iwata, Y. Kakehi, and M. Hoshiba (1996b). Minute locating of faulting beneath Kobe and the waveform inversion of the source process during the 1995 Hyogo-ken Nanbu, Japan, earthquake using strong ground motion records, J. Phys. Earth, 44, 473-487.
    Sekiguchi, H. and T. twata (2002), Rupture process of the 1999 Kocaeli, Turkey, earthquake estimated from strong-motion waveforms, Bull. Seism. Soc. Am., 92, 300-311.
    Shin, T. C., K. W. Kuo, W. H. K. Lee, T. L. Teng, and Y. B. Tsai (2000). A preliminary report on the 1999 Chi-Chi (Taiwan) earthquake, Seism. Res. Lett. 71, 24-30.
    Sibson, R.H. (1992). Implications of fault-value behavior for rupture nucleation and recurrence, Tectonophysics, 211,283-293.
    Silva, W. J. and Darragh, R. B. (1995), Engineering Characterization of Strong Ground Motion Recorded at Rock Sites, Electric Power Research Institute, Palo Alto, Calif., Report No. TR-102262.
    Silva W., N. Abrahamson, G. Toro and C. Costantino (1996). Description and Validation of the Stochastic Ground Motion Model. Report, Pacific Engineering and Analysis.
    Singh, S.K., J. Pacheco, M. Ordaz, and Kostoglodov (2000). Source time function and duration of Mexican Earthquakes. Bull. Seism. Soc. Am., 90, 468-482.
    Slemmons, D. B. (1977). Faults and earthquake magnitude, U. S. Army Corps of Engineers, Waterways Experimental Station, Miscellaneous paper S-73-1, Report 6, 1-129.
    Slemmons, D. B. (1982). Determination of design earthquake magnitude for microzonation, Proc. of the third international earthquake microzonation conf Vol. 1, U. S. National Science Foundation, Washington, D. C., 119-130.
    Slemmons, D. B., P. Bodin, and X. zang (1989). Determination of earthquake size from surface faulting events, proc. of the International Seminar on seismic Zonation, Guangzhou, China, State Seismological Bureau, Beijing, 13.
    Somerville, P., M. Sen and B. Cohee (1991). Simulations of strong ground motions recorded during the 1985 Michoacan, Mexico and Valparaiso, Chile, earthquakes. Bull. Seism. Soc. Am., 81, 1-27.
    Somerville, P.G. (1993). Engineering application of strong ground motion simulation, Tectonophysics 218, 195-219.
    Somerville, P., C.K., Saikia, D. Wald, and R. Graves (1996). Implications of the Northridge earthquake for strong ground motions from thrust faults, Bull. Seism. Soc. Am. 86, S115-S125.
    Somerville, P.G., N.F. Smith, R.W.Graves, and N.A. Abrahamson (1997). Modification of empirical strong ground motions from attenuation relations to include the amplitude and duration effects of rupture directivity, Seismological Research letters. 68, 199-222.
    
    
    Somerville, P.G. (1998). Emerging art: Earthquake ground motion. Geotechnical Earthquake Engineering and Soil Dynamics Ⅲ, Proceedings of a Specially Conference held in Seattle, Washington, August 3-6, 1998. Geotechnical special publication No.75, 1-38.
    Somerville, P., K. Irikula, R. Graves, S. Sawada, D. Wald, N. Abrahamson, Y. Iwasaki, T. Kagawa, N.Smith, and A. Kowada (1999). Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion, Seism. Res. Lett. 70(1), pp.59-80.
    Somerville, P. (2000). Seismic hazard evaluation, Proc. of 12WCEE. Auckland.
    Su, Y., J.G. Anderson, Y. Zeng (1996). Comparison of strong and weak motion site amplification from Northridge earthquake sequence EOS, transaction, Am. Geophys. Union, 77, 494.
    Takeo, M. (1987). An inversion method to analyze the rupture processes of earthquakes using near-field seismograms. Bull. Seism. Soc. Am. 77, 490-513.
    Takeo, M. and N. Mikami (1990). Fault heterogeneity of inland earthquake in Japan, Bull. Earthquake Res. Inst. Univ. Tokyo, 65, 541-569,.
    Tao X.X. and J.G. Anderson (2002). Near field strong ground motion simulation. Proc. of ICANCEER, 2002, Harbin.
    Tocher, D. (1958). Earthquake energy and ground breakage, Bull. Seism. Soc. Am.. 48, 147-153.
    Trifunac, M.D. and EE. Udiwadia (1974). Parkfield, California, earthquake of June 27, 1969: A dimensional moving dislocation, Bull. Seism. Soc. Am., 64, 511-533.
    Tumarkin, A. and R. Archuleta (1994). Empirical ground motion prediction. Annali Di Geofisica. 37, 1691-1720.
    USGS (1996). USGS response to an urban earthquake, Northridge'94. Prepared by the U.S. Geological Survey for the Federal Emergency Management Agency (FEMA). Open-file-report 96-263.
    Vidale, J.E. and D.V. Helmberger (1988). Elastic finite-difference modeling of 1971 San Fernando, California earthquake, Bull. Seism. Soc. Am., 78, 122-141.
    Wald, D.J., L.J. Burdick, and P.G Somerville (1988). Simulation of Acceleration time histories close to large earthquake, Earthquake Engineering and Soil Dynamics Ⅱ: Recent Advances in Ground Motion Evalution, Geotechnical Special Publication 20, J. Lawrence von Thun, ed., 430-444.
    Wald, D.J., D.V. Helmberger, and S.H. Hartzell (1990). Rupture process of the 1987 Superstition Hills earthquake from the inversion of strong motion data, Bull. Seism. Soc. Am. 80, 1,079-1,098.
    Wald, D.J., D.V. Helmberger, and T.H. Heaton (1991). Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong motion and broadband teleseismic data, Bull. Seism. Soc. Am. 81, 1,540-1,572.
    Wald, D.J. and T.H. Heaton (1994). Spatial and temporal distribution of slip of 1992 Landers,
    
    California earthquake, Bull. Seism. Soc. Am. 84, 668-691.
    Wald, D.J. and P.G Somerville (1995). Variable slip rupture model of the great 1923 Kanto, Japan earthquake: geodetic and body waveform analysis. Bull Seism. Soc. Am. 85, 159-177.
    Wald, D.J., T.H. Heaton, and K.W. Hudnut (1996). The slip history of the 1994 Northridge, California earthquake determined from strong motion, teleseismic, GPS, and leveling data, Bull. Seism. Soc. Am. 86, S49-S70.
    Wald, D.J. (1996). Slip history of the 1995 Kobe, Japan, earthquake determined from strong motion, teleseismic, and geodetic data, J. physics of the Earth 44, 489-503.
    Wang Guoxin and Tao Xiaxin (2001). Strong ground motion of the 1994 M6.7 Northridge earthquake simulated by stochastic approach, Proc. Of IASPEI Assembly, Honei.
    Wells and Coppersmith (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am. Vol.84,No.4, pp.974-1002.
    Working Group (1999). Earthquake Probabilities in the San Francisco Bay Region: 2000 to 2030—A Summary of Findings, USGS, Open-File Report 99-517.
    Yagi, Y., M. Kikuchi, S. Yoshida, and T. Sagiya (1999), Comparison of the coseismic rupture with the aftershock distribution in the Hyuga-nada earthquakes of 1996, Geophys. Res. Lett., 26, 3161-3164.
    Yoshida, S., K. Koketsu, T. Kato, B. Shibazaki, T. Sagiya, and Y. Yoshida (1996). Joint inversion of near-and far-field waveforms and geodetic data for the rupture process of the 1995 Kobe earthquake, J. Phys. Earth, 44, 437-454.
    Zeng, Y., J.G. Anderson, and Y. Guang (1994). A composite source model for computing realistic synthetic strong ground motions reference. Geophys. Res. Lett. 21,725-78.
    Zeng, Y., and J.G. Anderson (2000). Earthquake source and near-field directivity modeling of several large earthquakes. EERI 6th International Conference on Seismic Zonation, Palm Springs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700